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Our understanding of the link between neural activity and perception remains 
incomplete. Microstimulation and optogenetic experiments have shown that 
manipulating cortical activity can influence sensory-guided behaviour or elicit artificial 
percepts. And yet, some perceptual tasks can still be solved when sensory cortex is 
silenced or removed, suggesting that cortical activity may not always be essential. 
Reconciling these findings, and providing a quantitative framework linking cortical 
activity and behaviour, requires knowledge of the identity of the cells being activated 
during the behaviour, the engagement of the local and downstream networks, and the 
cortical and behavioural state. Here, we performed two-photon population calcium 
imaging in L2/3 primary visual cortex (V1) of headfixed mice performing a visual 
detection task while simultaneously activating specific groups of neurons using 
targeted two-photon optogenetics during low contrast visual stimulation. Only 
activation of groups of cells with similar tuning to the relevant visual stimulus led to a 
measurable bias of detection behaviour. Targeted photostimulation revealed 
signatures of centre-surround, predominantly inhibitory and like-to-like connectivity 
motifs in the local network which shaped the visual stimulus representation and 
partially explained the change in stimulus detectability. Moreover, the behavioural 
effects depended on overall performance: when the task was challenging for the 
mouse, V1 activity was more closely linked to performance, and cortical stimulation 
boosted perception. In contrast, when the task was easy, V1 activity was less 
informative about performance and cortical stimulation suppressed stimulus detection. 
Altogether, we find that both the selective routing of information through functionally 
specific circuits, and the prevailing cortical state, make similarly large contributions to 
explaining the behavioural response to photostimulation. Our results thus help to 
reconcile contradictory findings about the involvement of primary sensory cortex in 
behavioural tasks, suggesting that the influence of cortical activity on behaviour is 
dynamically reassigned depending on the demands of the task.  

Understanding the relationship between cortical activity and perception remains one of the 

most fundamental and challenging problems in neuroscience1. Microstimulation experiments 

have provided direct evidence for a causal role of activity in specific cortical circuits in biasing 

perception2-7. Moreover, microstimulation on its own can elicit artificial percepts8-10, as can 

optogenetic activation of cortical circuits11-13. Nevertheless, the number and functional identity 

of the stimulated neurons which are responsible for modulating behaviour are unknown14,15, 

although activity in just a single cell can be detected with extensive training16-18. Moreover, 

since the local and downstream network activity resulting from the manipulation have typically 

not been recorded, mechanistically linking the manipulation and behaviour via circuit dynamics 
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has previously not been possible. Another complication is that silencing19-21 and lesion22-25 

experiments have in some cases produced contradictory findings about the requirement for 

cortical activity in perception and behaviour26,27. The modulation of cortical responses by 

behavioural state28-31, task outcome32 and task demands33,34 have been well reported. 

However, how the modulation of cortical activity by state or task corresponds to the influence 

of that area on behaviour has only been studied using largely correlative methods35,36. 

Consequently, we lack a causal framework for linking activity in specific cortical populations 

with perception in different behavioural states.  

To probe the importance of the identity of individual members in an active population of 

neurons and their influence on cortical activity and behaviour, we activated specific groups of 

cells distributed through a volume of visual cortex with two-photon optogenetic stimulation37-

39 while performing simultaneous two-photon population calcium imaging of the same volume 
40-45. We employed our all-optical approach in mice trained on a visual detection task where 

task difficulty, and evoked cortical responses, were titrated by adjusting stimulus contrast. This 

allowed us to address the following questions. First, how important is the functional identity of 

individual members of an active group of cells? And second, under what conditions does 

cortical activity guide a perceptually-driven behaviour, and how does this depend on the 

specific routing of information through the local V1 circuit?  

We coexpressed the calcium sensor GCaMP6s 46-48 with the excitatory, somatically-restricted 

opsin C1V1 49,50 in pyramidal cells of L2/3 primary visual cortex (V1) of mice performing a 

visually guided behaviour. Mice were head-fixed and trained to perform a visual stimulus 

detection task (Fig. 1a) incorporating a randomised no-lick period before a small drifting 

sinusoidal grating patch with a random orientation was presented, during which a reward could 

be obtained via a lick spout (Fig. 1b). Mice learned the task quickly with a maximal contrast 

stimulus, reaching a high level of stable performance (Supplementary Fig. 1). Lowering the 

stimulus contrast modulated performance on the task (Supplementary Fig. 1). To test the 

influence of activity in functionally defined groups of neurons in V1 we targeted multiple cells 

for two-photon photostimulation while recording the resulting neuronal and behavioural 

responses. We first identified sensory- and photostimulation-responsive neurons in the 

retinotopically appropriate field of view (Fig. 1d), and then designed and stimulated three 

different ensembles of neurons (Fig. 1e): 1. Cotuned (CT, in which all constituent cells 

responded preferentially to the orientation of the low-contrast visual stimulus), 2. Non-cotuned 

(NCT, in which all constituent cells were responsive to the visual stimuli but preferred different 

orientations, with each of the 4 orientations represented equally) and 3. Non-responsive (NR, 

where all constituent cells were not responsive to the presented visual stimuli). We 

randomised the photostimulation of the three different ensemble types during low contrast 
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visual stimulation with an orientation matched to the cotuned ensemble’s preference. We also 

presented the low-contrast visual stimulus without photostimulation and included trials where 

we stimulated the same ensembles in the absence of a visual stimulus. These trials were all 

interleaved with a high rate of non-photostimulation, high contrast, random-orientation trials to 

maintain engagement in the overall task. Averaged across all sessions in all mice, the 

detectability of the low contrast visual stimulus was unchanged by photostimulation (Fig. 1f,g, 

P(Lick) for Low: 0.35 ± 0.21, Low+CT: 0.34 ± 0.15, Low+NCT: 0.39 ± 0.19, Low+NR: 0.36 ± 

0.19. P = 0.76 Kruskal-Wallis test. N = 21 sessions, 14 mice). Surprisingly, on a session by 

session basis, the stimulus detection rates on trials with photostimulation displayed a clear 

dependence on task performance during that session: mice performing poorly on low contrast 

trials were helped by photostimulation, and mice which were performing well were hindered 

by photostimulation (Fig. 1h, R2 = 0.48, P < 0.001 for CT stimulation). This relationship was 

observed when stimulating any of the three ensembles (Supplementary Fig. 2), but it reached 

statistical significance (in comparison to resampling the non-stimulation trials) only when 

stimulating the CT ensemble (Fig. 1i, slopes for CT: 0.52 ± 0.12, P = 0.004; NCT: 0.76 ± 0.12, 

P = 0.353; NR: 0.72 ± 0.13, P = 0.214; compared to slopes from the resampled distribution 

[0.86 ± 0.12]. Intercepts for CT: 0.16 ± 0.05, P = 0.010; NCT: 0.13 ± 0.05, P = 0.054; NR: 0.10 

± 0.05, P = 0.185; compared to intercepts from the resampled distribution [0.05 ± 0.05]. N = 

21 sessions, 14 mice). We therefore focus the remainder of our analysis on the change in 

behaviour when stimulating CT ensembles. 

