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Abstract 1 

 2 

Using sampling experiments, we found that, when there are fewer groups than variables, between-groups PCA (bgPCA) 3 

may suggest surprisingly distinct differences among groups for data in which none exist. While apparently not noticed 4 

before, the reasons for this problem are easy to understand. A bgPCA captures the g-1 dimensions of variation among 5 

the g group means, but only a fraction of the in g−  dimensions of within-group variation ( in are the sample sizes), 6 

when the number of variables, p, are greater than g-1. This introduces a distortion in the appearance of the bgPCA plots 7 

because the within-group variation will be underrepresented, unless the variables are sufficiently correlated so that the 8 

total variation can be accounted for with just g-1 dimensions. The effect is most obvious when sample sizes are small 9 

relative to the number of variables, because smaller samples spread out less, but the distortion is present even for large 10 

samples. Strong covariance among variables largely reduces the magnitude of the problem, because it effectively 11 

reduces the dimensionality of the data and thus enables a larger proportion of the within-group variation to be 12 

accounted for within the g-1-dimensional space of a bgPCA. The distortion will still be relevant though its strength will 13 

vary from case to case depending on the structure of the data (p, g, covariances etc.). These are important problems for 14 

a method developed mainly to analyze variation among groups when there are very large numbers of variables and 15 

relatively small samples, a common situation in fields ranging from morphometrics (as in our examples) to molecular 16 

analyses.  17 

18 
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 1 

 2 

Introduction 3 

 4 

As a general trend, modern science tends to generate a very large number of variables (p) from samples that can vary 5 

widely in size (n) and often includes few individuals relative to the number of variables. Indeed, the ‘Omics’ revolution, 6 

brought forward by the rapid advancement of informatics and molecular biology, offers some of the best examples of 7 

this trend. For instance, microarray analyses may include hundreds of genetic markers from a relatively small number 8 

of individuals (Culhane et al. 2002 is an example). However, statistically analyzing such high dimensional data with 9 

relatively small sample sizes (p/n ratios) is an important and challenging problem.  10 

 A variety of methods for dimensionality reduction are available in the statistical literature (Izenman 2008). 11 

Among these, principal component analysis (PCA) is still probably the most popular in biology. A PCA is a rigid 12 

rotation of the multidimensional space of all the variables followed by a projection of the data onto relatively few 13 

(usually just 2 or 3) orthogonal axes that together account for as much of the overall variance as possible, though there 14 

is no reason for the axes themselves to be especially meaningful biologically. When p ≥ n, a PCA can only extract at 15 

most n-1 uncorrelated dimensions that, together, contain all the information about the variances and covariances of the 16 

original p variables (all p dimensions can be extracted when p < n). Often, there are dominant directions of variance so 17 

that a relatively small number of PCs may account for most of the variation. The first (higher order) PCs capture the 18 

major aspects of covariation in the sample and the later PCs the smaller ones.  Bookstein (2017) first brought attention 19 

to the Marchenko-Pastur theorem  that shows that large p/n ratios cause an  exaggeration of the sizes of the eigenvalues 20 

for the first PCs relative to those of the last PCs, thus giving a misleading impression of the relative importance of the 21 

patterns that they seem to suggest. The initial motivation for the present paper was to investigate whether large p/n 22 

ratios might cause problems for the relatively new and increasingly popular type of PCA, between-group PCA 23 

(bgPCA). In this method a PCA is performed on the covariance matrix based on the g sample means (rather than on the 24 

original data matrix) followed by the projection of the original n samples onto these bgPC axes. Plots of these axes are 25 

then used to illustrate the distances between sample means and allow a user to judge the distinctiveness of the groups. 26 

 To investigate the effect of varying p/n ratios on bgPCA, sampling experiments were performed using both 27 

isotropic data (independent variables with equal means and variances called Model 1 below) and data constructed from 28 

an actual morphometric study but with no true differences among the group means (called Models 2-3 below). Fig. 1 29 

shows the result of bgPCAs using g = 3 groups with the same true means (i.e., no real group differences), a constant 30 

total sample size (n=120), and an increasingly larger numbers of variables (p=12, 120 or 360). On the left (Fig. 1A) are 31 

bgPCA plots for isotropic data Model 1, below) for g = 3 groups of identical size ( 3 40in n= = ). On the right (Fig. 32 

1B), the same in , g and p are used as in Fig. 1A but based on correlated morphometric variables from real data, which 33 

have been randomly divided into three groups so that there are no real group differences. Convex hulls for each group 34 

are shown in order to identify group memberships for each sample. Rather than showing the groups superimposed as 35 

one might expect, because there are no true differences, Fig. 1 shows that bgPCA created an apparent clustering of the 36 

samples around their group means as first noticed by one of us (AC). The groups appear increasingly distinct from one 37 

another as the p/n ratio increases because larger numbers of variables are used. The effect is particularly evident for 38 

isotropic data and less pronounced but still present for correlated variables. The primary focus of the present paper is on 39 
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the reasons for such spurious clustering and predicting the magnitude of this distorted summary of group differences. 1 

