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Abstract

Identifying and controlling the emergence of antimicrobial resistance (AMR) is a high
priority for researchers and public health officials. One critical component of this
control effort is timely detection of emerging or increasing resistance using surveillance
programs. Currently, detection of temporal changes in AMR relies mainly on analysis of
the proportion of resistant isolates based on the dichotomization of minimum inhibitory
concentration (MIC) values. In our work, we developed a hierarchical Bayesian latent
class mixture model that incorporates a linear trend for the mean log2MIC of the
non-resistant population. By introducing latent variables, our model addressed the
challenges associated with the AMR MIC values, compensating for the censored nature
of the MIC observations as well as the mixed components indicated by the censored
MIC distributions. Inclusion of linear regression with time as a covariate in the
hierarchical structure allowed modelling of the linear creep of the mean log2MIC in the
non-resistant population. The hierarchical Bayesian model was accurate and robust as
assessed in simulation studies. The proposed approach was illustrated using Salmonella
enterica I,4,[5],12:i:- treated with chloramphenicol and ceftiofur in human and veterinary
samples, revealing some significant linearly increasing patterns from the applications.
Implementation of our approach to the analysis of an AMR MIC dataset would provide
surveillance programs with a more complete picture of the changes in AMR over years
by exploring the patterns of the mean resistance level in the non-resistant population.
Our model could therefore serve as a timely indicator of a need for antibiotic
intervention before an outbreak of resistance, highlighting the relevance of this work for
public health. Currently, however, due to extreme right censoring on the MIC data, this
approach has limited utility for tracking changes in the resistant population.

Keywords: Antimicrobial resistance, Minimum inhibitory concentration, Hierarchical
Bayesian linear model, latent class, Salmonella enterica I,4,[5],12,:i:-, Chloramphenicol,
Ceftiofur
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Introduction 1

Rationale 2

Identifying and controlling the emergence of antimicrobial resistance (AMR) is a high 3

priority for researchers and public health officials. A critical component of this control 4

effort is surveillance for emerging or increasing resistance, as evidenced by the number 5

and scale of surveillance programs around the world [5] [6]. The aims of these 6

surveillance programs are to enable detection of emerging resistance in a timely manner 7

and to facilitate antimicrobial stewardship programs to be implemented properly and 8

accurately [7]. Currently, detection of temporal changes in AMR relies primarily on 9

analysis of the proportion of resistant isolates based on the dichotomization of minimum 10

inhibitory concentration (MIC) [7]. The MIC can be obtained from laboratory methods 11

or machine-learning approaches [7] [21]. Regardless of the approach to MIC 12

determination or the breakpoint used, dichotomization results in a loss of information. 13

Previous work and challenges 14

To date, the predominant approach to assessing changes in AMR has focused on 15

evaluation of changes in the proportion of isolates resistant to a particular antibiotic over 16

time. Several statistical methods have been employed, including the Cochran-Armitage 17

trend test, logistic regression model with time as a co-variate [8] [9] [10], and the 18

Mann-Kendall non-parametric method to test monotonic trends over time [11]. These 19

statistical methods are based on MIC data that are dichotomized to resistant and 20

non-resistant. Mazloom et al. [12] pointed out that methods based on categorizations 21

cause information loss. As such, a focus on changes in proportion of bacteria that are 22

categorized as resistance means that changes in the mean MIC of isolates above or 23

below the resistant breakpoint, a phenomena referred to as MIC creep/decline, are not 24

included in the current surveillance monitoring [13]. Similarly, reliance on dichotomized 25

MIC data prevents monitoring of correlations in mean MIC, despite the fact that such 26

information would aid in the identification of emerging joint resistance patterns. 27

Mean MIC estimation must address the natural characteristics of MIC values, which 28

are obtained from serial dilution experiments or predicted using AI methods [21]. 29

Regardless of the method for obtaining MIC, currently observed MIC values are interval 30

censored. For example, an observed or predicted MIC of 8 for the organism A actually 31

implies that the true MIC is > 4, ≤ 8, and ultimately unknown. Estimation of the mean 32

MIC without adjusting for censorship is biased and likely to overestimate the bacterial 33

resistance to an antibiotic [15]. An additional issue is modeling of the underlying 34

distribution of the true unknown MIC values. With respect to MIC data, bacteria 35

isolates typically consist of a mixture of two components. Depending upon the focus (or 36

region), these two populations may be considered resistant and non-resistant 37

populations or wild-type and non-wild-type populations; however, the presence of two 38

overlapping populations is commonly considered reasonable for these bacteria. For each 39

component, the true concentration of antibiotic required to inhibit bacterial growth (i.e., 40

the true MIC value) is believed to follow a log-normal distribution [16]; hence, the 41

log2MIC follows a normal distribution. 42

Statistical approaches for estimation of the mean MIC have been proposed 43

previously. Kassteele et al. [17] suggested a model for mean log2MIC estimation that 44

incorporated the censored nature of MIC data and adjusted for such bias using the 45

interval-censored normal distribution as the underlying distribution. This model is a 46

reasonable accommodation for censorship; however, the approach did not address the 47

mixture of resistant and non-resistant populations in the observed data. Craig [18] 48

proposed that the underlying distribution of log2MIC can be modeled by a mixture of 49
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Gaussian distributions with resistant and non-resistant populations. Jaspers et 50

al. [1] [2] [3] modeled the full continuous MIC distribution for wild-type and 51

non-wild-type bacteria populations determined by epidemiological cut-off rather than 52

clinical breakpoints. According to their definition of bacterial categorization, the 53

non-wild-type population has less informative distributions and was therefore estimated 54

in non-parametric ways. These previously published approaches suggest that log2MIC 55

mean can be estimated, although none of the above mentioned studies evaluated an 56

approach for estimating a temporal trend in mean log2MIC, and such an approach is 57

clearly a critical need for AMR surveillance programs. Therefore, building upon these 58

previous studies, we sought to describe an approach to estimate the mean log2MIC and 59

describe temporal changes in AMR, while simultaneously addressing the censored 60

nature of MIC data and the mixed distributions of populations. 61

Contribution 62

In this paper, we proposed a hierarchical Bayesian latent class mixture model with 63

censoring to detect temporal changes in AMR. This proposed model was applied to data 64

from human samples from the Center for Disease Control National Antimicrobial 65

Resistance Monitoring System (NARMS) surveillance program and swine samples from 66

the Iowa State University Veterinary Diagnostic Laboratory (ISU VDL). The human 67

data consisted of Salmonella I,4,[5],12:i:- tested with ceftiofur (TIO) and 68

chloramphenicol (CHL). The swine data included Salmonella I,4,[5],12:i:- tested with 69