The opposite effects of photostimulation depending on overall performance suggests that V1 

serves different roles during different behavioural demands and cortical states. We therefore 

investigated the relationship between the state of cortex and the behavioural effects of cortical 

stimulation. We first examined network synchronicity, which is linked to arousal and attention 
51,52, in the period when the mice were waiting for a visual stimulus (Fig. 2a, measured by 

average pairwise correlations between all cells in the 4 seconds prior to the low contrast visual 

stimulus). We found that successful (hit) low-contrast visual stimulus trials were preceded by 

more asynchronous activity patterns than miss trials (Fig. 2b. Z-scored pre-trial correlation 

coefficient on hits: -0.35 ± 0.33, on misses: 0.05 ± 0.18, P = 0.0017 Wilcoxon sign rank test. 

N = 21 sessions, 14 mice) as recently reported 53,54. Since cortical synchronicity is linked to 

perceptual performance, we next asked if the average difference in pre-stimulus synchronicity 

between hit and miss trials in a given session varies with the level of overall performance in 

that session. We found evidence for a greater difference between the pre-stimulus network 

synchronicity on hit and miss low-contrast trials when the task was more difficult for the mice 

(Fig. 2c, R2 = 0.18, P = 0.052. N = 21 sessions, 14 mice. See also Supplementary Fig. 3). 

That pre-trial network synchronisation is a better predictor of trial outcome in low performance 
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conditions (compared to high-performance conditions) suggests that cortex was more actively 

engaged and played a more prominent role in solving the task. This interpretation was 

confirmed on photostimulation trials where we found a significant relationship between the 

difference in network synchronicity before hit and miss trials, and the effect of photostimulation 

on behaviour (Fig. 2d, R2 = 0.19, P = 0.048. N = 21 sessions, 14 mice. See also 

Supplementary Fig. 3). In summary, when animals performed poorly at detecting the low-

contrast stimulus, the baseline correlation structure of the cortical network was a better 

predictor of performance, and in this behavioural state photostimulation of CT ensembles 

improved the detection of stimuli. 

Next, we examined the relationship between activity evoked by the behavioural trial and task 

performance, reasoning that activity evoked by the low-contrast stimulus is likely to be a 

stronger determinant of its perceptual salience than background activity before the stimulus. 

We first looked at the activity resulting from the behavioural trials with low-contrast visual 

stimuli without photostimulation (Fig. 2e). On average, low contrast hit trials were associated 

with more evoked activity in neurons that were responsive to high-contrast visual stimuli (Fig. 
2f. Hit: 0.19 ± 0.19 ΔF/σF, Miss: 0.13 ± 0.13 ΔF/σF measured in a 500 ms window immediately 

after the end of stimulus presentation. P = 0.0041 Wilcoxon signed rank test. N = 21 sessions, 

14 mice). We looked into this further by examining how behavioural outcome is encoded in 

the activity of all recorded neurons. We investigated how the modulation of evoked activity by 

trial outcome depended on the mean visual response of a neuron and the overall performance 

level of the mouse in the session during which each neuron was recorded. More strongly 

visually responsive neurons showed stronger modulation by behavioural output such that 

neurons excited by the visual stimulus on average were relatively more excited on hit trials in 

comparison to misses, and neurons suppressed by the stimulus were more suppressed, 

producing a positive relationship between the mean response of neurons to the visual stimulus 

and the extent of their modulation by trial outcome (Fig. 2g). Furthermore, we found that the 

slope of this relationship, which defines the extent to which a population is modulated by trial 

outcome, depended on the overall performance on the session in which the neurons were 

recorded (Fig. 2g. and Supplementary Fig. 4 and 5). In sessions with good overall 

performance there was little to no modulation of evoked activity by trial outcome, but when 

performance was poor there was a large difference between the activity evoked on hit and 

miss trials. Similar to our findings on pre-trial correlation structure, when animals found the 

task challenging, cortical activity was more heavily modulated by trial outcome. 

These results suggest that the relationship between cortical activity and performance depends 

on perceptual demand. In other words, when the detection of low contrast stimuli is 

perceptually demanding for the mouse, V1 activity is more tightly linked to behavioural 
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performance, displaying less correlated activity in general (Fig. 2c) and a larger dynamic 

range of activity evoked by the stimulus (Fig. 2g). This indicates that these activity states 

reflect an active role of V1 when the perceptual demand is high. We next tested this hypothesis 

by examining photostimulation trials and asking how the cortical signatures of active 

engagement correlate with the influence of photostimulation on behaviour. We found a positive 

relationship between the effect of photostimulation on stimulus detectability and the extent of 

trial outcome modulation of the recorded population in the same sessions (Fig. 2h. R2 = 0.44, 

P = 0.0011; N = 21 sessions, 14 mice). When trial outcome modulation was large, the effect 

of photostimulation was to increase stimulus detection and this corresponded to sessions 

where animal performed relatively poorly. Conversely, when mice performed the task easily, 

V1 was more passive in its representation of stimuli and associated trial outcome and 

photostimulation under these conditions suppressed the detection of visual stimuli. Together, 

this confirms a shift in the role served by cortical activity (from beneficial to suppressive) 

depending on perceptual demand.  

How does photostimulation influence behaviour? The answer will depend on how activity 

propagates from the directly stimulated neurons. To begin answering this question we 

analysed how targeted photostimulation engaged the local circuitry. We first examined the 

patterns of network activity evoked by photostimulation of neuronal ensembles in the absence 

of a visual stimulus (Fig. 3a) and found that responsive neurons in the local network could be 

either excited or inhibited (Fig. 3b). The dominant effect of photostimulation was inhibition of 

other pyramidal cells revealing the known pattern of dense inhibitory connectivity 55-61. As we 

increased the number of photostimulated cells, the number of inhibited cells in the local 

network scaled approximately linearly with the number of activated cells (Fig. 3c, for target-

zone neurons: R2 = 0.71, P < 0.001; excited network neurons: R2 = 0.18, P < 0.001; inhibited 

network neurons: R2 = 0.33, P < 0.001; N = 14 mice, 63 sessions (stimulation ensembles 

pooled)). Concomitant with the increased inhibition we saw a reduction of the number of 

spontaneously excited cells. The progressive recruitment of inhibition resulted in the overall 

activity levels in the network remaining approximately constant as the number of 

photostimulated cells increased (Supplementary Fig. 6). We next examined the spatial 

distribution of activated and inhibited cells by creating a photostimulation-triggered spatial 

average of responding cells. The excited cells were localised in a narrow zone around each 

targeted cell, whereas the inhibited cells had a more widespread distribution, forming an 

annulus around the directly targeted cells (Fig. 3d). The differences between these 

distributions produces an overall centre-surround motif of excitation and inhibition, where the 

spatial spread of inhibition is larger than that of excitation (Fig. 3e, spread of excitation: 89 ± 

48 μm; inhibition: 166 ± 51 μm. P < 0.001 Wilcoxon signed rank test. N = 14 mice, 63 sessions 
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(stimulation ensembles pooled; see also 50). Interestingly, we found no differences in the total 

evoked activity or the spatial profile amongst the three different classes of stimulation 

ensemble (Supplementary Fig. 6).  