The companion paper, Bookstein (2019), also examines the effect of large p/n ratios on the bgPCA method but in 2 

relationship to the predictions of the Marchenko-Pastur theorem as described in Bookstein (2017), along with  two other 3 

aspects of the problem: the role of variations  in sample sizes of the groups, and the effect of correlations among the 4 

variables based on a variety of factor models. Importantly, it also suggests ways of evaluating the impact of these 5 

effects when analyzing actual data sets. In contrast, our concern here is largely with explaining the possible false 6 

clustering and the magnitude of the effect. We use sampling experiments and examples from our own field, 7 

morphometrics, i.e. the quantitative study of biological forms (Bookstein 1991, Blackith and Reyment 1971). However, 8 

the issue and its implications are general and apply similarly to multivariate data used to compare groups in other fields 9 

such as genetics.   10 

 Phenotypic variation is complex and, although the number and choice of morphometric descriptors should be 11 

determined by the specific study hypothesis (Oxnard and O’Higgins, 2011), morphometric studies are often 12 

exploratory, tending to employ large numbers of variables, which make this discipline typically highly multivariate 13 

(Blackith and Reyment 1971). This is intrinsically true for landmark coordinate-based GM (geometric morphometrics), 14 

because each additional landmark or semilandmark adds two variables to a 2D study or three to a 3D study. While the 15 

p/n ratios are very variable (Table 1), datasets used in GM studies often have many more measurements than 16 

specimens. This is particularly common in, but not exclusive to, anthropology, the discipline in which semilandmark 17 

methods for the analysis of curves and surfaces were developed and are widely employed to study human evolution 18 

(Bookstein 1997; Gunz and Mitteroecker 2013; Slice 2005). Semilandmarks are typically closely spaced sets of 19 

arbitrary points used to ‘discretize’ anatomical features, such as curves and surfaces, that are devoid of clearly 20 

corresponding landmark points; therefore, they can greatly increase the number of variables in a study.  Indeed, a 21 

propensity for morphometrics to employ large numbers of variables has become especially evident in the last decade, 22 

thanks to new, cheaper and faster instruments for the acquisition and analysis of 3D images. For instance, almost 60% 23 

of about 1000 entries, retrieved at the end of 2018 in Publish or Perish (https://harzing.com/resources/publish-or-perish) 24 

using google scholar to search “geometric morphometrics AND semilandmarks”, were papers published since 2013. 25 

 A particularly important topic in biology is the description and interpretation of group differences in 26 

multivariate spaces, an important topic in biology. Various approaches have been suggested to summarize among group 27 

variation in scatterplots (ordination methods) and to classify individuals in groups. Yet, today’s most commonly 28 

multivariate technique for separating groups is still multi-group linear discriminant analysis (DA), also known as 29 

canonical variates analysis (CVA), originally proposed by Fisher (Fisher 1936) and Mahalanobis (Mahalanobis, 1936). 30 

However, a limit for using DA/CVA in a study is that, for statistical reliability, it requires sample sizes greatly 31 

exceeding the count of variables in the analysis (Mitteroecker and Bookstein, 2011), and indeed it is not even 32 

computationally defined if p n g − . In these instances, a between-group PCA (bgPCA) has been suggested as an 33 

interesting potential alternative to explore group structure. To our knowledge, this method was originally proposed by 34 

Yendle and MacFie (1989) who called it “discriminant principal components analysis” (DPCA), though it does not 35 

involve a standardization by the within-group variation as in DA and CVA. Another early paper is Culhane et al. 36 

(2002), who applied it to the analysis of high-dimensional microarray data. While bgPCA has similarities with 37 

discriminant functions, but also, as discussed by Boulesteix (2005), has relationships to partial least-squares dimension 38 

reduction methods.  Compared to DA/CVA, bgPCA is just a PCA and does not involve standardizing the variables 39 

based on the variation within groups (Seetah et al. 2012) . Also, as with DA/CVA, bgPCA has been used for 40 
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classification, and thus for predicting group affiliation based on bgPCs, an aim which should be achieved with a cross-1 

validation, as exemplified by leave-one-out jack-knife used in Culhane et al. (2002) and Seetah et al. (2012). However, 2 

in contrast to a DA/CVA (Kovarovic et al. 2011; Mitteroecker and Bookstein 2011), a bgPCA does not require 3 

p n g − , which is why it has been claimed that “in ... between-group PCA there is NO restriction on the number of 4 

variables” (https://www.mail-archive.com/morphmet@morphometrics.org/msg05221.html).  5 

 6 

Description of the bgPCA method 7 

The bgPCA procedure (see Boulesteix, 2005, for a formal description) is used to reduce the dimensionality of 8 

multivariate data to just those dimensions necessary to account for the differences among the g group means. Each 9 

sample is based on in individuals for a total sample size of in n=  or in gn=   in the case of equal sample sizes, as 10 

will be assumed here for simplicity. bgPCA is performed by projecting the original n×p data matrix, X, onto the matrix, 11 