TIO. Our applications revealed some interesting patterns in the Results Section. 70

Simulation studies showed that our model was accurate and robust in the estimation of 71

the mean log2MIC in non-resistant populations, the linear temporal trend in 72

non-resistant populations, and the proportion of resistant bacteria over time. Future 73

work stemming from our model is also discussed in the Discussion Section. Inclusion of 74

such analyses into current surveillance programs would provide additional insight for 75

monitoring of temporal changes in AMR and would increase the value of information 76

extracted from such surveillance systems. 77

Methods 78

Model notation and assumptions 79

Our hierarchical Bayesian model for detection of linear temporal changes in AMR must 80

take into account the censored nature of the data and the underlying mixed distribution 81

of the observations. The commonly used approach for analysis of two-fold serial dilution 82

observations is to transform to base 2 logarithm. To account for censoring statistically, 83

each observed MIC value was assumed to represent an interval of true MIC values 84

rather than a single discrete point value. With the following notations, Table 1 explains 85

the conversion between the observed log2MIC values and a continuous scale interval 86

(lij , uij) for each isolate and each antibiotic. 87

y∗ij : observed value of log2MIC for isolation j in year i; 88

yij : latent true value of log2MIC for isolation j in year i; 89

lij , uij : lower bound and upper bound of the true value yij , yij ∈ (lij , uij); and 90

cij : latent indicator of the bacterial population from which the observation was 91

drawn, where i = 1, 2, ...I, and j = 1, 2, ..., ni. Here, I is the total number of years, and 92

ni is the total number of isolates tested in the ith year. 93

Denote S as the conversion function between y∗ij and yij , and therefore, y∗ij = S(yij), 94

which is depicted in Fig 1 by the step-like plot. The distribution of the latent true value 95
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Table 1. Conversion table between observed and latent log2MIC.

y∗ij censor type lij uij yij ∈ (lij , uij)

≤ a left censored −∞ a −∞ < yij ≤ a
= a interval censored a− 1 a a− 1 < yij ≤ a
> a right censored a ∞ a < yij <∞

The censored log2MIC data, a, is commonly observed as integer numbers from −6 to 8.

of log2MIC was assumed to be a bimodal Gaussian mixture model, which corresponds 96

to the underlying mixture of resistant and non-resistant populations. 97

Fig 1. Conversion plot between observed and latent log2MIC. In this
example, the serial dilution experiment starts at MIC = 2−2 = 0.25 and ends at
MIC = 24 = 16.

We proposed a model with a linear trend in the mean log2MIC over time. The 98

motivation for this model stemmed from the results of a näıve analysis of Salmonella 99

enterica I,4,[5],12:i:- and antibiotic CHL in the CDC NARMS dataset (the grey line 100

displayed in Fig 2). Since the true log2MIC cannot be observed with the raw data due 101

to censoring, the näıve mean log2MIC was calculated and presented over time. The 102

näıve analysis for mean log2MIC ignored the nature of censoring of MIC data, resulting 103

in calculation of the arithmetic average of log2MIC each year. For example, if the 104

observed MIC value was ≤ 2, then log2MIC = log2(2) = 1 was treated as the 105

corresponding log2MIC value and was therefore used for the näıve mean calculation. 106

Although mathematically this approach has some issues, it served to illustrate the linear 107

trend in the non-resistant population. The potential to observe and assess the presence 108

of a linear trend is less useful in the resistant population, because the majority of the 109

observed log2MIC results are right censored at the highest concentration of the serial 110

dilutions. As a consequence, in the resistant population, the näıve mean log2MIC barely 111

changed over time. Our assumption about the linear trend in the näıve mean log2MIC 112

was only applicable to the non-resistant population. 113

Fig 2. Estimation results for Salmonella enterica I,4,[5],12:i:- tested with
CHL in the CDC NARMS dataset. The grey bars represent the observed
proportions of resistant bacteria (left y-axis). The grey line indicates the näıve mean of
log2MIC in the non-resistant population. The red line connects the point estimates of
the mean log2MIC in the non-resistant population. The blue line represents the
estimated linear trend, shaded with its 95% CI.

Model description 114

Below, we describe in detail the approaches we used; however, as an introduction, we 115

first provide a brief lay summary of the approach. In the first level of the model, we 116

modeled the data with a mixture Gaussian distribution within each year. This level of 117

model did not allow for estimation of a time effect, because each year was analyzed 118

separately without being imposed by any pattern in time. The second level added 119

complexity to the model via regression of the yearly mean log2MIC towards a line. For 120

the resistant population, we assumed a flat line and that yearly randomness arose 121

around this line. For the non-resistant population, we assumed a non-flat line that is a 122

linear function of time. This time effect was estimated by a slope parameter in the 123
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model (described below): a positive result implies that the AMR is increasing with time, 124

while a negative result implies that the AMR is decreasing with time. We used the real 125

data for such a model with two levels and showed that the linear trend model was able 126

to quantify the year effect observed in the year-to-year mode. Based on the notations 127

and assumptions described in the beginning of the Methods Section, the construction 128

procedure of the hierarchical Bayesian latent class mixture model with censoring and 129

linear trends is described as follows: 130

cij |pi
ind∼Ber(pi), (1)

yij |cij , β0i, β1i, σ
2
0 , σ

2
1
ind∼

{
N(β0i, σ

2
0), cij = 0

N(β1i, σ
2
1), cij = 1

, (2)

where i = 1, 2, ..., I; j = 1, 2, ..., ni. The variable before the pipe (“|”) was modeled with 131

some distribution parameterized by the variable(s) behind the pipe. Ber(p) denotes a 132

Bernoulli distribution with probability p, and N(β, σ2) denotes a normal distribution 133

with mean β and variance σ2. In the ith year, the jth isolate comes from the resistant 134

population with probability pi and from the non-resistant population with probability 135

1− pi. The parameters β0i represent the mean log2MIC for the non-resistant group in 136

ith year, and the parameters β1i represent the mean log2MIC for the resistant group in 137

the ith year. The variances for both components, σ2
0 and σ2

1 , were set as invariant 138

across the years, because we expected the spread of the observations within one 139

population to be consistent over time. So far, the model allowed estimation of the mean 140

log2MIC for each year but has not imposed any constraints on the yearly means. 141