These findings suggest that the effect of stimulating specific ensembles on behaviour (Fig. 1) 

cannot be explained simply by their influence on the overall activity of the local circuit. We 

therefore examined the effect of photostimulation on the functional identity of the recruited 

network and how that modified the neural representation of the visual stimulus, given that 

preferential connections between similarly tuned neurons have been reported in V1 55,62,63. We 

thus restricted our next analysis to visually responsive neurons. We plot the probability of 

response of a neuron to the low contrast visual stimulus with and without photostimulation as 

a function of two variables: first, the tuning similarity to the fixed orientation of the low contrast 

visual stimulus, and second, the physical distance between the neuron and the nearest 

photostimulated neuron (Fig. 4a). Photostimulating CT ensembles during the visual stimulus 

enhanced the responses of nearby (< 50 µm) cells with tuning matched to the stimulus and 

therefore, the CT ensemble. The responses of dissimilar cells at these distances were 

suppressed. Outside of this focal zone (> 50 µm) we observed net and indiscriminate 

suppression of visually evoked responses. This motif of selective enhancement and 

suppression of cells in the local circuit when stimulating CT ensembles sharpens the 

population tuning curve of the network (Fig. 4bc. Population OSI change for neurons within 

50 μm of the nearest stimulated cell when stimulating CT: 0.26 ± 0.47; NCT: -0.02 ± 0.41; NR: 

-0.14 ± 0.40. CT versus NCT P = 0.0045, CT versus NR P = 0.0078, NCT versus NR P = 

0.1672. For neurons greater than 50 μm away from the nearest stimulated target when 

stimulating CT: 0.05 ± 0.09; NCT: -0.03 ± 0.23; NR: 0.00 ± 0.21. CT versus NCT P = 0.0129, 

CT versus NR P = 0.1808, NCT versus NR P = 0.3754. Wilcoxon signed rank test with 

Bonferroni multiple comparison correction). The sharpening of the population tuning curve 

was a specific result of stimulating cotuned, visually-responsive cells (Supplementary Fig. 
5). Moreover, stimulation of non-visually-responsive neurons inhibited the visually-responsive 

neurons (Fig. 4b, Supplementary Fig. 7), revealing the existence of multiple competing 

populations. 

To relate these circuit level effects of photostimulation to behaviour we trained a classifier to 

decode the presence and orientation of a visual stimulus from activity of non-targeted cells on 

high-contrast trials. We then tested the decoder on activity evoked by the low-contrast visual 

stimulus with and without photostimulation (Fig. 4d). As expected, when the low-contrast 

evoked activity pattern more closely resembled that evoked by the high-contrast stimuli the 

decoder performed better (Supplementary Fig. 8). Overall decoder performance did not 

correlate with animal performance across all sessions, with no difference in performance seen 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2019. ; https://doi.org/10.1101/706010doi: bioRxiv preprint 

https://doi.org/10.1101/706010
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

between hit and miss trials (Supplementary Fig. 8). However, a strong relationship was 

observed between the photostimulation-mediated change in decoder performance and the 

associated change in behavioural detection of the stimulus (Fig. 4e, R2 = 0.36, P = 0.004). 

When photostimulation acted to improve the stimulus-decoder performance the animal’s 

perceptual performance also improved. Conversely, when the stimulus representation was 

impaired by photostimulation the perceptual detectability of the stimulus was suppressed. 

These results thus provide a causal link between neuronal stimulus encoding and behavioural 

performance. 

Our results provide a new perspective for understanding the link between activity in sensory 

cortex and perception, and for interpreting the consequences of perturbation experiments. We 

demonstrate that the behavioural effect of activation of cortical ensembles depends on their 

functional identity, with ensembles that normally represent the stimulus having the most potent 

effect. However, the effect of stimulating these ensembles has a bidirectional effect on 

behaviour: either boosting or inhibiting detection behaviour depending on task difficulty for the 

animal. Furthermore, we show that stimulating appropriate ensembles recruits postsynaptic 

activity in a functionally specific manner. This is likely a consequence of the wiring specificity 

of the local circuit 50,55,62,63. Functionally specific postsynaptic recruitment would be expected 

to alter stimulus representation and potentially behaviour. Consistent with this, we find that the 

success of a linear decoder of stimulus identity is altered by photostimulation and changes in 

decoding success are correlated with changes in behaviour in response to photostimulation. 

To examine the interplay between these factors we constructed a multiple linear regression 

model (Fig. 5a, b. Full model R2 = 0.75, P < 0.001), to define the relative influence of different 

neuronal population activity parameters in determining behavioural outcome in response to 

photostimulation. The model revealed that the dominant effects are the state of cortex as 

measured by the trial-outcome modulation of visually evoked responses (Fig 2h, referred to 

as ‘StateStim’), and the photostimulation-induced modification to the stimulus encoding of the 

network (Fig. 4e, referred to as ‘ActivityΔStim’) (Fig. 5c, correlation coefficients against the 

residual from otherwise complete models (semi-partial correlation) for StateStim: 0.51 [95% CI: 

0.10 0.77], P = 0.017; ActivityΔStim: 0.52 [95% CI: 0.12 0.78], P = 0.014). The dual effects of 

cortical engagement and the stimulus decoding work in concert to explain the behavioural 

change caused by photostimulation. Despite being a simple linear model, the combination of 

neuronal population measures has strong predictive power for the influence of 

photostimulation on this detection behaviour (Fig. 5d, Reduced model, without StatePre, 

predicted values compared to actual values R2 = 0.6, P < 0.001, RMSE = 0.08). 
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These results help to reconcile apparently contradictory findings about the engagement of the 

cortex in behavioural tasks20,21,25-27. Our results suggest that when task demands are high, 

primary sensory cortex is engaged and plays a positive causal role in determining task 

performance. When the task is easy to solve then alternative pathways and downstream 

networks are likely already optimally engaged, and cortical stimulation represents a distractor. 

Our results parallel recent findings from lesion and silencing experiments26 showing that 

learned tasks are no longer cortically dependent and additionally suggest that cortical 

resources are dynamically allocated depending on task difficulty and performance. Our 

findings differ from a recent study64 which found that photostimulation at just two cell locations 

could recruit an associated ensemble which then always positively biased stimulus perception. 