E, of the normalized eigenvector of the among-group SSCP matrix ( ) ( )
g

t

i i i

i

n= − −A x x x x , where ix  is the 12 

row vector for the mean of the ith group and x  is the grand mean vector. The A matrix is at most of rank g-1 because it 13 

is a PCA of just the matrix of g means so only the first g-1 eigenvalues can be greater than zero and thus only the first 14 

g-1 columns of E need to be retained. The n×(g-1) transformed data matrix is then  =X XE . Based on these, the 15 

transformed within-group and among-group SSCP matrices are 
t =W E WE  and

t = =A E AE Λ , the diagonal 16 

matrix of the first g-1 eigenvalues of A  (note: the superscript “t” indicates matrix transpose). Importantly, the number 17 

of bgPCs cannot be more than g-1. Importantly, thus, with just two groups, there are only two group means, and one 18 

needs a single dimension to represent differences between two points; thus, when g = 2, there is only one bgPC. If there 19 

are three groups, the differences among the three corresponding means can be fully described by a plane passing 20 

through the three mean points, and thus by just two bgPCs. With g > 3 the rationale is the same and the number of 21 

bgPCs is g-1, but the geometric representation is not as easy, because we cannot represent multivariate spaces with 22 

more than three dimensions in a single scatterplot and even a 3D scatterplot (as with g = 4) can be difficult to interpret 23 

(Mitteroecker et al. 2005).  24 

 25 

Sampling experiments 26 

As mentioned above, the first set of sampling experiments, shown in Fig. 1, were based on two different models, one 27 

(Fig. 1A) being the same as model 1 (below) and the other (Fig. 1B) being similar to models 2-3 (below). In all 28 

instances, there are no true differences among the means of the groups and the groups have the same size. Thus, in more 29 

detail, the models used in the more extensive sampling experiments described below, were: 30 

Model 1: A purely isotropic model with p independent random normally distributed variables, each with μ = 0 31 

and σ = 1. This model was used for Figs. 1A, 2, and 4 below. 32 

Model 2-3:  Random normally distributed variables with the same true covariance matrix as that of a real 33 

morphometric dataset, but with all means equal to zero: 34 

Model 2: Procrustes shape coordinates from a sample of 45 adult yellow-bellied marmot (Marmota 35 

flaviventris) left hemimandibles. The original 2D configuration consists of 10 landmarks and 50 36 

semilandmarks, with the semilandmarks slid in TPSRelw (Rohlf 2015) using the minimum Procrustes 37 
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distance criterion. This data matrix was then used to compute the covariance matrix among the 1 

variables and its corresponding eigenvector matrix and eigenvalues. All eigenvectors that had positive 2 

eigenvalues were retained. These were then used as described below to generate random data matrices 3 

with the covariance matrix taken from the original dataset.  4 

Model 3: Procrustes shape coordinates from a sample of 171 adult male vervet monkey skulls, which are part 5 

of a larger published dataset (Cardini and Elton 2017). There were 86 3D skull landmarks (Cardini et 6 

al. 2007; Cardini and Elton 2017). As with Model 2, as described below, these were used to generate 7 

samples of random variables with the same true covariance matrix as in the original data.  8 

  9 

A sample, X, from a population with a given true covariance matrix of Σ was generated using the following 10 

relationship. 
1 2=X YEΛ , where Y is an n×p matrix of independent random normally distributed numbers, E is a p×p 11 

matrix of normalized eigenvectors of Σ, and Λ is a p×p matrix of its eigenvalues. A difference between sampling 12 

experiments using the isotropic model (Model 1) and all others based on actual data (Model 2-3) is that the total number 13 

of landmarks limits the largest p employed in the sampling experiments, because the method cannot construct more 14 

dimensions than are in the original data.  15 

 In the sampling experiments that follow, the data were subjected to a bgPCA using code written by FJR in 16 

MATLAB and group separation was assessed by computing an index of overlap between pairs of samples. Let ijO  be 17 

the proportion of individuals in a group i that are actually closer to the mean of group j. When the dispersions in two 18 

groups i and j do not overlap, ijO will be equal to 0 and will approach 0.5 for a pair of groups that overlap almost 19 

perfectly because in that case a point is equally likely to be closest to either mean. The average, ijO  for all pairs of 20 

samples in a particular analysis is used as the measure of overlap. Initially, the amount of overlap between convex hulls 21 

was considered, but this has some unsuitable properties (such as rapid decrease in the probability of overlap as the 22 

number of dimensions increases even without the bgPCA transformation).  23 

 24 

What happens when n or g are changed relative to p? 25 

 26 

Figure 2 summarizes the results of sampling experiments using ijO  as a measure of overlap and varying g, in , and p. 27 

The figure uses in rather than n because the total size is not relevant for the computation of average overlap as they 28 

depend on the relationships among pairs of samples and not the number of samples (and thus not on the total sample 29 

size). The sampling experiments used g = 3 and 6 groups, sample sizes of in = 20 and 40, and a range of values for the 30 

number of dimensions, p. Figure 2 shows the expected outcome that overlap is larger when p is smaller, in larger, and 31 

when there are more groups. The effect of p is strongest for the isotropic model, but the effect is clear for all three 32 

models.  The companion paper also demonstrates the effect of relaxing the assumption of equal sample sizes. 33 

 34 

Mathematical interpretation: why the apparent separation of groups as p increases? 35 
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Because the ijO index seems difficult to work with analytically, an alternative index inspired by the partitioning of 1 

sums of squares in an anova or MANOVA was investigated for the simple null model (Model 1) used above, i.e., 2 

samples of independent normally distributed random variables from the same population. As an approximation, 3 

covariances among the variables are ignored (as they should be minimal for isotropic data) and the group differences 4 

described in terms of the traces (sums of the diagonal elements) of the usual within and among-groups sums of squares 5 

matrices, rather than the usual multivariate test statistics such as Wilks’ Lambda or Lawley-Hotelling U statistics, 6 

which require the computation of the matrix inversion and determinants of the sums of squares matrices.  7 