Considering the heterogeneity of bacteria isolates in the MIC dataset, due perhaps to 142

different sampling collection methods from year to year or different labs used to test 143

isolates (e.g., CDC NARMS dataset contains data collected from multiple institutes), a 144

hierarchical modeling strategy was adopted to borrow information about mean log2MIC 145

values across years and to integrate uncertainty from each individual year. 146

Based on the descriptive näıve means of log2MIC in the non-resistant population, we 147

proposed to incorporate a linear trend into the model above to describe the temporal 148

changes of the mean log2MIC in the non-resistant group for the organisms and 149

antibiotics that appeared to be candidates for formal assessment of a linear pattern. 150

First, we modeled the yearly mean log2MIC of the non-resistant population by 151

introducing the hyper-parameters γ0 and γ1, with a simple linear model as follows: 152

β0i = γ0 + γ1ti + εi, (3)

where i = 1, 2, ..., I. εi
iid∼ N(0, τ2

0 ). Time (year) was used as a covariate with ti = i. For 153

the first year of our observation ti = i = 1. This is equivalent to 154

β0i|γ0, γ1, τ
2
0
ind∼ N(µ0i, τ

2
0 ), (4)

where µ0i = γ0 + γ1ti. Second, we modeled the yearly mean log2MIC of the resistant 155

population, using the hyper-parameter µ1 which is a constant: 156

β1i|µ1, τ
2
1
iid∼ N(µ1, τ

2
1 ). (5)

This model implied that the yearly mean of log2MIC in the non-resistant population is 157

distributed around a straight line with intercept γ0 and slope γ1, with normally 158

distributed error and variance quantified by τ2
0 , while the yearly mean of log2MIC in 159

the resistant population is distributed around a constant µ1, also with normally 160

distributed error and variance quantified by τ2
1 . We modeled the yearly mean log2MIC 161
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of the resistant population with a constant instead of a linear trend because the MIC 162

determination of the observed log2MIC is often highly right censored, meaning that we 163

do not have enough information to estimate β1i or its trend. If more studies reported 164

end-point dilutions for resistant isolates, modeling the time trend in the resistant 165

population would likely be feasible. 166

Further modeling of the first level, i.e. Eq (1) and Eq (2)), involved addition of more 167

hyper-parameters in the hierarchical structure for the proportion of the resistant 168

population in the ith year, pi. This parameter was modeled with a normal distribution 169

through a logit link function: 170

αi := logit(pi) = log

(
pi

1− pi

)
, (6)

αi|θ, ν2 iid∼ N(θ, ν2); i = 1, 2, ..., I. (7)

Let Θ be the vector of all unknown parameters (γ0, γ1, µ1, θ, τ
2
0 , τ

2
1 , σ

2
0 , σ

2
1 , ν

2)T ; f be 171

a generic expression for probability density function (pdf) or probability mass function 172

(pmf). Also, y∗ = (y∗
1 , ...,y

∗
I ), where 173

y∗
i = y∗

i1, ...,y
∗
ini

;β0 = (β01, ..., β0I);β1 = (β11, ..., β1I);p = (p0, ..., pI); i = 1, 2, ..., I. 174

The joint likelihood function was used as follows: 175

f(y∗|Θ) =
I∏
i=1

ni∏
j=1

f(y∗ij |Θ), (8)

⇐ f(y∗ij |Θ) =

∫ uij

lij

f(yij |Θ)dyij =

∫ uij

lij

∑
cij=0,1

f(yij , cij |Θ)dyij , (9)

⇐ f(yij , cij |Θ) =

∫ 1

0

∫ +∞

−∞

∫ +∞

−∞
f(yij , cij , β0i, β1i, pi|Θ)dβ0idβ1idpi, (10)

Based on densities and masses from Eq (1) to Eq (7): 176

⇐f(yij , cij , β0i, β1i, pi|Θ)

=f(yij , cij , β0i, β1i, pi|γ0, γ1, µ1, θ, τ
2
0 , τ

2
1 , σ

2
0 , σ

2
1 , ν

2)

=f(yij |cij , β0i, β1i, σ
2
0 , σ

2
1)× f(cij |pi)× f(β0i|γ0, γ1, τ

2
0 )× f(β1i|µ1, τ

2
1 )× f(pi|θ, ν2).

(11)
For Eq (9), our latent variables yij and cij were integrated (summed) over their 177

possible range (values) to obtain the likelihood function of the observed data. In 178

Eq (10), the mean and proportion parameters were also integrated over their supports. 179

Eq (11) shows the derivation of the likelihood of latent variables and parameters from 180

the data model. 181

Prior distribution for hierarchical model parameters 182

The full Bayesian analysis required a joint prior distribution of all unknown parameters 183

in the model. In our model setting, the vector of unknown parameters was 184

Θ = (γ0, γ1, µ1, θ, τ
2
0 , τ

2
1 , σ

2
0 , σ

2
1 , ν

2)T .Furthermore, we assumed independent prior 185

distribution for each parameter. The inverse gamma distribution was assigned to each 186

variance of the data model and hierarchical part, due to their positive supports: 187

τ2
0 , τ

2
1 , σ

2
0 , σ

2
1 , ν

2 iid∼ IG(10−4, 10−4). (12)
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Non-informative prior was assigned to each of the linear parameters and mean 188

parameters of the hierarchical part, because we did not have sufficient prior knowledge 189

about these parameters. Their supports are described as follows: 190

γ0, γ1, µ1, θ
iid∼ N(0, 106). (13)

Using the Bayesian rule, our goal was to obtain samples and draw inference from the 191

posterior distribution, which can be expressed based on densities from (8) to (13): 192

f(Θ|y∗)

∝f(y∗|Θ)f(Θ)

∝f(y∗|Θ)f(γ0)f(γ1)f(µ1)f(θ)f(τ2
0 )f(τ2

1 )f(σ2
0)f(σ2

1)f(ν2)

. (14)

The posterior distribution did not have a closed form, and we illustrated the sampling 193

approach in the following section with some real data applications. 194

Application to real datasets 195

The goal of the assessment of the linear trend was to add a new dimension to 196

understanding the temporal changes of AMR in both humans and livestock. To 197

illustrate this, we applied the proposed model to human data from the CDC NARMS 198

surveillance program and swine data submissions to the ISU VDL. The CDC NARMS 199

data included Salmonella I,4,[5],12:i:- tested with CHL and TIO, while the swine data 200

included Salmonella I,4,[5],12:i:- tested with TIO. 201

Description of the CDC NARMS data used 202

NARMS program collects isolates of Salmonella spp., Escherichia coli and 203

Campylobacter spp. The AMR data collected for the CDC surveillance program were 204

obtained from bacteria isolated from patients who attend public health departments or 205

hospitals that are part of the CDC NARMS surveillance network between 1996 and 206