However, the perceptual demands of their discrimination task are greater than for our 

detection task, which is consistent with the interpretation of our results.  

A prominent feature of the local network response to photostimulation was inhibition of other 

cells, similar to other reports50,65,66. This suggests that there exists strict control over the 

balance between excitatory and inhibitory activity levels67, similar to what has been observed 

during spontaneous and stimulus evoked activity states in awake visual cortex68. We did not 

observe large scale ‘pattern completion’ modes of activity triggered by photostimulation of 

cotuned cells as recently reported64 but rather observed a more constrained and balanced 

interplay between the identity and the activity of groups of cells. A recent study50 found that 

photostimulating single cells predominantly inhibited other similarly tuned cells, while 

excitation was reserved for a very small population of very similar cells. We hypothesise that 

the more relaxed relationship of influence versus stimulus tuning that we observed could arise 

through multiple cells being photostimulated coincidently in our experiments. 

Our findings raise a number of outstanding questions. First, which downstream networks69-73, 

either cortical or subcortical, are charged with reading out the task-dependent information 

carried by the stimulated layer 2/3 neurons? This will require recording and manipulation of 

deeper cortical layers and subcortical target areas, as well as recording from multiple areas 

simultaneously. Second, which circuits, including neuromodulatory pathways28,31,74, are 

responsible for modulating the contribution of cortex to the task? Our results also raise a more 

general question of how and where multiple streams, including the collicular pathway75,76, of 

visual processing combine and interact. Finally, uncovering the detailed elements of the neural 

code underlying perception will require further refinements in the temporal precision, spatial 

resolution and physical coverage of both recording and stimulation approaches, as well as 

performing flexible real-time activity-guided manipulations77 in concert with sophisticated 

analytical frameworks78.  
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Methods 

All experimental procedures were carried out under license from the UK Home Office in 

accordance with the UK Animals (Scientific Procedures) Act (1986).  

Animal preparation 

We used transgenic GCaMP6s mice (Emx1-Cre;CaMKIIa-tTA;Ai94 47 and CaMKIIa-tTA;tetO-

G6s 48) of both sexes aged between P41 and P73. Doxycycline treatment in drinking water 

from birth to P49 prevented interictal activity in the Ai94 mouse line 79. Briefly, to prepare the 

mice for all-optical experiments we excised the scalp and implanted a metal headplate. We 

then removed the skull and dura overlying visual cortex, injected virus encoding the opsin and 

implanted a chronic cranial imaging window in place of the skull. Sterile procedures were used 

throughout. Before surgery, mice were given a subcutaneous injection of 0.3 mg/mL 

buprenorphine hydrochloride (Vetergesic) and anaesthetised with isoflurane (5% for induction, 

1.5% for maintenance). The scalp above the dorsal surface of the skull was removed and an 

aluminium headplate with a 7 mm diameter circular imaging well was fixed to the skull centred 

over the right monocular primary visual cortex (2.5 mm lateral and 0.5 mm anterior from 

lambda) using dental cement. A 4 mm diameter craniotomy was drilled inside the well of the 

headplate, and the dura was then carefully removed. A calibrated pipette bevelled to a sharp 

point (inner diameter ~15 μm) connected to a hydraulic injection system (Harvard apparatus) 

was used to inject small volumes of virus (AAV2/9-CaMKII-C1V1(t/t)-mRuby2-Kv2.1). The 

dilution of virus in buffer solution (20 mM Tris, pH 8.0, 140 mM NaCl, 0.001% Pluronic F-68) 

was adjusted throughout experiments to optimise expression levels and ranged from 8-fold to 

25-fold dilution of stock (stock concentration: ~6.9x1014 gc/ml). We made ~5 insertions of the 

injection pipette, each site spaced by ~300 μm. At each site we slowly lowered the pipette to 

a depth of 300 µm below pia and injected 150 nl of the virus solution at 50 nl/min. After each 

injection the pipette was left in place for a further 3 minutes before slowly retracting. We then 

press-fit a chronic window (a 3 mm coverslip bonded to the underside of a 4 mm coverslip 

with UV-cured optical cement, NOR-61, Norland Optical Adhesive) into the craniotomy, sealed 

with cyanoacrylate (Vetbond) and fixed in place with dental cement (SuperBond). Following 

surgery, animals were monitored and allowed to recover for at least 7 days. After recovery we 

began behavioural training. All-optical experiments were then performed > 3 weeks post-

surgery allowing for sufficient expression levels (animals were aged P67 – P134, median = 

P97 at time of experiments). 
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Behavioural training 

We used an operant conditioning protocol whereby headfixed mice were required to lick at a 

water spout positioned in front of them to report detection of a visual stimulus. Licks were 

recorded electrically. If the mice reported presence of the stimulus correctly a sugar water 

reward (10 % w/v sucrose) was delivered through the water spout. The behaviour hardware 

was controlled by custom software (PyBehaviour, https://github.com/llerussell/PyBehaviour) 

interfacing with an Arduino to trigger stimuli, record licks and deliver rewards. Mice had free 

access to food in their home cage but access to water was limited to that acquired during the 

task. Mice had their weight monitored before and after daily training and were supplemented 

with additional water to maintain a minimum of 80% of their starting body weight. Before 

training mice were habituated to handling and head restraint over 2 days. Training then took 

place in individual sound-dampened enclosures in which the mice were head-fixed and 

allowed to run on a treadmill. While not an integral part of the task design we found that 

allowing mice to run improved their performance in the task. Trials were triggered after mice 

withheld licks for 4 ± 3 seconds, after which a monocular visual stimulus appeared in the 

centre of the monitor. If the mice licked at the water spout at any point during the stimulus a 

reward was delivered. In the first few days of training a reward was delivered automatically at 

800 ms. Mice quickly learnt the requirements of the task and their reaction times preceded 

this automatic reward delivery time. After a few days the automatic reward delivery was 

disabled. After the stimulus and response window there was a fixed inter-trial period of 7 

seconds before the next ‘withhold’ period was started. We also delivered randomly interleaved 

catch trials (no visual stimulus) to record chance rate of licking and assess accuracy in the 

task. Once stable performance was reached, we progressed the mice to a psychophysical 

variant of the task where we introduced a range of contrasts to assess their perceptual 

threshold. We found that task performance was insensitive to stimulus location on the monitor. 

For the final experiment the trial order was pseudo randomised so as to ensure a constant 

rate of ‘easy’ trials and rewards while also ensuring that repeats of the same probe types were 

not immediately consecutive. 