The reader should carefully note that all expressions in Table 2 are based just on the g-1 dimensional space of 8 

the bgPCA transformed data. Thus, the within-group sums of squares here only refers to the part of total within group 9 

sums of squares expected in this subspace. This table is not intended for statistical testing (unlike that of a standard 10 

MANOVA, which would use the variation in the p-dimensional space of the original variables), but specifically to 11 

produce an explanation for the apparent differences between groups such as shown Fig 1A.  12 

As above, let A represent the among-groups SSCP matrix based on all p variables and E its matrix of 13 

normalized eigenvectors. After projecting the data for all samples onto these vectors, one has a bgPCA transformed data 14 

matrix   =X XE . At most, only the first g-1 columns of E and thus X  are nonzero, so we will use only the first g-1 15 

columns. Let A  be the among-groups SSCP matrix based on this transformed data matrix. The sum of the eigenvalues 16 

of A and A are equal because all of the variation among g means is captured in a g-1 dimensional space. Similarly, 17 

one can define W as the within-groups SSCP matrix using the original p variables and W  as the equivalent matrix 18 

using the projections of the data onto E. Note that its trace ( )tr W  will, in general, be less than that of W because 19 

only within-group variation in the g-1 dimensions in which the means differ is preserved by the projection onto the g-1-20 

dimensional bgPCA space. The W matrix has n-g degrees of freedom and thus would require ( )min ,n g p−  21 

dimensions to account for all the within-group variation. 22 

Consider sampling experiments, such as described in the prior section for Model 1, where in  specimens are in 23 

each sample (assuming equal sample size, so that in gn= ) are drawn from the same p-dimensional multivariate 24 

normal distribution, that has a mean vector p=μ 0  (a vector of p zeroes) and a covariance matrix of p=Σ I  (a p×p 25 

identity matrix). The true W matrix would then be ( ) pn g− I  with ( ) ( )tr n gp= −W . The true among groups 26 

variance component matrix, AΣ  , is p0  because there are no true differences among the population means. However, 27 

due to sampling error the expected among-groups covariance matrix is i An+Σ Σ . For the transformed data, the trace of 28 

the observed among-groups SSCP matrix is unchanged by the transformation because all of the variation among g 29 

means will be accounted for by the g-1 eigenvectors. However, the trace of the expected within-groups SSCP matrix 30 

will be reduced by the fraction ( )1g p−  assuming the remaining n-g dimensions of within-group variation are just a 31 

random sample of the total variation (reasonable here because, as mentioned above,  there are no actual differences). 32 

These relations are conveniently summarized in the format of a MANOVA table (Table 2), but just using the trace of 33 

each matrix as a summary of the relative amounts of within and among samples variation captured in the bgPCA space 34 

only.  35 
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 The expressions in Table 2 are compared in Table 3 with the results from two sampling experiments. The 1 

example in the upper half is for the case where there are fewer variables but larger sample sizes in each group. The 2 

second for the case where the number of variables is larger and sample sizes are smaller. The values are averages over 3 

10,000 replications and show the close agreement with the expected values (given in parentheses) computed using the 4 

formulas from Table 2.  5 

Note that the isoF   ratio defined in Table 2 (ratio of traces of among to within group MS using only the g-1 6 

bgPCs) is analogous to an F-ratio and is a function of just p and g. The subscript “iso” is to remind the reader that it 7 

assumes isotropic data and is not the usual R2 statistic. Figure 3 shows plots of ( )( )2 1iso iR p p g n= + −  as a 8 

function of in   and p for g = 3 and 6 that illustrate how 
2

isoR  increases as a function of p (suggesting more distortion 9 

with more variables), but decreases as a function of in  (indicating less separation of groups with larger samples). For a 10 

given p and in , if g is smaller, and therefore also in gn=  is smaller, the denominator in the 
2

isoR  formula is reduced 11 

and 
2

isoR  becomes larger, which is why the 
2

isoR  surfaces in Figure 3 are higher for g = 3 than for g = 6. This is because 12 

adding more groups increases the dimensionality of the bgPCA space and thus should account for a larger proportion of 13 

the within-group variation. 14 

 The reader should note that larger 
2

isoR  implies more separation and thus less overlap as measured by ijO . 15 

Fig. 4 shows a scatterplot ijO as a function of 
2

isoR  using the data from Fig. 2. The slope of the relationship differs for 16 

data from the different models. The slope is less steep for the models with correlated variables. Within each dataset the 17 

scatter corresponds to the effects of different values of g and in . The 
2

isoR  statistic is somewhat ad hoc, but Figure 4 18 

(below) shows that it is a useful predictor of overlap for isotropic data. 19 

 20 

The effect of covariation among variables.  21 

 The isotropic Model 1, used in the previous section, is based on the unrealistic assumption that the variables 22 

are independent and have equal variances. Intuitively, one might expect that data with highly correlated variables might 23 

be less prone to overestimating of the degree of group separation, and indeed the sampling experiments presented in 24 