2015. In the CDC NARMS dataset, the most abundant species was Salmonella enterica, 207

which accounted for 58.70% of the 54351 total isolates. Serotype I,4,[5],12:i:- had 892 208

records in the dataset, accounting for 2.79% of the Salmonella enterica isolates. We 209

chose Salmonella enterica I,4,[5],12:i:- because this strain is an emerging pathogen with 210

public health implications for both hosts. The antibiotics CHL and TIO were selected 211

for evaluation of a linear trend based on evidence of a linear trend in the näıve mean 212

log2MIC in the non-resistant population descriptive analysis. For each of the two 213

organism-antibiotic combinations, the distribution of the observed MIC was a mixture 214

of two components: resistant and non-resistant populations. Therefore, the model 215

assumptions were satisfied for these two combinations. Prior to the linear trend 216

analysis, we discarded records before 2002, because the data were sparse for the first six 217

years of the surveillance dataset (fewer than 10 isolates). 218

Description of the VDL data used 219

Organisms isolated from livestock and submitted to veterinary diagnostic laboratories 220

offer insight into the emergence and patterns of AMR. This population of organisms 221

could offer different and unique information about AMR, providing insight into the 222

implications for the spread of resistance through the local environment as well as 223

occupational exposure. Yuan et al. (2018) reported that the swine population 224

submitted to the ISU VDL suggested emergence of the pathogen Salmonella I,4,[5],i- 225
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sooner than the NARMS data. For comparison with the analysis for the CDC NARMS 226

data and also for the sake of model assumptions, we applied the proposed model to a 227

subset of ISU VDL data: Salmonella enterica I,4,[5],12:i:- tested with TIO from swine 228

submissions. We did not evaluate CHL as for the CDC NARMS data, as this antibiotic 229

was not used by the ISU VDL. 230

The ISU VDL dataset provided surveillance data on MIC from 2003 to 2018, 231

comprising 93,634 isolates in total in the swine subset. Of these, 21,392 isolates are 232

Salmonella enterica. Our target subset, Salmonella enterica serotype I,4,[5],12:i:- in the 233

swine submissions included 1,967 isolates. We removed data obtained in 2018, because 234

records in 2018 were not complete and still being processed in the diagnostic laboratory 235

at the time of our analysis. We also excluded data from the first 8 y and focused on 236

data obtained between 2011 and 2017, due to the sparsity of isolates observed in the 237

first few years. 238

The implementation of the Bayesian model to the CDC NARMS dataset and the 239

VDL dataset followed the same procedure. We describe the determination of the initial 240

values of the Markov Chain Monte Carlo (MCMC) chain and calculation for inference in 241

the next subsection. 242

Implementation 243

Our proposed hierarchical Bayesian latent class mixture model with censoring and linear 244

trend was implemented using the MCMC Gibbs sampling method. The Gibbs sampling 245

algorithm was adapted for censorship in a finite mixture model [19] [20]. The algorithm 246

of the Gibbs sampler is provided in S1 Appendix. All computation was implemented 247

using R 3.3.5. All R scripts (including data cleaning, model construction, model 248

implementation, results extraction, and results visualization) are provided on Github 1. 249

The initial values for MCMC were obtained from the raw data, so that the MCMC 250

chain converged soon. For one combination of organism and antibiotic, the näıve mean 251

of log2MIC in the non-resistant population in each tested year without censorship was 252

calculated as the initial values for β0i. Similarly, the näıve mean of log2MIC values in 253

the resistant population in each year was calculated as initial values for β1i, 254

i = 1, 2, ..., I. For the CDC NARMS dataset, I = 14, and for the VDL dataset, I = 7. 255

The initial values for the linear parameters γ0 and γ1 were obtained from fitting β0i and 256

years i = 1, 2, ..., I with simple linear regression. The estimated standard deviation of 257

the error term of the simple linear regression was used as the initial value for τ0. The 258

sample mean and sample standard deviation of β1i(i = 1, 2, ..., I) were calculated as the 259

initial values for µ1 and τ1, respectively. The initial values for the proportion of the 260

resistant population pi were calculated by dividing the number of resistant isolates by 261

the total number of isolates in each year. The initial values of αi(i = 1, 2, ..., I) were 262

obtained by performing a logit transformation on the proportions pi. 263

Ten thousand iterations were performed, and the remaining 6,000 iterations after the 264

4,000 burn-in iterations were collected to make inferences. The parameters in the model 265

were estimated by the mean of posterior distribution. The 2.5th and 97.5th percentiles 266

of those 6,000 samples of posterior draws were used for determination of the 95% 267

credible interval (CI). Table 2, Table 3, and Table 4 provide the point and interval 268

estimates for the mean log2MIC for both resistant and non-resistant populations, the 269

proportions of the resistant population; Table 5 provides the same set of information for 270

the intercepts and slopes of the linear trends. These estimation results are also shown in 271

Fig 2, Fig 3, and Fig 4 for better visualization. 272

1Github repository: https://github.com/MinZhang95/AMR-Linear
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Table 2. Point estimates and 95% CIs for mean and proportion parameters for Salmonella
I,4,[5],12:i:- tested with (CHL) from the CDC NARMS dataset.

