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Abstract Biological sequences are the product of natural selection, raising the expectation that13

they differ substantially from random sequences. We test this expectation by analyzing all14

fragments of a given length derived from either a natural dataset or different random models. For15

this, we compile all distances in sequence space between fragments within each dataset and16

compare the resulting distance distributions between sets. Even for 100mers, 95.4% of all17

distances between natural fragments are in accordance with those of a random model18

incorporating the natural residue composition. Hence, natural sequences are distributed almost19

randomly in global sequence space. When further accounting for the specific residue composition20

of domain-sized fragments, 99.2% of all distances between natural fragments can be modeled.21

Local residue composition, which might reflect biophysical constraints on protein structure, is thus22

the predominant feature characterizing distances between natural sequences globally, whereas23

homologous effects are only barely detectable.24

25

Introduction26

Natural proteins form the backbone of the complicated biochemical network that has given rise to27

the great variety of life on Earth. This highly interwoven framework of reactions seems impossible28

to have arisen by chance, simply because the great majority of random protein sequences fails to29

form a specific structure, let alone possess chemical activity. Features that distinguish naturally30

evolved from random sequences are therefore of great interest, both in order to understand protein31

evolution Shah et al. (2015) Luigi Luisi (2003) and to guide the design of new proteins Woolfson32

et al. (2015) Pande et al. (1994).33

Searches for such differences have hitherto focused on the exhaustive enumeration of short34

peptides and their statistical analysis by exact occurrence Poznański et al. (2018) Lavelle and35

Pearson (2009). These studies showed that the natural frequency of most peptides is similar to36

that expected from random sequences with the same composition. Nevertheless, the frequency of37

some peptides was found to deviate substantially from random occurrence, an observation which38

was variously discussed in terms of homologous descent and convergence due to structural and39
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Figure 1. Sketches of sequence space occupation. (A) A random distribution has no structure. Purely random sequences are thus distributed
homogeneously over the possible sequence space. With a blue circle, we represent a sequence in an abstract representation of space. (B) Natural

sequences are known to frequently arise by replication and diversification. Recently duplicated sequences that have not diverged beyond obvious

recognition form cluster in local areas of sequence space, indicated by green circles. Through significant similarity among multiple sequences, even

very distant relatives can be assigned to a cluster of homologous sequences. This concept of sequence clusters, like islands in a gigantic ocean of

possibilities, is commonly used.

functional constraints. This enumeration approach quickly reaches its limits at sequence lengths40

above 5, due to the fact that there are simply not enough natural sequences to populate the41

exponentially growing sequence space. Furthermore, pentapeptides are far from having a relevant42

length for understanding protein sequences. Even if proteins are dissected into their constituent43

domains, relevant sequence lengths still mostly range above 80 residues. At a complexity of 2080, it44

is clear that this sequence space cannot be analyzed by an enumeration approach.45

Although the sequence space of domain-sized fragments appears intractable due to its size, we have46

nevertheless developed expectations about its occupation by natural sequences through decades47

of bioinformatic research. This is because most proteins have arisen by descent and differentiation48

from a set of domain prototypes, and can thus be classified into a hierarchy of domain families49

and superfamilies. This points to the fact that the sequence space around domains is substantially50

populated by their homologs, resulting in an image of local islands of natural sequences within a51

global sea of virtual, unrealized possibilities (Figure 1). The extent to which this image is adequate52

to describe the global sequence distribution is however unclear.53

A first step to extend from local sequence islands to a more global view has been taken with54

searches for variants close to existing proteins Bershtein et al. (2017) Starr et al. (2017) Harms and55

Thornton (2014) Urlinger et al. (2000). By testing exhaustively all mutations at certain sites, these56

studies bypass intermediate mutants that would not have been viable in evolution. Contrasting the57

abundance of possible functional variants to the small number of natural sequences demonstrates58

how sparsely nature has explored sequence space, even locally. The high energy barriers, epistatic59

effects, and functional dependencies prevent the establishment of random mutations and seem to60

entrench already existing and functional forms Starr and Thornton (2016) Shah et al. (2015).61

Modern techniques of protein design allow to reach out further into the global sequence space62

to find possible exemplars in unknown territory Huang et al. (2016)Woolfson et al. (2015). Scaling63

these scans up to the currently highest practicable level for a given structure or function has64

uncovered viable solutions far from existing proteins Stiffler et al. (2019) Chevalier et al. (2017)65

Larson et al. (2002), showing that sequence similarity to existing proteins is not required for66

functionality. This leads to the hypothesis that the usable part of sequence space is mostly randomly67

structured, which has been proposed for unrelated natural sequences before Lavelle and Pearson68