Visual stimulation 

Visual stimuli were generated using custom software (using PsychoPy 80). 30 o Gabor patches 

of drifting sinusoidal gratings (8 directions, 0 to 315 o in 45 o increments) with a spatial 

frequency of 0.04 cycles/o and a temporal frequency of 2 Hz were presented on a monitor 

(typically 51.8 cm width, 32.4 cm height, 15 cm from the animals left eye covering up to ± 47 
o of the vertical visual field and ± 60 o of the horizontal visual field), with a spherical distortion 

applied to correct perspective errors. 
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Training. During training the orientation of the stimulus was randomised on every trial and the 

duration of the stimulus was 1 second. Rewards were delivered if the mouse licked during the 

stimulus regardless of the orientation. 

Mapping orientation preference. To map orientation preference with two-photon imaging the 

gratings were positioned in the retinotopically appropriate location and were presented in a 

randomised order with a duration of 3 seconds, interleaved by 5 seconds of mean luminance 

grey. If mice licked at the water spout during this mapping block a water reward was delivered.  

Experiment. During the behavioural experiments with photostimulation the visual stimuli 

parameters were the same as during training except the stimulus was positioned in the 

retinotopically appropriate location for the imaging field of view. Two contrasts were used, high 

(100%) and low (range: 1 - 10%, mean ± SD = 4.8 ± 3 %). The direction of the high contrast 

stimulus was randomised on every trial. The direction of the low contrast stimulus was fixed 

to match the orientation preference of the ‘cotuned’ photostimulation ensemble. 

Widefield imaging 

To locate primary visual cortex, and position the experimental field of view, widefield GCaMP 

imaging was performed (usable FOV ~ 2 x 2 mm). GCaMP6s fluorescence produced by one-

photon excitation (470 nm LED, Thorlabs) was collected through a 5x/0.1-NA air objective 

(Olympus) onto a CMOS camera (Hamamatsu ORCA Flash 4.0, binned image size of 512 x 

512 pixels, 20 Hz frame rate). Contrast-reversing checkerboard bars, 10o wide were drifted 

vertically and horizontally across a grey screen at a speed of 25 o/s in an interleaved sequence. 

Stimulus triggered change in fluorescence for the two different stimuli revealed areal borders 

and identification of primary visual cortex 81. This was repeated with two-photon imaging on 

the day of the experiment to confirm the retinotopic location of the chosen field of view. 

Two-photon population imaging 

Two-photon imaging was performed with a resonant scanning microscope (Ultima II, Bruker 

Corporation) using a Chameleon Ultra II laser (Coherent) driven by PrairieView. A 16x/0.8-NA 

water-immersion objective (Nikon) was used for all experiments. An ETL (Optotune EL-10-30-

TC, Gardasoft driver) was used to perform volumetric imaging, spanning a 100 μm range with 

33.3 μm spacing between planes. The FOV size ranged from 600 x 600 to 850 x 850 μm, at 

a constant image size of 512 x 512 pixels. The number of cells recorded (ROIs) per experiment 

ranged from 316 to 4,454 (mean = 2,266 ± 1,607). In single-plane experiments the frame rate 

was 30 Hz, in volumetric experiments the per-plane frame rate was 7 Hz. GCaMP6s was 

imaged at 920 nm and mRuby (conjugated to C1V1-Kv2.1) was imaged at 765 nm. Power on 
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sample was 50 mW at the shallowest plane (~150-200 μm below pia) and increased to ~85 

mW at the deepest plane (~250-300 μm), interpolating for intermediate planes, to equalise 

imaging quality across planes. To maximise imaging quality 82 we calculated the tilt of the 

sample relative to the microscope and then rotated the objective along two axes to be 

perpendicular to the implanted coverslip window. 

Two-photon photostimulation 

Two-photon photostimulation was carried out using a fibre laser at 1030 nm (Satsuma, 

Amplitude Systèmes, 2 MHz rep rate). The laser beam was split via a reflective spatial light 

modulator (SLM) (7.68 x 7.68 mm active area, 512 x 512 pixels, OverDrive Plus SLM, 

Meadowlark Optics/Boulder Nonlinear Systems) which was installed in-line of the 

photostimulation path (Neuralight, Bruker Corporation). Phase masks used to generate 

focused beamlet patterns in the sample were calculated via the weighted Gerchberg-Saxton 

algorithm. The targets were weighted according to their location relative to the centre of the 

SLM’s addressable FOV to compensate for the decrease in diffraction efficiency when 

directing beamlets to peripheral positions. We calibrated the targeting of SLM spots in imaging 

space by burning arbitrary patterns with the SLM using the photostimulation laser in a 

fluorescent plastic slide before taking a volumetric stack of the sample with the imaging laser. 

We manually located the burnt spots and the corresponding affine transformation from SLM 

space to imaging space was computed. For 3D stimulation patterns we interpolated the 

transformation required from the nearest calibrated planes (Calibration code: 

https://github.com/llerussell/SLMTransformMaker3D). To increase stimulation efficiency, we 

offset the photostimulation FOV with the photostimulation galvanometers such that the centre 

of SLM space was close to the cortical/imaging-space centroid of targeted cells. Spiral 

photostimulation patterns (3 rotations, 10 μm diameter, 20 ms duration) were generated by 

moving all beamlets simultaneously with the galvanometer mirrors. The laser power was 

adjusted to maintain 6 mW per target cell. 

Naparm (Near automatic photoactivation response mapping) 

To find photostimulation-responsive cells we semi-automatically detected cell locations from 

expression images and stimulus-triggered average or pixel-correlation images (STA Movie 

Maker, https://github.com/llerussell/STAMovieMaker). These cell body coordinates were then 

clustered into equal size groups of user-determined size (between 10 and 50) and the groups 

were stimulated one by one. The associated phase mask, galvanometer positioning and 

Pockels cell control protocol were generated with custom MATLAB software (Naparm, 

https://github.com/llerussell/Naparm) and executed by the photostimulation modules of the 

microscope software (PrairieView, Bruker Corporation) and the SLM control software (Blink, 
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Meadowlark). For responsivity mapping purposes we used a stimulation rate of 20 Hz, for 500 

ms per pattern, and performed 8-10 trials. These data were then analysed online together with 

the visual response mapping data to extract activity traces and design stimulation ensembles 

(see below). 

Synchronisation 

For subsequent synchronisation during analysis, analogue signals of various trigger lines were 

recorded with a National Instruments DAQ card, controlled by PackIO 83. The recorded inputs 

included two-photon imaging frame pulses, photostimulation triggers, galvanometer command 

signals, triggers to and frame flip pulses from the visual stimulus and the SLM phase mask 

update. Photostimulation trials for the responsivity mapping block were triggered at a fixed 

rate from an output line on the DAQ card. For the online behaviour experiments 

photostimulation and visual trials were triggered through the behaviour software and 

hardware. 