Estimated mean log2MIC in the
non-resistant population

Estimated mean log2MIC in the
resistant population

Estimated proportion of
resistant population

Year β̂0i 95% CI of β̂0i β̂1i 95% CI of β̂1i p̂i 95% CI of p̂i
2002 1.7238 (1.5553, 1.8918) 14.7834 (7.9651, 22.0001) 0.0263 (0.0128, 0.0444)
2003 1.8222 (1.6545, 1.9887) 14.6345 (7.8851, 21.8576) 0.0252 (0.0084, 0.0384)
2004 1.8161 (1.6386, 1.9864) 14.4699 (8.4943, 21.7372) 0.0265 (0.0133, 0.0468)
2005 1.6942 (1.5195, 1.8615) 14.6031 (7.8794, 21.8553) 0.0245 (0.0067, 0.0333)
2006 1.6782 (1.5772, 1.7793) 14.2337 (8.6058, 22.2089) 0.0252 (0.0109, 0.0346)
2007 1.8737 (1.7584, 1.9877) 14.6124 (7.2965, 21.3269) 0.0253 (0.0096, 0.0370)
2008 2.0180 (1.9090, 2.1258) 14.8148 (8.0501, 22.2385) 0.0287 (0.0188, 0.0590)
2009 1.8640 (1.7291, 1.9975) 14.6725 (8.2464, 22.1023) 0.0301 (0.0210, 0.0711)
2010 2.0592 (1.9447, 2.1789) 14.7990 (8.4321, 21.7882) 0.0253 (0.0083, 0.0351)
2011 1.9689 (1.8522, 2.0900) 14.5946 (7.9317, 21.9562) 0.0239 (0.0061, 0.0308)
2012 1.9539 (1.8505, 2.0570) 14.6309 (7.9532, 22.0486) 0.0239 (0.0058, 0.0316)
2013 2.2740 (2.1836, 2.3674) 14.8033 (7.8064, 21.4324) 0.0253 (0.0128, 0.0336)
2014 2.1307 (2.0357, 2.2311) 14.5674 (8.3267, 21.7343) 0.0248 (0.0085, 0.0348)
2015 2.2017 (2.1175, 2.2860) 14.4117 (8.2791, 21.2827) 0.0275 (0.0185, 0.0478)

Table 3. Point estimates and 95% CIs for mean and proportion parameters for Salmonella
I,4,[5],12:i:- tested with (TIO) from the CDC NARMS dataset.

Estimated mean log2MIC in the
non-resistant population

Estimated mean log2MIC in the
resistant population

Estimated proportion of
resistant population

Year β̂0i 95% CI of β̂0i β̂1i 95% CI of β̂1i p̂i 95% CI of p̂i
2002 -1.3309 (-1.4990, -1.1657) 12.7589 (5.6945, 22.6436) 0.0415 (0.0246, 0.0596)
2003 -1.1844 (-1.3495, -1.0210) 12.7476 (5.6395, 22.6380) 0.0422 (0.0258, 0.0624)
2004 -1.3890 (-1.5780, -1.2017) 12.5196 (5.2118, 22.6231) 0.0431 (0.0271, 0.0654)
2005 -1.2564 (-1.4195, -1.0979) 12.7641 (5.6486, 22.7206) 0.0415 (0.0256, 0.0583)
2006 -1.1858 (-1.2808, -1.0922) 12.8693 (5.8527, 22.5644) 0.0423 (0.0287, 0.0586)
2007 -0.8702 (-0.9801, -0.7550) 12.7401 (5.5777, 22.7752) 0.0418 (0.0242, 0.0603)
2008 -0.9226 (-1.0280, -0.8147) 12.7304 (5.6264, 22.6573) 0.0427 (0.0274, 0.0622)
2009 -0.7899 (-0.9158, -0.6651) 12.7352 (5.6360, 22.6448) 0.0413 (0.0246, 0.0588)
2010 -0.8039 (-0.9231, -0.6844) 12.7766 (5.7197, 22.6692) 0.0417 (0.0250, 0.0576)
2011 -0.9334 (-1.0518, -0.8116) 12.7302 (5.5366, 22.6482) 0.0432 (0.0269, 0.0622)
2012 -0.6249 (-0.7338, -0.5156) 12.5240 (5.1599, 22.6408) 0.0404 (0.0218, 0.0562)
2013 -0.5035 (-0.5995, -0.4095) 12.7588 (5.5134, 22.7535) 0.0398 (0.0203, 0.0547)
2014 -0.8214 (-0.9197, -0.7222) 12.8010 (5.5933, 22.8088) 0.0424 (0.0242, 0.0604)
2015 -0.7063 (-0.7908, -0.6185) 12.7208 (5.8189, 22.6522) 0.0458 (0.0309, 0.0736)

Fig 3. Estimation results for Salmonella enterica I,4,[5],12:i:- tested with
TIO in the CDC NARMS dataset. The grey bars represent the observed
proportions of resistant bacteria (left y-axis). The grey line indicates the näıve mean of
log2MIC in the non-resistant population. The red line connects the point estimates of
the mean log2MIC in the non-resistant population. The blue line represents the
estimated linear trend, shaded with its 95% CI.

Results 273

Using the proposed hierarchical Bayesian latent class mixture model with censoring and 274

linear trend, we analyzed the resistance level of Salmonella enterica I,4,[5],12:i:- tested 275
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Table 4. Point estimates and 95% CIs for mean and proportion parameters for Salmonella
I,4,[5],12:i:- tested with (TIO) in the ISU VDL dataset.

Estimated mean log2MIC in the
non-resistant population

Estimated mean log2MIC in the
resistant population

Estimated proportion of
resistant population

Year β̂0i 95% CI of β̂0i β̂1i 95% CI of β̂1i p̂i 95% CI of p̂i
2011 -1.5938 (-2.0234, -1.1577) 3.0631 (2.6063, 3.5410) 0.2214 (0.1648, 0.2733)
2012 -1.4962 (-1.6860, -1.3145) 3.3031 (3.0435, 3.6241) 0.2126 (0.1574, 0.2536)
2013 -1.0193 (-1.1410, -0.8924) 3.3055 (3.0956, 3.5459) 0.2100 (0.1645, 0.2472)
2014 -0.9867 (-1.1124, -0.8591) 3.2542 (3.0673, 3.4813) 0.2100 (0.1627, 0.2428)
2015 -0.8984 (-1.0210, -0.7761) 3.0831 (2.9517, 3.2393) 0.2341 (0.2011, 0.2842)
2016 -0.9169 (-0.9952, -0.8391) 3.1126 (3.0195, 3.2254) 0.2288 (0.2043, 0.2628)
2017 -0.6747 (-0.7633, -0.5882) 3.0487 (2.9413, 3.1770) 0.2137 (0.1804, 0.2411)

Table 5. Point estimates and 95% CIs for linear model parameters in the three examples.