Figs. 1B, 2 and 4 do show less spurious separation for data with correlated variables (i.e., the models using vervet and 25 

marmot covariance matrices). If, as an extreme case, because of a strong correlation between variables, all of the 26 

variation in a dataset could be accounted for with just g-1 dimensions, then all of the within-group variation would also 27 

be captured by the g-1 among-groups dimensions of the bgPCA and no information would be lost. The 
2

isoR  statistic 28 

described above should then be close to 0 and ijO  should  measure the correct amount of overlap between groups, 29 

which should be close to 0.5 if there are no real groups).  30 

 In order to investigate the effect of covariation using sampling experiments, one must specify a model for the 31 

pattern and strengths of the correlations. The selection of a model can be simplified because one can rotate the data 32 

matrix to its principal axes, so that one need only consider models that differ in how the eigenvalues decrease as a 33 

function of their number. For independent variables they would decrease somewhat according to the Marchenko–Pastur 34 

formula (Bookstein 2017), but for highly correlated variables they would decrease more rapidly. A very simple model is 35 
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that the logs of the eigenvalues, ( )ln i , decrease linearly as a function of the log of their number, that is, 1 

( ) ( )ln lni a b i = −  or as
bi

i e −= , where a is a constant greater than 0 (ignored here) and b determines how 2 

rapidly the eigenvalues decrease. This approach also models the effect of unequal variances for the different variables. 3 

More realistic models with a factor structure could have been investigated, but this model seems sufficient to illustrate 4 

the effect of different proportions of the variance being accounted for by the first g-1 dimensions. Fig. 5A shows 5 

examples with b varied from 0 to 1 Larger values of b yield increasingly rapid declines of successive eigenvalues, 6 

which imply stronger correlations among variables.  7 

 Fig. 5B shows the results of, sampling experiments with g = 3 groups of in = 20 observations each, with p 8 

ranging from 3 to 80, and each replicated 1000 times, for the b values used in Fig. 5A. The effect of increasing 9 

correlations among the variables was to reduce the size of the expected 
2

isoR  statistic implying a larger ijO  and thus 10 

less spurious clustering of points around the means. Many morphometric datasets follow patterns like that shown for b 11 

= 1 or even more extreme. For instance, the curve for the marmot mandible dataset (Model 2) would be even more 12 

extreme than the curve shown for b = 1 The curve for the vervet data (Model 3) is less extreme.  Thus, it is not 13 

surprising that Fig. 1 shows that for data with highly correlated variables there will be much less spurious group 14 

separation than that found for the isotropic model (Model 1).  15 

 16 

Discussion 17 

Sampling experiments described above show that bgPCA ordinations may tend to exaggerate differences between 18 

groups relative to the amount of within-group variation. In extreme cases, with few groups, small samples and very 19 

many variables, bgPCA may consistently show perfect separation of the groups even when there are no true differences 20 

among group means. This is in part because the g-1 dimensions of a bgPCA capture the entire amount of variation 21 

among the g group means, but only a fraction of the within-group variation when p > g-1. Thus, most of the variance 22 

within groups is lost when p is much larger than g-1. With small samples, the groups may appear quite distinct, and any 23 

apparent group differences will largely be an artefact of very large sampling error (Cardini & Elton 2007; Cardini et al. 24 

2015). This means that, in such cases, the inaccuracies in group mean estimates are captured by the bgPCs, as if they 25 

were true differences, and used to define the g-1 dimensional space.  26 

 Not surprisingly, one can also see in Figure 2 that, with the same p and g, larger samples overlap more than 27 

smaller samples. Indeed, whether there are true differences or not, for a single variable the range of variation within a 28 

sample is expected to increase as its sample size increases.  Similarly, the spread of multivariate samples is also 29 

expected to increase with sample size and thus there is a greater chance of samples overlapping. 30 

 In summary, the distortion showing a consistent spurious degree of separation between groups is not a 31 

promising property for a method that was proposed to analyze data with large numbers of variables and small samples, 32 

but the picture is complex, because the gravity of the problem, as nicely exemplified by Figure 4, varies sharply from 33 

case to case.  Indeed, the severity of the distortion depends on both g and in relative to p, as well as on how strongly 34 

variables covary and whether true differences are indeed present (a case which we did not explore in our simulations).  35 

 Among the factors that might reduce the distortion, or even make it negligible, covariance is one of the most 36 

interesting, as it is expected in most biological datasets. The reason why covariance mitigates against the problem of 37 

bgPCA spurious group separation is that, with correlated variables, the number of truly independent dimensions is 38 
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reduced and, therefore, operationally, it is as if the ( )1ip g n −  ratio was smaller. Yet, the problem is clearly still 1 

there, as both separation and 
2

isoR  in bgPCA space still increase with p. Thus, the main conclusion is the same: even 2 

with covariances, with a large ( )1ip g n −  ratio, not only might one see groups that are overly separated, as in our 3 

sampling experiments, but also, if there are true groups, differences will be inflated by a case-specific degree, which is 4 

difficult to predict a priori.  5 

 When the effect of covariance is considered in studies using Procrustes-based GM, it is important to bear in 6 

mind also that additional covariance is introduced by the Procrustes superimposition itself (Rohlf and Slice 1990). Its 7 

importance here might partly depend on factors such as the number and distribution of the anatomical points used in the 8 

configuration, as well as the presence of semilandmarks and their mathematical treatment (Cardini 2018). Indeed, the 9 