(2009).69
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Apart from the seemingly random global structure, there are nevertheless biophysical requirements70

for all usable protein sequences, natural as well as designed, such as foldability, hydrophobic71

core formation and solubility. This indicates that these proteins may share some convergent72

features, which would restrict a random drift away into unstructured space. Natural sequence73

space could thus be characterized globally by sequences with the potential to fold, i.e. by convergent74

features.75

In this paper, we analyze the global structure of natural sequence space, aiming to identify general76

features that characterize natural sequences and to evaluate the relative contributions of conver-77

gence and homology to this space. We do this by contrasting natural data with a variety of random78

models, in order to extract sequence features arising from different natural mechanisms.79

Results and Discussion80

Natural sequence data and random sequence models81

Choice of a natural dataset82

For an adequate dataset that reflects the natural protein sequence space, we aimed to achieve a83

reasonable coverage of deep phylogenetic branches with complete and well-annotated proteomes.84

Given that the genome coverage for the archaeal and eukaryotic lineages is still sparser than for85

bacteria and that particularly eukaryotic genomes are affected by issues of assembly, gene detection,86

and intron-exon boundaries, we built our database from the derived bacterial proteomes collected87

in UniProt Apweiler (2009). To control for redundancy, we selected only one genome per genus and88

filtered each for identical open reading frames and low-complexity regions. In total our dataset89

comprises 1,307 genomes, 4.7 ⋅ 106 proteins, and 1.2 ⋅ 109 residues. We simplified complexities90

arising from the use of modified versions of the 20 proteinogenic amino acids, which occurred91

in a few hundred cases, by converting these to their unmodified precursors, thus maintaining an92

alphabet of 20 characters throughout. Further details on the generation of our dataset and its93

specific content are provided in the Methods section.94

In order to evaluate where our natural dataset differs from randomness, we developed a series of95

increasingly specific random models that account for compositional effects.96

How random is random?97

Our most basal model considers completely random sequences of the 20 proteinogenic amino98

acids, in which each occurs with an equal probability of 5% (E-model). This model is known to99

approximate natural sequences only poorly de Lucrezia et al. (2012)Munteanu et al. (2008). This is100

hardly surprising as natural amino acid frequencies in fact range between 1% and 10%, a bias which101

is associated with metabolic pathways, bio-availability, and codon frequency. We therefore built102

models that factor in this compositional bias at increasingly local levels. The first model incorporates103

the global amino acid composition of our natural dataset, which we refer to as the A-model.104

More specific models consider increasingly local fluctuations in composition. The composition of105

different genomes, for example, varies with GC-content and environmental influences Fukuchi and106

Nishikawa (2001) Fukuchi et al. (2003). This effect can be factored in using the individual genome107

composition (G-model). With an increasingly local focus, compositional bias can be accounted for108

at the level of proteins (P-model) Chou (2001) Cedano et al. (1997), domains (D-model) Lavelle and109

Pearson (2009) and even sub-domain-sized fragments Poznański et al. (2018).110

Having accounted for compositional effects resulting from environment, metabolism, and the need111

to form a hydrophobic core, the remaining differences between natural and random sequences112

must be attributed to sequence effects, due either to divergence from a common ancestor Alva113

et al. (2015) or convergence as a result of secondary structure formation Pande et al. (1994).114
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Table 1. Random sequence models based on amino acid composition.
model natural feature class of feature

E natural amino acid alphabet, equal propensity for each letter single, overall

A overall amino acid composition descriptor

T overall dipeptide frequency

G composition of individual genomes context-specific

P composition of proteins composition

D composition of domain-sized fragments

D1 D-model + homology sequence bias mixed models that

D2 D-model + analogy sequence bias incorporate

D3 D-model + homology and analogy sequence bias sequence bias

Table 1–source data 1. Random sequence models. Completely random sequences, where each amino acid
occurs with the same probability of 5%, are represented by the E-model. The natural frequency of specific

amino acids deviates remarkably form such an equal distribution, thus, random sequence models are usually

based on the overall amino acid composition, represented by the A-model. The overall dipeptide frequency

is considered by the T-model. The diversity of amino acid composition across genomes, is accounted for by

the G-model. On a more specific level, the composition occuring in natural proteins or even domain-sized

fragments can be used to generate random sequence models, here referred to as P- and D-models. In order to

estimate the contribution of analogous and homologous relationships to the global occupation of sequence

space, we generated models D1, D2 and D3 that include sequence bias in addition to the composition bias

od the D-model. (These models will be explained in detail in the last section of the Results.) We compare our

natural dataset to all of these models and illustrate to what extent they differ from the natural sequence space

occupation. Our implementation of the models are described in the Methods section.