Estimated intercept for the linear trend
of non-resistant mean log2MIC

Estimated slope for the linear trend
of non-resistant mean log2MIC

Data set Antibiotic γ̂0 95% CI of γ̂0 γ̂1 95% CI of γ̂1

CDC NARMS CHL 1.6225 (1.3416, 1.8861) 0.0415 (0.0088, 0.0773)
CDC NARMS TIO -1.2297 (-1.6223, -0.7820) 0.0369 (-0.0168, 0.0844)

ISU VDL TIO -1.6391 (-2.2577, -1.0546) 0.1388 (0.0049, 0.2713)

Fig 4. Estimation results for Salmonella enterica I,4,[5],12:i:- tested with
TIO in the ISU VDL dataset. The grey bars represent the observed proportions
of resistant bacteria (left y-axis). The grey line indicates the näıve mean of log2MIC in
the non-resistant population. The red line connects the point estimates of the mean
log2MIC in the non-resistant population. The blue line represents the estimated linear
trend, shaded with its 95% CI.

with CHL and TIO in the CDC NARMS human data and also Salmonella enterica 276

I,4,[5],12:i:- tested with TIO in the ISU VDL swine dataset. The goal of the analyses 277

was to illustrate the evaluation of increasing or decreasing trends in mean log2MIC over 278

time in order to identify trends with important public health implications. The 279

estimates of the yearly mean log2MIC in both the non-resistant (β̂0i) and resistant 280

populations (β̂1i) and estimates of the proportions of the population designated as 281

resistant (p̂i), along with their 95% CIs, are presented in Table 2, Table 3, and Table 4. 282

A linear model was fitted to the mean log2MIC in the non-resistant population to 283

borrow information across years and to reveal a potential linear trend. The intercept 284

(γ0) was interpreted as the baseline of the mean log2MIC in the non-resistant 285

population, while the slope (γ1) was interpreted as an increase in the resistance from 286

the previous year (for i = 2, ..., I) or from the baseline (for i = 1). The point and 287

interval estimates of the linear model parameters for each example are presented in 288

Table 5. Among all the above-mentioned estimates, the estimates for the yearly mean 289

log2MIC (β̂0i) and the linear parameters (γ̂0, γ̂1) of the non-resistant population are of 290

the greatest interest, as the main objective of our study was to use the proposed model 291

to detect linear temporal changes in AMR in the susceptible group. If β̂0i shows an 292

increase over time and the estimated slope γ̂1 is positive, then this result could signify 293

increasing resistance for the organism to the antibiotic. The estimates for these 294

parameters are also presented in Fig 2, Fig 3, and Fig 4 for better visualization. The 295

yearly mean log2MIC in the resistant population (β̂1i) was not our priority in this study, 296

as most of the observations in the resistant population are right censored and thus do 297
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not provide enough information for parameter estimations. This right censoring also 298

underlay the wide credible intervals of β̂1i. 299

From the first row in Table 5, which shows the estimations of the linear model 300

parameters for Salmonella I,4,[5],12:i:- tested with CHL in the CDC NARMS dataset, 301

the 95% CI for the slope was (0.0088, 0.0773), indicating a significantly positive slope 302

estimation and therefore a significantly increasing trend in the mean log2MIC of the 303

non-resistant population. Fig 2 depicts this increasing pattern by plotting the fitted 304

regression line (blue line) through the estimated non-resistant means (red points). The 305

yearly non-resistant means were scattered around the regression line in a random 306

pattern, in agreement with the linear model assumption of independence. The grey 307

histogram in Fig 2 shows the observed proportions of the resistant isolates. Notably, no 308

Salmonella I,4,[5],12:i:- isolate resistant to CHL was observed for some years, while the 309

mean of log2MIC below the resistance threshold was estimated to be increasing 310

constantly. This example demonstrated a situation in which analysis based on 311

dichotomized MIC alone would misleadingly indicate a decreasing level of resistance 312

from 2009 to 2012 and neglect the increasing level of resistance below the break point. 313

Based on these results, we concluded that an intervention for use of CHL for Salmonella 314

I,4,[5],12:i:- in human is suggested to prevent a possible outbreak of resistance if the 315

linearly increasing pattern is allowed to continue in the following years. 316

In the example of Salmonella I,4,[5],12:i:- tested with TIO in the CDC NARMS 317

dataset, we found an insignificant slope estimation, with a 95% CI of (−0.0168, 0.0844) 318

(second row in Table 5). Despite the notion the true value of the slope parameter is 319

within an interval that contains zero, our best estimation was positive, and the major 320

coverage of the CI was greater than zero. No organism exhibited resistance to TIO 321

above the threshold in 2012, reflecting a rapid decrease from more than 5% in 2011. 322

This phenomenon was accompanied by a stable MIC increase in the non-resistant 323

population. 324

For the ISU VDL dataset, we detected a significantly increasing pattern in the 325

non-resistant means for Salmonella I,4,[5],12:i:- tested with TIO, with a 95% CI of 326

(0.0049, 0.2713) (third row in Table 5). As shown in Fig 4, the 95% CI of the estimated 327

regression line (the shaded area) is rather wide compared with those in Fig 2 and Fig 3, 328

and the difference likely resulted from the limited number of observations in this 329

example. In this VDL swine dataset, the observed resistant proportions exhibited an 330

abrupt decrease in 2012, an abrupt increase in 2015, and a continuous decrease since 331

that time. Our estimated regression line added more dimensions in the non-resistant 332

population by revealing the creep in its mean log2MIC. 333

Model evaluation with simulation 334

In order to assess the performance of the proposed hierarchical Bayesian latent class 335

mixture model with censoring and linear trend, a simulation study was conducted based 336

on the CDC NARMS-CHL example. In our model, the parameters of interest were 337

γ0, γ1, µ1, θ, τ
2
0 , τ

2
1 , σ

2
0 , σ

2
1 , and ν2. In the simulation study, these parameters were 338

pre-determined according to the estimation results from the example and were denoted 339

with a “hat” on the Greek letter. Also, we simulated the same number of observations 340

for the ith year as the total number of isolates (ni) in the CDC NARMS-CHL dataset. 341

The data generation process is described in the following steps. 342

For i = 1, 2, ..., I; j = 1, 2, ..., ni; and ti = i: 343

1. Generate αi
iid∼N(θ̂, ν̂2). 344

2. Calculate pi by performing an expit transformation (inverse of logit) on αi, 345

pi = 1
1+exp(−αi)

. 346
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3. Generate the latent class indicator cij
ind∼Ber(pi). 347

4. Generate the mean log2MIC in the non-resistant population 348

β0i
ind∼N(γ̂0 + γ̂1ti, τ̂

2
0 ). 349

5. Generate the mean log2MIC in the resistant population β1i
ind∼N(µ̂1, τ̂1

2). 350

6. Generate the log2MIC for isolate j in year i with yij
ind∼

{
N(β0i, σ̂

2
0), cij = 0

N(β1i, σ̂
2
1), cij = 1

. 351

The simulated pi and β0i were treated as the real proportion of resistant 352

population and the real yearly mean of log2MIC, which were compared with 353

estimations based on the simulated observations subsequently. Until this point, 354

the simulated yij were continuous values drawn from a mixture of Gaussian 355

distributions. To mimic the censoring nature of log2MIC, yij was also censored 356

according to its value. We previously defined lij and uij to be the lower bound 357

and upper bound of yij . For CHL, the starting dilution was 2 mg/ml, and the 358

ending dilution was 32 mg/ml for both serotypes. This indicated that if 359

yij ≤ log2(2), then it will be left censored as yij ≤ 1 with lij = −∞ and uij = 1. 360