marmot data, which include slid semilandmarks, show less spurious group separation in bgPCs. This is might be 10 

because of an especially strong covariance, as suggested by the observation that 90% of the total variance in these data 11 

can be accounted for by just the first 10 PCs. To what extent this strong covariance depends on real covariation among 12 

measurements (i.e., the points used to capture mandibular shape) or the additional covariance introduced by the 13 

superimposition, it is impossible to say and this implies that adding semilandmarks and sliding them is clearly not a 14 

solution to the distortion in bgPCAs. By contrast, the vervet data, that shows more spurious clustering, requires 56 PCs 15 

to account for the same percentage of the total variance. Indeed, these observations suggest that one could preliminarily 16 

explore the impact of covariance by first performing the usual PCA to check how much of the total variance can be 17 

accounted for in g-1 dimensions: if a large proportion is accounted for by g-1 dimensions, that might indicate a 18 

covariance so strong that most of the total variance might fit in the bgPCA space, thus strongly reducing the risk of 19 

overestimating the degree of group separation despite a large p/n ratio. 20 

 In datasets where strong correlations among variables are expected, such as is common in GM, where many 21 

semilandmarks are used  (because physically close semilandmarks tend to covary strongly), one might hope to 22 

circumvent some of the issues raised in this paper by reducing the number of variables used in the bgPCA.  Indeed, in 23 

GM studies, it is often the case that distance matrices among specimens assessed using a few landmarks are highly 24 

correlated with those derived from the full set of landmarks plus many semilandmarks (Skinner et al, 2009; Ferretti et 25 

al. 2013; Watanabe, 2018; Galimberti et al. 2019). This can be assessed formally, for instance, through matrix 26 

correlations where full (all landmarks and semilandmarks) and reduced (a subset of the full configuration) data matrices 27 

are often highly correlated. Thus smaller ratios of ( )1ip g n −  can be achieved at the outset, simply by limiting the 28 

number of variables used in the study. If this is done, the resulting visualizations of shape differences among specimens 29 

will be less detailed, because fewer landmarks are used, but results of bgPCA will be less likely to be misleading.  30 

 It is also important to bear in mind that scatterplots are not the only tool for assessing group differences. 31 

Results from a bgPCA can be complemented by tests of significance, as well as by cross-validated classifications of 32 

groups (e.g., Seetah et al. 2012). With small samples, and/or negligible group separation in the full data space, group 33 

differences using all p variables will be non-significant, thus warning the user that any appearance of group separation 34 

in bgPCA scatterplots should be regarded with suspicion. Also, one of the main aims in the formulation of bgPCA by 35 

Culhane et al. 2002 was classification, and cross-validated bgPCAs in the full data space, using the same parameters as 36 

in the simulations performed in this paper, produce on average the expected percentages of correctly classified 37 

individuals according to groups (i.e., in the absence of real groups, approximately 33% for g=3 and 17% for g=6 - 38 
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results not shown). Thus, as with non-significance in tests using all p variables, finding a cross-validated accuracy only 1 

negligibly different from that expected by chance should warn users about possible distortions in the scatterplots.  2 

  3 

In conclusion, big datasets are increasingly common, but having very many variables does not ‘counterbalance’ the 4 

effect of small n – it could make it worse as shown here and in Bookstein (2019). Thus, we show that in attempting to 5 

assess group distinctiveness using bgPCA there is a potential trap, in that spurious apparent groupings may emerge in 6 

scatterplots, especially when the subspace spanned by the g-1 bgPCs does not adequately reflect within group variation, 7 

as is increasingly likely to happen when p/n is large and g is small.  The appearance of spurious groups in bgPCA offers 8 

a good reminder of how a large number of descriptors might bring problems as well as benefits, with the problems 9 

sometimes potentially outweighing the benefits. Indeed, as with other methods (Hair et al. 2009; Bookstein 2017), 10 

bgPCA provides another example of the potential perils of high dimensional data, and of the possible misuse of 11 

techniques and misinterpretation of findings, when the basic issues of sampling error and data dimensionality are not 12 

clearly borne in mind. 13 
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Figures and Tables  1 

 2 

 3 

Fig. 1. bgPCA scatterplots (computed using Morpho – Schlager 2017 – and drawn using 4 

Adegraphics – Siberchicot et al. 2017) showing the increasing spurious separation of random 5 

groups as p/n increases: A) normal multivariate isotropic (i.e., uncorrelated variables) model; B) 6 
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normal multivariate model with covarying variables (based on the covariance matrix of a set of 1 

adult male vervet cranial linear measurements). 2 

 3 

 4 

Fig. 2. Plots of ijO  (average overlap between groups) from sampling experiments for three 5 

models:Mod1 (isotropic), Mod2 (Marmot Procrustes shape coordinates), and Mod3 (Vervet 6 

Procrustes shape coordinates), using g = 3 or 6 groups and in = 20 and 40. In all models, there is 7 

less overlap when there are fewer groups and smaller in as  p increases. 8 

  9 
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 1 

  