Representing sequence space occupation based on pairwise distances115

Sequence space has frequently been analyzed with a direct approach based on the exhaustive116

enumeration of natural kmers, and the comparison of their frequencies to those derived from117

a random model Poznański et al. (2018) Lavelle and Pearson (2009). This approach is restricted118

to kmers of length 5 or smaller, due to sequence space complexity and the data sparsity caused119

thereby. It also does not represent the relative position among kmers within the global sequence120

space.121

We use an indirect approach to circumvent these problems. Our approach is built on the probability122

mass function of pairwise distances between sequences of the same length, in the following referred123

to as distance distribution. A distance distribution illustrates how often sequences are positioned124

at a certain distance to each other and we use it to study the way sequences are spread across125

the possible space. We built distance distributions for the natural dataset and for each dataset126

of random sequences derived from specific models. By using lengths of up to 100 residues, our127

sequences thus reach domain sizeWheelan et al. (2000).128

As a metric for distance, we use the normalized local alignment score of a Smith-Waterman alignment,129

since this metric is commonly used to capture similarities between natural sequences Rost (1999)130

Schneider et al. (1997). We note that the choice of distance metric is not of great relevance for the131

main implications of our study; relative to each other, the distance distributions of the random132

models deviate similarly from that of natural sequences irrespective of the chosen metric, as133

outlined in the following Results sections. Details on the derivation of distance distributions and134

the used distance metrics are provided in the Methods section. In this context, it is important135

to note that our method differs from common approaches, as it only considers the pairwise136

similarity between two sequences and thus their actual distance in sequence space. In contrast,137

most bioinformatic methods that compare sequences to each other scale distances according to138
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their statistical significance and in many cases iterate comparisons in order to extract patterns139

of conserved residues, as indicators of homologous relationships. These approaches result in140

distances that reflect evolutionary relationships, visualized as islands of higher density in sequence141

cluster maps Alva et al. (2009).142

Studying the layout of space through pairwise distances is common in other fields, such as protein143

structure determinationWüthrich (1986), spatial statistics Diggle (2014) and economics Duranton144

and Overman (2005), but has not, to our knowledge, been applied to investigate protein sequence145

space. Such distance-based approaches do not preserve information about specific positions of146

data points in space, but rather characterize their global distribution, which includes global clustering147

and dispersion. A corollary of this is that distinct datasets become comparable through their distance148

distribution, even if they do not share any specific data points.149

Comparing distance distributions150

For the comparison of the natural to a random distance distribution, we first subtract the fraction151

of distances observed in the random dataset from that observed in the natural dataset for each152

alignment score. We refer to this difference as the residual. Over all alignment scores, residuals sum153

up to zero and may have values that are either positive (more natural distances) or negative (more154

random distances). In order to obtain an overall measure of how different two distance distributions155

are, we derive the total residual, which is the variational distance between two probability mass156

functions. More precisely, the total residual is the sum over the absolute residuals, normalized to a157

range between 0% and 100%.158

If the two distance distributions are completely non-overlapping, the total residual assumes the159

maximal value of 100%, indicating that no distance between natural fragments can be modeled160

with the underlying random sequences. If they are identical, the total residual assumes a value of161

0%, indicating that 100% of all distances in the natural distribution have a corresponding distance162

in the random distribution. Thereby, the total residual represents the fraction of natural distances163

that are not accounted for by the distance distribution of a random model.164

Global amino acid composition (A-model)165

We start our analysis by assessing to what extent the global amino acid composition, as captured in166

the A-model, can describe natural sequences. We compare the distance distributions of the two167

datasets for fragment lengths up to 100 residues, in increments of 10. At all fragment lengths, the168

results are closely comparable. We show the results for 100mers as representative for domain-sized169

sequences in Figure 2 and provide the others in the supplementary figures.170

The distance distributions of natural and A-model data overlap extensively (Figure 2: A). Both171

are uni-modal with a peak at a low alignment score of 11%. Their minor differences only become172

apparent, when their residuals are considered (Figure 2: B). These take the shape of a wave, with two173

crests at alignment scores of 9% and 15% (reflecting an over-representation of the corresponding174

distances in the natural dataset), and a trough at 11% (reflecting an under-representation). The175

over-representation of distances both longer and shorter than expected from the random model,176

suggests that natural sequences are less homogeneously distributed in space. We rationalize this177

effect with the observation that natural sequences are enriched in certain parts of sequence space,178

leading to an increase in shorter distances. This may occur both in regions with rare amino acids179

(such as Cys, Trp and His in small proteins dominated by zinc-coordination and disulfide bonds180

Vallee and Auld (1990)) and in regions with abundant amino acids (such as Leu, Ala and Glu in181

all-alpha proteins, most extremely in coiled coils Lupas et al. (1991)). The compositional differences182

in these enriched regions mean that their distance in sequence space will be larger than expected183

from the A-model, and thus lead to a complementary increase in longer distances. Since residuals184

add up to zero, the number of intermediate distances is correspondingly decreased.185
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Figure 2. Comparing the sequence space occupation of random protein sequence models and natural sequence data. (A) Distance distributions
are a descriptor of sequence space occupation. The distance between sequence fragments of the same length, defined as the sequence identity

score obtained from a Smith-Waterman alignment, are plotted against the fraction of fragment pairs with the respective distance. We sampled 500