Similarly, if yij > log2(32), it will be right censored as yij > 5, with lij = 5 and 361

uij =∞. If log2(2) < yij ≤ log2(32), then yij will be interval censored with lij as 362

its nearest integer to the left and uij as its nearest integer to the right. This 363

censoring operation corresponds to step 7. 364

7. Censor the underlying true values of log2MIC, yij , to the observed values y∗ij with 365

y∗ij =


1, yij ≤ 1⌈
y∗ij
⌉
, 1 < yij ≤ 5

5, yij > 5

, where
⌈
y∗ij
⌉

represents rounding up to the nearest 366

integer. 367

End of simulation. 368

As a single set of observed log2MIC (i.e., y∗ij) could be generated by completing 369

steps 1 to 7, we simulated 100 datasets by repeating the above procedure 100 times. 370

With each simulated dataset, estimation was conducted using the proposed hierarchical 371

Bayesian model, which produced a set of estimations: p̃i, β̃0i, γ̃0, γ̃1, etc., for 372

i = 1, 2, ..., I. In order to assess the performance of our hierarchical Bayesian model, two 373

metrics were calculated. The first was the mean bias over the 100 simulations, and the 374

second was the root of mean squared error (RMSE). Mean bias measures how close the 375

estimations are relative to the true parameter values, while RMSE measures the 376

variation of estimates around the true parameters. Table 6 shows the mean bias and 377

RMSE for the yearly parameters, and Table 7 shows the mean bias and RMSE for the 378

linear parameters. The mean biases and RMSE for pi, β0i, γ0, and γ1 were very close to 379

0 compared with the magnitude of their own estimations, indicating precise and robust 380

estimations for the most relevant parameters utilizing our proposed model. 381

Discussion 382

Our goal with this study was to address a deficiency in the available approaches for 383

analysis of AMR data using MIC values. AMR is a serious public health issue 384

worldwide, and enormous resources have been devoted to monitoring the changes in 385

MIC over the years. We proposed a Bayesian hierarchical model with a linear trend and 386

demonstrated that this model enables additional information about the linear patterns 387

in the mean log2MIC in the non-resistant population in addition to the proportion of 388
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Table 6. The mean bias and RMSE of the proportion and mean
parameters from the simulation study.

Mean bias RMSE
Year pi β0i pi β0i

2002 0.00018 -0.00181 0.00682 0.07521
2003 0.00069 -0.00522 0.00685 0.08694
2004 0.00097 0.00266 0.00685 0.10295
2005 -0.00025 0.00289 0.00729 0.07703
2006 0.00063 -0.00034 0.00643 0.04481
2007 0.00003 -0.00119 0.00735 0.05521
2008 -0.00011 -0.00125 0.00704 0.04911
2009 0.00018 -0.00152 0.00739 0.06671
2010 -0.00014 0.00186 0.00667 0.06255
2011 0.00002 0.00847 0.00696 0.06332
2012 0.00085 -0.00129 0.00654 0.05962
2013 -0.00009 -0.00834 0.00664 0.04629
2014 -0.00003 0.00078 0.00697 0.05114
2015 -0.00009 0.00031 0.00685 0.04405

The parameter pi represents the proportion of the resistant population, and β0i

represents the mean log2MIC in the non-resistant population of the ith year.

Table 7. The mean bias and RMSE of the linear model parameters from
the simulation study.

Mean bias RMSE
γ0 γ1 γ0 γ1

-0.02105 0.00330 0.20174 0.02669

The parameters γ0 and γ1 represent the intercept and slope of the linear trend in the
proposed model.

resistant bacteria. The linear changes in the non-resistant population may be linear 389

creep that signals a need for intervention or a linear decline that implies a successful 390

intervention. Therefore, our proposed model offers a tool to a more complete picture of 391

the resistance level of organisms against various antibiotics, providing valuable 392

information for the surveillance programs. 393

The proposed approach was founded on the concept of identifying a valid and robust 394

mean log2MIC estimate that addresses the latent nature of the MIC data. Under our 395

framework, there were two sources of latent parameters. One resulted from censorship, 396

as the true underlying continuous values for the censored observed MIC values are 397

unknown. The other involved the population from which the bacterial isolates arose 398

(resistant or non-resistant population). By tackling the censorship problem and 399

incorporating the mixed components of the data, our Bayesian hierarchical model 400

corrected the systematic bias of the mean MIC estimations and separated the isolates 401

from different groups. We then added a higher level of complexity to this fundamental 402

model setup: linear regression in the hierarchical model. 403

Considering the variation of the MIC values shown in the dataset, we allowed the 404

mean log2MIC to vary across different years. The Bayesian hierarchical model yielded a 405

more robust estimation by shrinking the mean estimates towards a linear regression line 406

in the non-resistant population and towards a common constant in the resistant 407
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population. In this way, we were able to quantify the linear pattern in the mean 408

log2MIC in the group of isolates that are often undervalued by researchers. Compared 409

with regressing the mean log2MIC to a constant in the non-resistant population, a 410

linear trend with a non-zero slope provided a better fit to the datasets and satisfied our 411

model assumptions. 412

Our model relied on several assumptions. We assumed normal distributions for 413

resistant and non-resistant populations. This assumption was supported by the 414

observed MIC distribution for the examples used in this paper; however, under violation 415

of this assumption, non-parametric methods, such as spline fitting, could be used to 416

replace the normality assumption [1]. For both resistant and non-resistant populations, 417

we also assumed invariant variances across years, following the principle of parsimonious 418

models. This assumption could be important when there are observations from many 419

years but not enough observations within each year. In addition, we assumed that the 420

proportion of the resistant population was independent across all years. We also 421

assumed the mean log2MIC had independent errors in the linear model and the 422

constant mean model in the sub-populations. Violation of this assumption would 423

require inclusion of a correlation structure in the proportions or the errors terms. 424

In conclusion, we proposed a framework of analysis of longitudinal log2MIC data 425

using a Bayesian hierarchical approach with linear trend. We not only estimated the 426

mean of log2MIC values properly and accurately but also detected a significant linear 427

increase in the mean log2MIC in the non-resistant population for some given organisms 428

and antibiotics, potentially signaling the need for intervention. Additional directions 429

from this proposed framework include studying the correlations among multiple 430

antibiotics, between human and animal resistance, and between different surveillance 431

programs for the same population. In addition, analysis of the relationship between 432

clinical interventions and the MIC responses to the interventions based on these models 433

is of interest. 434
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Supporting information

S1 Appendix. Gibbs sampling procedure. The Gibbs sampling procedure was
conducted as described here. We used “ · | · ” to denote full conditional distribution
unless otherwise specified. This parameter is the distribution of what is before the pipe
and is conditional on all other parameters involved in the model. In the following steps,
j = 1, ..., ni, and i = 1, ..., I.