 2 

Fig. 3. Expected relationship between 2

isoR  and in  and p. A.  For g = 3. B. For g = 6 groups. Note 3 

that the height of the surface is lower when larger sample sizes are larger, more groups, and fewer 4 

variables
 
(see Table 2). 5 

 6 
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 1 

 2 

Fig. 4. A scatterplot of 2

isoR  (average overlap between groups) against 2

isoR  using the results of the 3 

sampling experiment shown in Fig. 2. Within each dataset it shows a tight negative relationship 4 

between ijO  and 2

isoR with a shallower slope for datasets that have more highly correlated variables. 5 

Dotted lines connect points for g = 3 groups and dashed lines for g = 6 groups. For isotropic data 6 

2

isoR  is smaller when there are more groups. Curves for different sample sizes are plotted but 7 

indistinguishable. 8 
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 1 

  

 2 

 3 

Fig. 5. A. Plot showing the effect of varying b the rate of decrease of the eigenvalues (λ) for a 4 

hypothetical covariance matrix with p = 80 variables. The curve for b = 1 is similar to those usually 5 

observed in morphometric data. B.  Plot showing 2

isoR
 
values for the results of sampling 6 

experiments for simulated data based on the models shown in Fig 5A. The slope b was varied from 7 

0 to 1 to increase the level of correlation among the variables. Experiments were performed using 8 

1000 replicates for g = 3 groups of size in = 20. The solid line shows the expected relationship, 9 

( )( )2 1iso iR p p g n= + − , for uncorrelated data that closely matches the results from this sampling 10 

experiment. This plot shows that for the bgPCA method the proportion of the total variance 11 

accounted for by the variance among groups is expected to increase as the number of variables 12 

increases but less so as the overall level of correlation among the variables increases. For large in , 13 

the slope of the curve would approach the abscissa if the correlations were such that only the first g-14 

1 eigenvalues were greater than 0. 15 

 16 
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Table 1. Examples of papers showing the wide range of p/n ratios used in Procrustean GM studies 1 

involving groups. The number of shape coordinates is used as a proxy for p (i.e., without 2 

considering the loss of dimensions in the superimposition and, if applicable, because of sliding 3 

semilandmarks or 'symmetrization'). n is either the number of individuals or, if individuals were 4 

averaged in the between group analyses, the number of taxa. The average number of specimens per 5 

group (with g being the number of groups) is also shown. Studies using bgPCA are emphasized in 6 

bold while the column with p/n ratios is emphasized in light grey. 7 

 8 

 9 

     

study 

Semilandmarks

used? n g n/g p p/n 

  

URL and doi 

Hublin et al., 2017 (root 

surface) yes 69 5 14 1650 24 

  
https://doi.org/10.1016/j.jhevol.2018.04.005  

Neubauer et al., 2018 yes 132 5 26 2805 21   https://doi.org/10.1016/j.jhevol.2018.04.005  

Torres-Tamayo et al., 2017 yes 80 4 20 1245 16   doi: 10.1111/joa.12743 

Knigge et al., 2015 yes 87 4 22 567 6.5   DOI 10.1002/ar.23069 

Gunz et al., 2012 yes 80 3 27 312 3.9   doi: 10.1111/j.1469-7580.2012.01493.x 

Gunz et al., 2016 yes 80 2 40 312 3.9   
 

Bookstein et al., 1999 yes 21 8 3 50 2.4 

  https://doi.org/10.1002/(SICI)1097-0185(19991215)257:6%3C217::AID-

AR7%3E3.0.CO;2-W  

Schlager & Ruddel, 2015 yes 534 4 

13

4 1110 2.1 

  
DOI: 10.1002/ajpa.22749 

Baab, 2016 (Bodo dataset) - 24 2 12 42 1.8   http://dx.doi.org/10.1016/j.jhevol.2015.11.004  

Gonzalez et al., 2013 - 59 5 12 93 1.6   DOI: 10.1111/ede.12025 

Sansalone et al., 2018 - 53 2 27 72 1.4   DOI 10.1007/s10914-016-9370-9 

Domjanic et al., 2015 yes 134 2 67 170 1.3   DOI: 10.1002/ajpa.22752 

Benazzi et al., 2011 yes 38 3 13 48 1.3   doi:10.1038/nature10617 

Harvati et al., 2013 yes 268 17 16 300 1.1   
 

Green et al., 2015 yes 279 5 56 258 0.9   DOI: 10.1002/ajpa.22695 

Gomez-Robles et al., 2011 yes 129 10 13 94 0.7   doi:10.1111/j.1558-5646.2011.01244.x 

Chiozzi et al., 2018 (fish 

body) yes 62 5 12 44 0.7 

  
https://doi.org/10.1111/bij.12239  

Kubiak et al., 2017 - 85 4 21 60 0.7   DOI:10.1038/s41598-017-16243-2 

Cucchi et al., 2011 yes 114 9 13 80 0.7   DOI:10.1038/s41598-017-16243-2 

Fruciano et al., 2017 (only 

landmarks) - 138 23 6 93 0.7 

  
DOI: 10.1002/ece3.3256 

Serb et al., 2017 yes 933 6 

15

6 506 0.5 

  
doi: 10.1111/jeb.13137 

Pallares et al., 2016 - 249 9 28 132 0.5   DOI 10.1007/s00427-016-0550-7 

Chemisquy et al., 2014 

(upper molar) yes 103 5 21 52 0.5 

  
doi: 10.1111/zoj.12205 

Sanfilippo et al., 2010 - 160 2 80 72 0.5   doi:10.1016/j.exer.2010.06.014 
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Fruciano et al., 2016 (fish 

body) yes 122 2 61 44 0.4 

  
doi: 10.1002/ece3.2184 

Seetah et al., 2012 - 67 4 17 24 0.4   DOI 10.1002/ar.23065 

Cooke & Terhune, 2015 - 169 7 24 60 0.4   DOI 10.1002/ar.23065 

Ritzman et al., 2016 yes 315 4 79 90 0.3   https://doi.org/10.1016/j.jhevol.2016.09.002  