Experimental protocol 

On the day of the full experiment the following protocol was used. First, we located an 

expressing region of cortex and quickly mapped the corresponding retinotopic location with 

two-photon imaging. After determining where to position the visual stimulus on the monitor we 

then presented drifting gratings of 8 different orientations while performing two-photon imaging 

to map orientation preferences of the recorded cells. Rewards were delivered during the visual 

stimuli if the mouse licked. Next, we stimulated a large proportion of all cells in the recorded 

volume to find which ones were photostimulation-responsive. Finally, we designed 

photostimulation patterns for use in the behaviour experiment (see below). We then gave 

animals ~10 trials to warm up before estimating the perceptual threshold for that animal on 

that day, after which the main behavioural experiment began. We recorded in 20 minute 

blocks, manually correcting for any drift in imaging FOV. 

Neuronal response metric 

To measure neuronal responses we extracted the mean fluorescence in a ~500 ms window 

(4 frames for 3D experiments, 15 frames for 2D experiments) starting immediately after the 

photostimulation ended (and/or visual stimulus to ensure comparable measurements) and 

subtracted the mean fluorescence in the ~1 second baseline (7 frames for 3D experiments, 

30 frames for 2D experiments) before the onset of photostimulation (or visual stimulus). We 

divided the difference in the means by the standard deviation of the baseline window, to give 

a signal-to-noise ratio (ΔF/σF). If on a given trial, for a given cell, this value was greater than 
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1 the response was scored as excited, and if it was below -1 the response was scored as 

inhibited (Supplementary Fig. 9). We excluded all photostimulation frames because of the 

associated artefact contaminating the activity traces. The slow kinetics of GCaMP6s permit 

this, although the magnitude of response is underestimated. We additionally compute a net 

response probability for each cell as the difference between that cells probability of being 

excited and inhibited across all trials. For comparison across experiments we then subtracted 

either the visually evoked response probability, or for trials without visual stimulation, the 

probability of detecting a positive or negative response in catch trials. 

Online photostimulation ensemble design 

To increase speed of data analysis immediately prior to the experiment we streamed the raw 

acquisition samples to custom software (PrairieLink, RawDataStream, 

https://github.com/llerussell/Bruker_PrairieLink). We used this raw stream to process the pixel 

samples, construct imaging frames and in a subset of experiments, perform online registration. 

Processing online allowed us to directly output to a custom file format making the data 

immediately available for analysis. Motion corrected movies were loaded into MATLAB 

(MathWorks) and traces were extracted from both the photostimulation and the visual 

stimulation movies, using the photostimulation targets as seed points around which circular 

ROIs were dilated. We subtracted a neuropil signal from the ROI signal before determining 

responsivity. We determined cells as photostimulation-responsive if their evoked response (in 

a ~500 ms window after stimulus offset) to their direct stimulation was > 30% ΔF/F on > 50% 

trials. We determined cells as visually-responsive by the same criteria (with response window 

of 2 seconds during the stimulus presentation), additionally specifying their preferred 

orientation as the stimulus that elicited the largest average response (Supplementary Fig. 
10). 

Three types of task-relevant stimulation patterns were then designed in each experiment. After 

filtering for photostimulation-responsive cells the groups were designed and matched for 

number of activated cells, average evoked response magnitude and spatial clustering 

(average pairwise distance and nearest neighbour distance) but differed maximally in sensory 

tuning. The cotuned group was selected first, taking the largest group of photostimulation-

responsive and orientation tuned neurons (minimum number of targets: 4, maximum: 79, 

median: 17) and thus set the constraints for the other groups to match. Groups were matched 

within session, not across sessions (Supplementary Fig. 11).   
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Pre-processing: Imaging frame registration, ROI segmentation and neuropil correction 

For the final analysis the raw calcium imaging movies were pre-processed using Suite2p 84. 

The pipeline included image registration, segmentation of active region of interest (ROIs), and 

of local surrounding neuropil signal. The final selection of ROIs was filtered semi-automatically 

using anatomical criteria to include only neuronal somata and discard spurious ROIs. We 

manually inspected all FOVs to ensure consistent results. We subtracted a neuropil signal 

from every ROI signal. The contamination of the ROI signal by the neuropil signal depends on 

many factors including expression levels, imaging quality, and axial sectioning by the imaging 

plane. We used robust linear regression to estimate the coefficient of neuropil contamination 

for each ROI (Supplementary Fig. 12 46). The slope of this fit was used to scale the neuropil 

signal before subtraction from the ROI signal, such that after subtraction there was no 

correlation between the ROI baseline and neuropil. Neuropil subtraction had minimal effect on 

the response magnitude and negative responses were seen even without subtracting the 

neuropil contamination (Supplementary Fig. 13,14). 

ROI exclusion zones 

In order to reduce potential off-target photostimulation artefacts we excluded from 

consideration all cells within a 20 μm diameter cylinder extending through all axial planes when 

analysing the network response to photostimulation due to potential imaging and 

photostimulation artefacts (see Supplementary Fig. 13). We redefined our target stimulation 

pattern identities based on the ROIs segmented by Suite2p within the 20 μm lateral disk 

around each of the SLM target locations. We also excluded ROIs in the first 100 rows of pixels 

of each imaging frame due to an ETL artefact related to the settle time of the lens when 

changing planes. 

Behavioural session truncation 

To ensure we only analysed periods of the behavioural session where the mice were similarly 

engaged and motivated, we truncated the session when the rolling average performance (20 

trial sliding window) of the ‘easy’ high contrast trials dropped below 70% of the starting 

performance. 

Data exclusion criteria 

We excluded trials if > 50% of photostimulation targets failed to respond on that trial. We also 

excluded trials if the mice licked early (within the first 150 ms of the presentation of the visual 

stimulus). Whole sessions were excluded if fewer than 10 trials in the low-contrast or low-

contrast with photostimulation condition remained (the median minimum number of trials in 
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included sessions = 31 trials (range 11 – 69)). Out of 30 completed sessions, 9 were excluded 

(5 because too few trials remained, and 4 because of poor photostimulation efficiency) 

Statistical procedures 

No statistical methods were used to predetermine sample size. The experiments were not 

randomised, and investigators were not blinded to allocation during experiments and outcome 

assessment. Summary statistics in the text are reported as mean +/- SD unless otherwise 

indicated. Statistical tests used are specified in the text and were generally two-tailed and non-

parametric. 

Behavioural effect of photostimulation resampling procedure 

To assess statistical significance, we devised a procedure to determine whether the 

photostimulation induced perceptual bias we observed across sessions could occur by chance 

through behavioural variability. For each session we had a mean lick rate to low contrast 

stimuli (baseline performance), and a mean lick rate to low contrast stimuli with 

photostimulation. When we plot these values from every session against each other, we get 

a slope that deviates from 1. To assess the significance of this slope, we generated many 

resampled “fake” lick rates for each session, then took one resample per session for every 

session and calculated a “fake” slope across sessions for each resample. Each resample for 

each session was constructed by sampling the same number of trials as were available for 

that session in the low-contrast photostimulation trial type where each individual trial had the 

same probability of being a hit (lick) as the real mean lick rate to the low contrast stimuli. We 

did this 10,000 times and then asked if the real slope across all sessions fell outside of the 

resampled distribution of slopes. 