1. Obtain draws of latent continuous variable yij from censored observation y∗ij using
the inverse cumulative distribution function (inverse CDF) method. By observing
y∗ij , we sampled from the full conditional normal distribution with the boundaries
lij and uij . To be more specific, the three censoring situations are discussed below:

• When y∗ij is interval censored with limits lij and uij , yij is updated via

yij = Φ−1{Φ(lij) + U [Φ(uij)− Φ(lij)]}, (15)

where Φ is the CDF function of standard normal distribution, and Φ−1 is the
inverse of the CDF function. U is a random draw from Unif(0, 1).

• When y∗ij is left censored with limits lij = −∞ and uij , yij is updated via

yij = Φ−1{U [Φ(uij)]}. (16)

• When y∗ij is right censored with limits lij and uij =∞, yij is updated via

yij = Φ−1{Φ(lij) + U [1− Φ(lij)]}. (17)

2. Draw samples of cij from their full conditional distribution

cij | ·
ind∼Ber(hij), (18)

where hij =
piΦ1(yij |β1i,σ

2
1)

(1−pi)Φ0(yij |β0i,σ2
0)+piΦ1(yij |β1i,σ2

1)
, describing the chance for an

observation to be from the resistant population. φ(y|β, σ2) represents the
probability density function of a normal distribution with mean β and variance σ2.

3. Sample the intercept parameter γ0 in the linear part from its full conditional
distribution

γ0| · ∼N(m0, ν0), (19)

where ν−1
0 = I

τ2
0

+ 1
c′ , m0 = ν0 · [

∑I
i=1 β0i−γ1ti

τ2
0

+ µ′

c′ ], µ′ = 0 is the prior mean of γ0,

and c′ = 106 is the prior variance of γ0.
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4. Sample the slope parameter γ1 in the linear part from its full conditional
distribution

γ1| · ∼N(mi, νi), (20)

where ν−1
i =

t2i
τ2
0

+ 1
c′ , mi = νi · [β0i−γ0

τ2
0 ti

+ µ′

c′ ], µ′ = 0 is the prior mean of γ1, and

c′ = 106 is the prior variance of γ1.

Starting from i = 1, for i < I, return to step 3 and 4 to sample linear parameters
for another time. Increase i by 1. When i reaches I, continue to step 5.

5. Sample µ1, the hierarchical yearly mean of the mean log2MIC in the resistant
population, from its full conditional distribution

µ1| · ∼N(mµ1
, νµ1

), (21)

where ν−1
µ1

= I
τ2
1

+ 1
c′ , mµ1

= νµ1
· [

∑I
i=1 β1i

τ2
1

+ µ′

c′ ], µ′ = 0 is the prior mean of µ1,

and c′ = 106 is the prior variance of µ1.

6. Sample the real yearly mean log2MIC in the non-resistant population, β0i, from
its full conditional distribution

β0i| · ∼N(M0, V0), (22)

where V −1
0 =

∑ni
j=1 I(cij=0)

σ2
0

+ 1
τ2
0

and M0 = V0 · [
∑ni

j=1 yijI(cij=0)

σ2
0

+ µ0i

τ2
0

].

7. Sample the real yearly mean log2MIC in the resistant population, β1i, from its full
conditional distribution

β1i| · ∼N(M1, V1), (23)

where V −1
1 =

∑ni
j=1 I(cij=1)

σ2
1

+ 1
τ2
1

and M1 = V1 · [
∑ni

j=1 yijI(cij=1)

σ2
1

+ µ1

τ2
1

].

8. Sample σ2
l , variance of latent log2MIC, in either population from its full

conditional distribution

σ2
l | · ∼IG

a+
1

2
·
I∑
i=1

ni∑
j=1

I(cij=l), b+
1

2

I∑
i=1

ni∑
j=1

I(cij = l)(yij − βli)2

 , (24)

where l = 0 represents the non-resistant population, and l = 1 represents the
resistant population. a = 10−4 is the prior shape parameter, and b = 10−4 is the
prior rate parameter.

9. Sample τ2
0 , the variance for the mean log2MIC in the non-resistant population,

from its full conditional distribution

τ2
0 | · ∼IG

(
a+

I

2
, b+

∑I
i=1(β0i − γ0 − γ1ti)

2

2

)
, (25)

where a = 10−4 is the prior shape parameter, and b = 10−4 is the prior rate
parameter.

10. Sample τ2
1 , the variance for the mean log2MIC in the resistant population, from

its full conditional distribution

τ2
1 | · ∼IG

(
a+

I

2
, b+

∑I
i=1(β1i − µ1)2

2

)
, (26)

where a = 10−4 is the prior shape parameter, and b = 10−4 is the prior rate
parameter.
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11. Obtain draws of parameter θ from its full conditional distribution

θ| · ∼N(mθ, νθ), (27)

where ν−1
θ = I

ν2 + 1
c′ , mθ = νθ

[∑I
i=1 αi

ν2 + µ′

c′

]
, µ′ = 0 is the prior mean of θ, and

c′ = 106 is the prior variance of θ.

12. Sample ν2, the variance of αi, from its full conditional distribution

ν2| · ∼IG

(
a+

I

2
, b+

∑I
i=1(αi − θ)2

2

)
, (28)

where a = 10−4 is the prior shape parameter, and b = 10−4 is the prior rate
parameter.

13. Sample αi, the log-odds of the proportion, using random walk
Metropolis-Hastings from their posterior to some constant

f(α|ci) ∝
exp(αi

∑ni

j=1 cij)

1 + exp(αi)
exp

(
− (αi − θ)2

2ν2

)
, (29)

where ci is the vector of cij , j = 1, ..., ni.

S1 File. Editing certificate. The certificate of English editing is attached in the
Supporting information as an external file.
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