Klenovšek et al., 2016 - 215 6 36 58 0.3   http://www.ctoz.nl/vol85/nr03/a02 

Franklin et al., 2013 - 380 2 

19

0 93 0.2 

  
http://dx.doi.org/10.1016/j.forsciint.2013.03.005  

Cardini & Elton, 2008 - 

112

6 30 38 258 0.2 

  
https://doi.org/10.1111/j.1095-8312.2008.01011.x 

Fruciano et al., 2011 - 223 9 25 40 0.2   https://doi.org/10.1111/j.1095-8312.2011.01700.x 

Corti et al., 2001 - 277 12 23 44 0.2   https://doi.org/10.1017/S0952836901000498  

Ivanovic et al., 2009 - 166 9 18 26 0.2   DOI 10.1007/s00435-009-0085-9 

Dapporto et al., 2011 - 130 2 65 20 0.2   DOI 10.1007/s00435-011-0130-3 

Cardini & O'Higgins, 2004 - 354 14 25 52 0.1   https://doi.org/10.1111/j.1095-8312.2004.00367.x 

Souto-Lima & Millien 

(skull) - 212 3 71 30 0.1 

  
https://doi.org/10.1111/bij.12263  

Franchini et al., 2014 - 297 3 99 40 0.1   doi: 10.1111/mec.12590 

Cardini, 2003 - 388 14 28 18 

0.0

5 

  
DOI: 10.1080/10635150390192807 

Astua, 2009 - 

107

6 56 19 38 

0.0

4 

  
doi:10.1111/j.1558-5646.2009.00720.x 
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Table 2. MANOVA-style table summarizing expectations after a bgPCA transformation with g 1 

equal-sized samples of size ni all drawn from the same p-dimensional normally distributed 2 

population with mean 
p=μ 0  (a vector of p zeros) and covariance matrix 

p=Σ I  (a p×p identity 3 

matrix). The expressions for the traces of the SS matrices are given along with their MS after 4 

division by degrees of freedom. The isoF   ratio is also given in analogy to the usual F ratio and the 5 

proportion of the total variation accounted for by differences among means, 2

isoR , is also given 6 

(note: these are not the usual F and R2
 
coefficients from an anova or a multiple regression analysis – 7 

they are expected values assuming the isotropic model). The table also assumes equal-sized samples 8 

and thus in gn= . Note that, unlike a standard MANOVA where one estimates between-group 9 

variance relative to within-group using all original variables, here computations are only within the 10 

g-1 dimensions of the bgPCA transformed data. This means that the within-group component 11 

shown in the table only refers to the residual variance left unexplained by groups in the g-1 12 

dimensional bgPCA space (i.e., the within-group variation one sees in the scatterplots such as in 13 

Fig. 1).  14 

  15 

Source 

of 

variation 

df Trace SS Trace MS 
isoF  Ratio 

Among   ( ) ( )1tr p g = −A     ( )/ 1p g −  

Within ( )1ig n −   
( )

( )
( ) ( ) ( )

1
1 1 1i i

g
tr pg n g g n

p

−
 = − = − −W   

1g −    

Total ( )1ig n −   ( ) ( ) ( ) ( )

( ) ( )( )
1 1 1

1 1

i

i

tr g p g g n

g p g n

 + = − + − −

= − + −

A W
  

( )( ) ( )1 1i ip g n gn+ − −    

2

isoR  ( )

( ) ( )( ) ( )

1

11 1 ii

p g p

p g ng p g n

−
=

+ −− + −
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 17 
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 1 

Table 3. Two examples of sampling experiments selected among 10,000 replicates of the null 2 

model with all samples drawn from the same independent and normally distributed population with 3 

mean 0 and variance 1. Expected values based on Table 2 are given in parentheses. The upper table 4 

is an example with smaller p and large sample sizes. The lower table has a larger p and smaller 5 

sample sizes. As with Table 2, all computations are done using only using the g-1 = 2 dimensions 6 

from a bgPCA. 7 

 8 

p = 20, g = 3, n
i
 = 40 

Source of variation df Trace SS Trace MS 
isoF  Ratio  

Among 2 20.0380 (20)  10.0190 (10) 10.1124 (10) 

Within 117 116.9471 (117) 0.9995 (1)  

Total 59 136.9851 (137) 1.1511 (1.1513)  

2

isoR
 
=

 
0.1460 (0.1460)  

 9 

p = 80, g = 3, n
i
 = 10 

Source of variation df Trace SS Trace MS 
isoF  Ratio  

Among 2 79.96975 (80) 39.9849 (40) 41.4724 (40) 

Within 27 27.0319 (27) 1.0012 (1)  

Total 29 107.0016 (107) 3.6897 (3.6897)  

2

isoR = 0.7469 (0.7477)  

 10 

 11 

 12 
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