Million distances between fragments of length 100 for each model as well as for the natural sequence data. All distance distributions spike in the

area of long-range distances with a mean sequence identity score around 11%. Both natural and random distance distributions are almost entirely

overlapping. (B) Residuals represent the difference in sequence space occupation of random models compared to the natural sequences. We

extract the distance-specific difference by subtracting the random from the natural distance distribution. The resulting residuals for each model

indicate distances between natural fragments that are unaccounted for by the respective model (crests above zero). The A-, T- and G-model display

a 2-peak behavior, associated with more long-range and short-range distances between natural fragments than modeled, reflecting an increased

amount of both diversity and clustering in natural sequence space. The residuals of the P- and D-model possess only one peak for more

short-range distances between natural sequences, hence an unexpected amount of clustering.
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We note, however, that this discrepancy between natural sequences and the A-model is not very186

pronounced, as the total residual has a value of only 4.6% for 100mers (Figure 3: A). It is even less187

pronounced at smaller fragment lengths, reaching 0.4% for 10mers. We conclude that the A-model188

becomes less accurate in describing the sequence space occupation of natural sequences at lengths189

that are biologically relevant, but that it already achieves considerably higher accuracy than the190

completely random model (E-model), which has a total residual of 30.4% for 100mers (data shown191

in Methods).192

We evaluated whether adding sequence information to the unified compositional bias of the A-193

model could further improve it. Since nature favors certain amino acid combinations as neighboring194

residues, a model that reflects the natural dipeptide frequency (T-model), has been proposed to195

represent natural sequences better than the A-model Lavelle and Pearson (2009). We implemented196

the T-model by extracting the dipeptide frequencies from our natural dataset and using them to197

generate random sequences with a Markov Chain Model. For all fragment lengths, we derived198

the distance distribution of the T-model (Figure 2: A), its residuals (Figure 2: B) and the total199

residual (Figure 3: A). By all these measures the T- and the A-model yielded essentially identical200

results in modeling the natural distance distribution. This outcome was somewhat surprising, as201

the addition of dipeptide frequencies to the A-model did produce a measurable improvement in202

the enumeration study of 5mers Lavelle and Pearson (2009). This may be due to the different203

methodology in that study, which collated exact 5mer frequencies, corresponding to a position-wise204

Hamming distance of zero, and thus being close to a global, not to a local alignment as used in our205

study. In fact, when using the Hamming distance as metric, the T-model achieves a slightly better206

accuracy over the A-model for sequences of 50 or less residues (Figure 3: D). From the results we207

obtained with the A- and T-models, we conclude that global measures of composition and sequence208

bias already approximate natural sequences fairly accurately, but that this accuracy decreases with209

sequence length. Especially for longer fragments, we expect further improvement by including local210

compositional biases as outlined in the previous section.211

Context-specific composition212

In order to capture context-dependent features, we investigated the effects of naturally occurring213

local amino acid compositions. As a first step we considered a model that accounts for genome214

diversity (G-model). Therein, the random dataset is produced by shuffling residues of the natural215

dataset within the boundaries of each genome. Given that our natural dataset holds 1,307 genomes,216

the derived sequences are thus sampled from 1,307 distinct compositions. Further locality is217

achieved by accounting for the composition of individual proteins (P-model). Here, the random218

dataset is produced by shuffling residues within each natural protein, corresponding to 4.7 ⋅ 106219

compositions.220

Since proteins are generally composed of domains, which are usually autonomous in structure and221

also often in function, the next level of locality would be achieved by accounting for the compo-222

sitional biases of individual domains. Producing such a D-model is however not straightforward,223

as determining domain boundaries for proteins of unknown structure is fraught with errors and224

many residues in our dataset cannot be assigned to a domain family. As a proxy for domains we225

therefore derived all possible fragments of length 100 from our natural dataset and generated the226