Pre-trial correlations 

To compute the network synchrony prior to presentation of the visual stimulus we used 

deconvolved activity traces (OASIS 84,85) smoothed with a Gaussian filter (sigma = 0.5 s). We 

used a 4.5 – 0.5 s window immediately prior to the initiation of the trial (delivery of a stimulus, 

if not a catch trial) as the ‘pre-trial’ period. We then computed pairwise correlations within 

these windows and averaged together all pairwise correlation coefficients across all cells 

(including targets) to give the total network correlation. We then z-scored all network 

correlations within animal and across all trial types to facilitate across animal comparisons. 

When comparing hit and miss trials we resampled 10,000 times to match trial numbers.  
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Stimulus decoder 

We used a multiple-class support vector machine (SVM) to decode and classify trial type 

(presence and orientation of high contrast visual stimulus) within a session, in which the output 

of multiple binary classifiers are compared to one another. We only used ROIs which were 

determined to be ‘visually responsive’ and excluded all target and nearby ROIs. We randomly 

selected half of the high contrast visual stimulus trials and half of the catch trials (no visual 

stimulus) in a session to train that sessions’ model. The remaining 50% of trials were used for 

cross-validating the performance on the held out high contrast and catch trials. We repeated 

this cross-validation procedure 100 times. We evaluated the high-contrast models with all of 

the available low-contrast trials. Note there was only one orientation of low-contrast stimulus 

in each session. We averaged the test results across all 100 permutations of the trained 

models for each session.  

Code availability 

Custom code used for data acquisition, photostimulation control, behavioural training and 
analysis have been deposited online: 

Naparm  (https://github.com/llerussell/Naparm) 

PyBehaviour  (https://github.com/llerussell/PyBehaviour) 

3D SLM calibration (https://github.com/llerussell/SLMTransformMaker3D) 

STAMovieMaker (https://github.com/llerussell/STAMovieMaker) 

RawDataStream (https://github.com/llerussell/Bruker_PrairieLink) 

Objective rotation (https://github.com/llerussell/MONPangle)
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Figure 1. Two-photon photostimulation of cotuned ensembles influences detection behaviour depending 
on performance in the task. a. Schematic outlining the experiment. Mice coexpress GCaMP6s and C1V1-Kv2.1 

permitting cellular resolution reading and writing of neural activity. Mice are headfixed and are trained to perform a 

visual stimulus detection task. b. Structure of behavioural trials. After withholding licks for a randomised interval (4 
± 3 sec) a stimulus is presented to the mouse. The mouse can respond throughout the stimulus duration (1 sec) to 

receive a water reward. c. 5 different trial types are presented to the mouse in a pseudorandom blocked structure. 

High contrast trials are interleaved with low contrast, probe (photostimulation) and catch (no stimulus) trials. There 
are 3 types of stimulation ensemble for each probe trial type, giving a total of 9 different trial types per session. Any 

trial with a visual stimulus is rewarded if the mouse responds during the response window. d. Top: Example FOV 

(one plane from a 4-plane volume) showing construct expression in L2/3 mouse primary visual cortex. GCaMP6s 
is expressed transgenically and C1V1-Kv2.1 is expressed virally through injection. Middle: Visual stimulus 

orientation preference map. 4 different orientations of drifting gratings are presented to the mouse. Pixel intensity 

is dictated by the stimulus triggered average response magnitude. Hue corresponds to stimulus orientation. Bottom: 
Prior to designing the functionally defined stimulation ensembles we had to find which cells were expressing both 

constructs sufficiently for photostimulation. The majority of recorded cells were grouped into 76 different clusters 

of 50 cells each (distributed across 4 planes) and targeted for sequential photostimulation to confirm responsivity 
prior to the experiment. Pixel intensity indicates the change in florescence caused by photostimulation. Colour 

corresponds to the photostimulation cluster which caused the largest change in activity. White circles in the middle 

panel indicate example targets within this plane selected for targeted photostimulation of a cotuned ensemble. All 
scale bars 100 μm. e. 3 different types of stimulation ensemble are designed per experiment: cotuned (CT, all cells 

prefer same visual stimulus), non-cotuned (NCT, cells prefer different visual stimuli), and non-responsive (NR, cells 
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are not responsive to the visual stimuli). Left: example visual stimulus orientation tuning curves of the target cells. 

Right: example average photostimulation response for all cells (coloured lines) and group average (black line) 
when only that group of cells is stimulated. Line colours indicate preferred orientation of visual stimulus for that cell. 

f. Example lick raster. Trials are sorted by type for display. The stimulus is delivered at time zero. Licks are indicated 

by black dots with the first lick indicated by a larger dot. Trial outcome is indicated to the right (Black = licked, grey 
= no lick). The average probability of licks per trial type for this example session is shown on the right. g. Average 

performance for all trial types across all animals (N = 14 mice, 21 sessions total). h. A strong relationship of 

behavioural modulation by CT photostimulation with task performance is seen. At low performances 
photostimulation enhances behavioural stimulus responses while at higher performances photostimulation 

suppresses responses. Diagonal unity line is shown. Grey shaded region indicates CI of fit. i. To account for 

possible regression to mean confounds the relationship in h. is compared to the range of expected fits from a 

resampling procedure using the mean lick probability and trial numbers for each set of low contrast trials. Only 
stimulation of cotuned ensembles results in a significant and detectable deviation from the permutation test bounds. 

Error bars indicate the standard error of the slope and intercept estimates.  
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Figure 2. The state of cortex before and evoked by the visual stimulus influences the behavioural impact 
of photostimulation. a. Cartoon indicating the period of average spontaneous pairwise correlations preceding the 

initiation of the behavioural trial and presentation of the visual stimulus. b. The average pairwise spontaneous 

correlations between all cells within a session before hit trials are lower than before miss trials. Each data point is 
one experiment (N = 21 sessions, 14 mice), the green point indicates the mean correlation before hit trials, the 

grey point indicates mean correlation before miss trials (comparison also shown inset, error bars indicate 95% CI). 

c. The difference in pre-stimulus network correlations between hit and miss low-contrast trials (resampled 10,000 
times to match hit and miss trial numbers) within a session is plotted against the overall task performance on low-

contrast trials in that session. Each data point is one session. d. The photostimulation-mediated change in detection 

rate of the low-contrast stimulus (ΔP(Lick)) in a session is plotted against the difference in the pre-stimulus average 

network correlation between hit and miss low-contrast trials on that session. Each data point is one session and is 
coloured by the animal’s performance on low-contrast trials without photostimulation. e. Cartoon indicating 

behavioural trial and visual stimulus evoked responses. f. There is more activity evoked on average in visually-

responsive cells on hit trials than miss trials. Each grey line is one session. g. The trial-outcome modulation of 
evoked response magnitude depends on overall task performance. For all cells in each experiment, the difference 

in evoked response on hit and miss trials (y-axis) is binned (10 equal sized bins) by average response magnitude 