D-model by shuffling residues within each fragment (see Methods). Correspondingly, we considered227

all natural sequences, whether or not they are part of a structured domain and thus included linker228

sequences and intrinsically unstructured regions. The extent to which this model is an accurate229

approximation of natural domains will be discussed below.230

Comparing the G-model to the A- and T-models over the bacterial dataset shows a dampened wave231

for the residuals, with the same shape, but a decreased amplitude (Figure 2: B). The total residual is232

correspondingly smaller by a factor of about 2 for all fragment lengths (Figure 3: A), implying that233
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Figure 3. Deviation of random sequence models from natural sequences as a function of fragment length. (A) Total residuals when using a local
Smith-Waterman alignment The total residual indicates the extent to which the distance distribution of random sequence models deviates from

the natural. It reflects the fraction of distances between natural fragments that are unaccounted for in the random model. With increasing

fragment length, the total residual of all models increases, implying that for longer fragments all models become worse in approximating

similarities between natural fragments. The A-model (overall amino acid composition) and the T-model (overall dipeptide frequency) deviate

furthest followed by the G-model (residue composition of genomes), the P-model (residue composition of proteins) and the D-model (residue

composition of domain-sized fragments of length 100), which deviates the least. The intercept of the total residuals of the T- and D-model with the

other models at fragment length around 10 is associated with edge effects of natural sequences and the usage of a local alignment as distance

metric. (B) Total residuals when using a global Needleman-Wunsch alignment. The inconsistent continuation of the total residuals at sequence

length 10 when using a local alignment has disappeared. Generally, the total residuals are reduced by 2.5-fold compared to the local alignment,

reflecting that a global alignment captures less effects of natural sequences than a local alignment. (C) Total residuals when using a local Shift

alignment. A Shift alignment does not penalize beginning and end gaps and prohibits internal gaps. Similar to the Smith-Waterman alignment, the

Shift alignment displays an inconsistency at fragment length around 10. (D) Total residuals when using a Hamming distance without alignment. It

reflects the most stringent interpretation of similarity in sequence space, as the n-th position of one sequence is always compared with the n-th

position of another sequence. It corresponds to a metric that considers the number of dimensions (positions in sequence) that are identical.
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Figure 4. Contrasting the results of our bacterial dataset with those from two eukaryotic proteomes. (A) Total residuals of random models for
bacterial dataset, the proteome of Arabidopsis thalia and Homo sapiens of the P- and D-models. Relative to the total residual of the P-model, the
total residuals of the D-models differ in the three presented datasets. In bacteria, both are almost identical, whereas for the eukaryotic datasets

the D-models have a more than 2-fold increase in accuracy over the P-models. (B) Distribution of protein length. The median protein length is

smallest for bacteria with 315 residues, 400 residues in the Arabidopsis thaliana dataset and 550 residues in the Homo sapiens dataset. The increase
of median protein length correlates with the decrease in the total residual of the D-model relative to the P-model. (C) Coverage of proteins by

structured domains. For each protein in the three datasets, an estimate of the coverage by structured domains was obtained by assigning ECOD

families to regions in the protein. The fraction of residues within assigned domains compared to the protein length was obtained and plotted as a

histogram over all sampled proteins. In bacteria 40% of the sampled proteins are almost completely structured (coverage of >90%), a fraction that

is greater compared to that in Arabidopsis thaliana (15%) and Homo sapiens (13%).
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controlling for genome composition provides a substantial improvement in modeling the natural234

distance distribution. A further improvement is clearly achieved with the P-model, even though,235

at sequence lengths below 20 residues, it produces minor inconsistencies in its total residuals236

relative to the A-, T-, and G-models (Figure 3: A). We suspect that this is an artifact of using local237

alignments (Figure 3: A, C) and, indeed, the effect disappears when using a global alignment as238

distance metric over the same dataset (Figure 3: B, D). As for the A-, T-, and G-models, the residuals239

of the P-model also have a wave shape, which is however qualitatively different from the shapes240

for the less local random models, as it has only one crest at an alignment score of 13%. The crest241

for the unexplained long-range distances is gone, which we attribute to the fact that accounting242

for composition at the level of individual proteins has introduced the heterogeneity of natural243

sequences into the random model. For 100mers the total residual of the P-model is 0.9% (Figure 3:244

A), a value that is not improved remarkably by an even greater locality: The residuals of the D-model245

have the same wave shape as those of the P-model and a comparable amplitude, providing only246

a minor improvement with a total residual of 0.8%. This was somewhat surprising, as it is well247

established that many proteins are composed of disparate parts such as domains of distinct fold248

classes, intrinsically unstructured regions or fibrous parts, which are known to be characterized249

by different residue compositions Dosztányi et al. (2005). The composition of proteins that are250

composed of heterogeneous parts should thus be scrambled in the P-model and preserved in the251

D-model. We therefore expected that the D-model would provide a clearer improvement over the252

P-model.253

Similar results of D- and P-models are associated to the dataset254

We see two reasons why the total residuals of the D- and the P-models are almost identical. One is255

a technical reason, namely that there is no room for fluctuation of local residue composition in our256

bacterial dataset, as it may comprise a large number of short and single-domain proteins. The other257

is a potential qualitative characteristic of our dataset, namely that in long bacterial proteins the local258

residue composition does not fluctuate remarkably. In order to distinguish how these two reasons259

contribute to the comparable total residuals of the D- and P-models, we added two eukaryotic260

datasets for comparison to the following analysis. We retrieved the highly curated proteomes of261

Homo Sapiens and Arabidopsis thaliana from UniRef Apweiler (2009) and pruned them according to262

the procedure used for our bacterial dataset. Comparisons of total residuals between the bacterial263

and eukaryotic datasets show that, whereas the P- and D-models for the bacterial dataset are264

essentially equivalent, the D-models for the eukaryotic datasets are roughly 2-fold smaller than265

those of the P-models (Figure 4: A), and thus closer to our expectation.266

In order to evaluate the technical reason, we analyzed sequence lengths in all three datasets and267

estimated the number of single- and multi-domain proteins. The bacterial dataset has the shortest268

proteins with a median length of 315 residues, the Arabidopsis thaliana dataset a median length269

of 400 residues and the Homo sapiens dataset the longest proteins with a median length of 550270

residues (Figure 4: B). To estimate the number of single and multi-domain proteins, we randomly271

sampled each of the three datasets and used HHpred Remmert et al. (2012) for their domain272

annotation against the ECOD database Cheng et al. (2014), which represents the most recent and273

comprehensive classification of domains of known structure (see Methods). ECOD is the current274

"gold standard" in domain assignments and, at more than 13,000 families, provides a structural275

basis for most known domains (as captured in databases such as Pfam Punta et al. (2012), SMART276

Schultz et al. (1998) or COGs Tatusov et al. (2000)). We considered proteins multi-domain if they277

had at least 2 domains assigned to them, otherwise we considered them as single-domain proteins.278

The predicted fraction of multi-domain proteins in our bacterial dataset is 30%, which is smaller in279

Arabidopsis thaliana (25%) and greater in Homo Sapiens (35%). The overall length distribution thus280

indeed correlates with the ratio between the total residuals of the P- and D-models, and potentially281

contributes to the observed effect, whereas the number of domains per protein does not.282
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In order to evaluate the qualitative reason, namely that sequences of distinct composition are283

combined within proteins, we assessed the fraction of structured and unstructured regions in the284

used proteins. To that end, we estimated the fraction of structured regions for each protein with285

HHpred against the ECOD database (Figure 4: C). For the bacterial dataset, 40% of all sampled286

proteins are predicted to be structured over >90% of their sequence, a fraction that is smaller in287

Arabidopsis thaliana (15%) and Homo Sapiens (13%). The structure content of proteins thus also288

correlates with the ratio between the total residuals of the P- and D-models (Figure 4: A), possibly289

because scrambling between structured and unstructured regions leads to greater compositional290

disturbance than scrambling within these regions.291

We conclude that the D-model approximates the natural distance distribution better than the292

P-model in all cases, however in a more pronounced way for datasets containing heterogeneous293

mixtures of long sequences combining structured with unstructured regions. In our analysis, these294

effects were more pronounced in eukayotic than in bacterial proteins.295

Sequence bias caused by homology296

Having accounted for compositional effects at increasingly local level, the remaining discrepancy297

between the distance distributions of the D-model and the natural dataset must be related to298

the actual sequence of amino acids. This discrepancy can arise either through divergence from299

a common ancestor (homology) or convergence as a result of structural constraints, particularly300

secondary structure formation (analogy). In order to evaluate the relative contribution of these301

mechanisms to the natural distances between sequence fragments we aimed to identify what pro-302

portion of distances could be assigned confidently to either homologous or analogous relationships303

and evaluated their contribution to the natural distance distribution.304

The detection of homologous relationships requires advanced approaches, which are computa-305

tionally much more expensive than the simple sequence alignments used to determine distances306

in sequence space. We therefore only considered a small subset of our sequences and their rela-307

tionships within this subset, which could be derived computationally in a reasonable amount of308

time. For this, we randomly sampled our natural dataset to form 10 unbiased groups of 100mers,309

containing approximately 650 sequences each. We used HHblits to generate profile Hidden Markov310

Models (HMMs) for all individual sequences within these groups, then derived a set of relationships311

by aligning the retrieved HMMs from one set of sequences to those of another. This we repeated312

for arbitrary sets of 100mers, resulting in multiple unbiased samples of relationships. The likelihood313

of homology between two HHMs was derived using the tool HHalign and required a strict threshold314

of minimally 90% probability (see Methods). This process identified 0.11% of pairwise relationships315

as homologous (Figure 5: A, yellow), with a standard error of the mean (SEM) of 0.0033% (Figure 5:316

A).317

For the remaining sequence pairs, we evaluated the likelihood of analogy by comparing their318