(x-axis) of that cell regardless of outcome (resampled 10,000 times to match hit and miss trial numbers). The trial 
outcome modulation of the entire recorded population in a given session is then defined as the linear slope of the 

binned response versus outcome-modulation relationship. Each line represents one session, coloured by 

performance on low-contrast trials in that session. h. The slope of modulation of responses by trial outcome for a 
given session, which we interpret as a sign of active cortical engagement, correlates with the behavioural effect of 

photostimulation (ΔP(Lick)) in that session. Each point is one session, coloured by performance on low-contrast 

trials without photostimulation. 
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Figure 3. Photostimulation reveals net-inhibitory and centre-surround circuit architecture. a. Example 
segmented ROIs from one FOV coloured by evoked response to photostimulation during grey screen periods 

(catch trials). 4 planes were imaged simultaneously. Vertical black lines indicate SLM targets (35 cells targeted for 

simultaneous activation in this experiment). b. Example responses from a single trial showing the averages 
responses in directly targeted cells (black), detected excited responders (red, mean fluorescence in the response 

window is greater than 1 SD of the baseline window), non-responders (grey), and inhibited responders (blue, mean 

fluorescence in the response window is less than -1 SD of the baseline window). Bold lines indicate the median 
and shading indicates the interquartile range across all detected cells on this trial. c. Input-output function of the 

local network. The probability of detecting an excitatory (red) or inhibitory (blue) response in the network (excluding 

directly targeted cells) across all trials without visual stimulus, after subtracting the spontaneous rate, is plotted as 
a function of the proportion of cells stimulated. Each point represents the average response in one session, 

coloured by the type of response being measured (Target cell excitation (black), non-targeted network excitation 

(red) or inhibition (blue)). The lines indicate the fit, of recorded response against proportion of cells photostimulated, 
through all sessions. The shading indicates the 95% CI of the fits. d. The spatial profile of photostimulation is 

revealed by plotting the probability of detected responses (within the same plane as the stimulated cells) in 10x10 

μm spatial bins, where each non-stimulated cell is positioned relative to its nearest stimulated target cell. Left: The 
spatial profile of the probability of detecting excitatory responses in the same plane as the stimulated cells after 

subtracting the probability of response seen in spontaneous periods. The spatial profiles are gaussian blurred 

(sigma = 10 μm) within each session and averaged across all sessions (N = 21 sessions, 14 mice). Middle: The 

probability of detecting inhibitory responses. Right: The difference between the excitatory and inhibitory response 
profiles reveals a small focal region of net excitation surrounded by an annulus of net inhibition. e. Quantification 

of the mean collapsed spatial profile of response probability similar to d. but across all recorded planes. Directly 

targeted cells and excluded nearby cells shown in black (the peak seen at 33 μm are likely indirectly stimulated 
cells immediately above and below a directly targeted cell), excitation of non-targets shown in red, and inhibition 

shown in blue. The dashed lines indicate 95% CI. Inset: The functional spread of inhibitory responses is wider than 

the spread of excitatory responses. The marginal coloured dots indicate the median and interquartile range.  
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Figure 4. Photostimulation reveals like-to-like circuit architecture which impacts the stimulus encoding 
capacity of the network and the behavioural report of the stimulus. a. Restricting analysis to the non-

stimulated visually-responsive subpopulation of neurons to relate sensory stimulus tuning to connectivity. Left: The 
probability of response of neurons to low contrast visual stimulus, binned by selectivity to the visual stimulus and 

by distance to the nearest stimulated target cell (note, there is no photostimulation in these trials), averaged across 

all experiments (N = 21 sessions, 14 mice). Middle: Responses to low contrast visual stimulus but with 
simultaneous photostimulation of CT ensemble. Right: The subtraction of visual-only from visual with 

photostimulation reveals that photostimulation causes net inhibition with feature-specific excitation and inhibition in 

a small spatial region close to the stimulated cells. Convolved with a gaussian filter, sigma = 1 bin (10 μm) for 
display only (N = 21 sessions, 14 mice). b. Population orientation tuning curves. The photostimulation evoked 

change in the visual stimulus response for all visually-responsive cells, binned by orientation preference (aligned 

to the stimulus orientation used for the experiment; Δ0 is the orientation of the visual stimulus and thus the 
preference of the cotuned ensemble) and then averaged across experiments. Two curves are shown, one for cells 

within 50 μm of the target cells (black) and one for cells further than 50 μm away from the nearest target cell (grey). 
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Data at Δ-90 is the same as Δ+90, for display only. Thick lines show the mean and the shaded errors bars show 

the standard deviation. c. The selectivity (ratio of the value at Δ0 compared to the baseline, termed OSI) of the 
change in population orientation tuning curves from b. when stimulating each of the 3 types of ensemble. Thick 

lines indicate the mean across animals and sessions and error bars indicate the 95% confidence intervals. d. A 

decoder was trained to classify stimulus presence and orientation given the activity of visually-responsive non-
target cells on high contrast trials. The classifier was then tested on low contrast trials with and without simultaneous 

photostimulation. e. The session average behavioural change of an animal detecting the low-contrast visual 

stimulus, caused by photostimulation (ΔP(Lick)), is correlated with the photostimulation-mediated change in the 
accuracy of stimulus decoding from population activity. 
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Figure 5. The behavioural effect of photostimulation is explained by both the cortical state of the animal 
and the evoked changes to local network activity. a. Multiple regression model for the session average effect 

of photostimulation on the change in detection behaviour, incorporating terms relating to the state of the animal 
(extracted from neural data pre and post stimulus (StatePre, StateStim), see Fig. 2) and the photostimulation-evoked 

change in local network activity (excitation/inhibition of all cells including targets (ActivityΔE/I), and the change in 

encoding capacity of the visually responsive cells (ActivityΔStim), see Fig. 3). b. Sequentially adding terms from 
results shown in previous figures to construct the full model. Errors bars indicate S.D. of the variance explained 

across all leave-one-out permutations (N = 21 sessions). c. Semi-partial correlations (the correlation between one 

model term and the residuals from a model containing all but that model term) of model coefficients against Δ 
P(Lick) show the relationship of the variables of interest while accounting for all other variables in the full model. 

Both the trial outcome modulation of responses (StateStim) and the change in stimulus decoding (ActivityΔStim) 

significantly explain the behavioural effect of photostimulation. Error bars indicate the 95% CI of the semi-partial 

correlation coefficient. d. The predictive capacity of the reduced (excluding StatePre) model is evaluated with leave-
one-out cross validation by comparing the experimentally obtained ΔP(Lick) with the value predicted from the model 

excluding this session from the training set. The shaded region indicates the CI of the fit. 
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