HMMs to those of the ECOD database Cheng et al. (2014). By virtue of containing only domains of319

known structure, ECOD is the currently best resource for distinguishing between homology and320

analogy in protein domains. For our analysis, we scored pairs of sequences as analogous if they321

matched distinct X-groups in the ECOD hierarchy using the same probability cutoff of 90% as for the322

homology assignment. In most cases, the X-level is the highest level at which homology still needs323

to be considered as a possibility; requiring fragments to match different X-groups within this level324

thus provided a conservative estimate of analogous relationships. This process identified 52.22% of325

pairwise relationships as analogous (Figure 5: A, purple), with a SEM of 0.84%. We conclude from326

this that the number of confident analogous pairs exceeds the number of confident homologous327

pairs by more than 2 orders of magnitude. This already indicates that the influence of homology328

on the global distance distribution in natural sequences will be dwarfed by analogy. All sequence329

pairs that could not be confidently assigned to either group were considered to be of unknown330
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Figure 5. The contribution of homology and analogy to the global occupation of sequence space. (A) Decomposition of fragment pairs into their
origins. We sampled 2 Million fragments pairs and analyzed if their relationship is confidently homologous or analogous. The fraction of analogous

relationships was determined to be 52.22%, homologous relationships only 0.11% and the remaining fraction is labeled of unknown origin. Thus,

the majority of relationships is generally analogous. (B) Distance distribution between homologs and analogs contrasted with the natural distance

distribution. The qualitative difference between the distance distribution of analogs and that of all fragments is relatively small. Compared to this,

the distance distribution of homologs displays a strong tendency towards a higher sequence identity score; it nevertheless has a major overlap

with the natural distribution. (C) Residuals of the models incorporating the sequence bias of homology and analogy. We generated mixed models,

that include the sequence bias of homology (D1-model), analogy (D2-model) and both (D3-model) into the D-model, which is only based on the

composition of natural 100mers. The D1-model, which includes homologous sequence bias, displays almost the same residuals as the purely

composition-based D-model. The residuals of the D2-model, which includes analogous sequence bias, deviate severely from that of the D-model.

The D3-model yields similar results as the D2-model. (D) Total residuals of mixed models. The total residuals behave accordingly to the residuals.

The D1-model has displays an only improvement in the total residual of 0.016% compared to that of the D-model. The D2-model reaches a total

residual of 0.46% and is more than 2-fold more accurate than the D-model (0.96%). Adding the homology bias to the D2-model to obtain the

D3-model has almost no effect.
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relationship, amounting to 47.6% of the total with a SEM of 0.84% (Figure 5: A, grey).331

Having decomposed sequence pairs into confident homologous and analogous relationships, we332

analyzed to what extent the remaining total residual (0.8%) can be explained by incorporating333

corresponding sequence biases into our D-model. Therefore, we generated three new hybrid334

models in the following way: we omitted either homologous pairs, or analogous pairs, or both from335

our set of assigned relationships, generated a D-model for the remaining fragment pairs through336

the same shuffling procedure as used previously, and then added back the omitted pairs without337

shuffling. In the following we refer to the hybrid model that adds the sequence bias of homologs to338

the domain composition as the D1-model, the one that adds the sequence bias of analogs as the339

D2-model, and the one that adds both biases as the D3-model.340

The residuals of these three models are compared to that of the D-model in (Figure 5: C). Due to341

the reduced sampling over only 2 million fragment pairs, instead of 500 million, the total residual of342

the D-model in this analysis deviates slightly from that obtained over the entire dataset and has a343

value of 0.96% instead of 0.8% (Figure 5: D).344

Relative to this total residual of the purely compositional D-model, the D1-model, which includes345

homologous sequence effects, is only minimally better (total residual reduced by 0.016%) at ap-346

proximating the natural distance distribution (Figure 5: D). We assume that two reasons are mainly347

responsible for this only minor improvement: First, the proportion of homologous relationships is348

only 0.11%, giving them little leverage. Second, the distance distribution of homologs (Figure 5: B,349

yellow) differs only to a small extent from the distance distribution of the natural dataset. This is350

not entirely unexpected, given how difficult it is to distinguish distant homology from random fluc-351

tuation in sequence comparisons. In fact, it has been recognized previously that most homologous352

sequences share no significant similarity Rost (1997).353

In contrast, the total residual of the D2-model (0.46%), which includes analogous sequence effects, is354

decreased about 2-fold relative to the D-model. Thus, although analogs have a distance distribution355

that is very similar to the natural (Figure 5: B, purple and green), their leverage is 2 orders of356

magnitude higher than that of homologs, causing these small differences to improve substantially357

the fit of the D2-model to the natural distance distribution. This is again not entirely unexpected, as358

most sequences in our natural dataset share the ability to form secondary structures (Figure 4: C),359

resulting in a sequence bias that is not fully captured by residue composition Pande et al. (1994)360

Lavelle and Pearson (2009). As expected from the D1-model, adding the homologous sequence bias361

to the D2-model did not really improve its ability to approximate the natural distance distribution.362

We conclude that the sequence space of natural proteins is almost entirely shaped by compositional363

effects and that the remaining sequence bias is almost entirely due to analogy, which we interpret364

to result from secondary structure formation.365

Conclusion366

In this article we have undertaken a study of natural protein sequence space, using an approach367

built on the probability mass function of pairwise distances between sequence fragments. With368

this approach we were able to analyze the occupation of sequence space by fragments up to 100369

residues in length, substantially exceeding previous efforts and for the first time characterizing370

globally the relative position of sequences in space. Our results show that the global compositional371

bias of natural proteins is already sufficient to approximate the distance distribution of natural372

sequences by 95.4% and that accounting for local compositional bias down to the level of individual373

100mers further improves this to 99.2%. The remaining 0.8% of unaccounted distances between374

natural 100mers are almost entirely contributed by sequence effects arising from analogous375

relationships, leaving only a negligible contribution to homology in the global characterization of376

sequence space occupation.377
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This surprised us, as decades of bioinformatic work have mapped out an increasingly comprehen-378

sive description of sequence space around protein families, based on the detection of ever more379

remote homology. We therefore expected to find that homology also has a substantial role in380

shaping the global structure of sequence space occupation, corresponding to the image of islands381

formed by natural sequences within a global sea of possibilities. This expectation was not borne382

out and in retrospect this might not seem as surprising, given that even within protein families,383

the influence of homology is smaller than generally perceived. This is substantially due to the384

way in which family relationships are represented, strongly emphasizing common features (such385

as the generally few conserved residues) and omitting variable ones. This focus on biological386

significance over raw sequence similarity leads to a perception of sequence space that is distorted387

by evolutionary distance and does not reflect actual distances. Evidence for this can be seen for388

example in the progressively more complex statistical methods needed to substantiate homology389

across increasingly large evolutionary distances, the resulting difficulties to classify the detected390

relationships into a hierarchy of protein families and superfamilies, and the remaining inability in391

many cases to judge on the homologous or analogous nature of similarities, even in the presence392

of extensive sequence and structure information Rost (1997). These considerations show that even393

at the level of protein families, many sequence relationships comprise a large random element,394

substantially indistinguishable from random fluctuation and sequence convergence. This random395

element not only results from our inability to detect homologs that have diverged strongly due to396

low selective pressure, but also from the fact that in many families, a conserved core has been397

elaborated in different ways with analogous sequences.398

We find a much larger influence of analogous sequence biases on the global shape of naturally399

occupied sequence space. The main common feature of proteins in our natural dataset is the ability400

to fold, which translates into a propensity to assume secondary structure locally. We see this as the401

main reason for the sequence bias that we observe between analogous sequences. Nevertheless,402

the sequence biases of homology and analogy together account for only 0.8% of all distances403

between natural sequences. We conclude that natural sequences stand out from randomness404

primarily through their biased use of the 20 amino acids. Accounting for this bias at increasingly405

local levels is largely sufficient to model the global structure of sequence space occupation. This406

major relevance of composition has been acknowledged as it has been implemented into BLAST407

Schaffer (2002) and been demonstrated to be key for the aggregation of intrinsically unstructured408

proteins Vymětal et al. (2019).409

There seems to be no other striking feature of the primary structure in natural protein sequences410

and in consequence there are also no other obvious features that distinguish natural from random411

sequences. We conclude that viable proteins could be located anywhere in the sequence space412

defined by natural residue compositions. The main reason why the proteome of nature currently413

only comprises some 1012 proteins Lupas and Koretke (2008) and that these mainly fall into only414

about 104 families Punta et al. (2012) is therefore not due to the limited availability of useful415

sequence space, but rather to their evolutionary history. There is treasure everywhere.416

Methods417

Natural data418

Genome selection419

With the aim to achieve a reasonable coverage of deep phylogenetic branches with complete and420

well-annotated proteomes, we selected the majority of bacterial genomes provided by UniRef421

on 22.09.2017 Apweiler (2009). Some genomes stood out as they possessed multiple replicas of422

the same protein and were excluded, leaving 4,098 to remain. For each of the 1,307 genera we423

randomly chose one representative for our natural data set. The genus was derived from the424

full-length genome name via string matching.425
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We are aware of the general ambiguity of the definition of a genus Parks et al. (2018). However, with426

the genus selection we only aimed to reduce redundancy caused by some species that have been427

sequenced many times. Lastly, we note that the bias towards bacteria that are easy to cultivate428

prohibits a sampling of the true diversity among bacterial genomes.429

Genome curation430

Apart from redundancy at the genome level, we control for recent gene duplication events. For431

each genome, we cluster its proteins using cd-hit (version 4.6 with 99% sequence identity and 90%432

coverage). A representative protein sequence, as defined by cd-hit, was then selected for each433

cluster; all other proteins were discarded.434

Low complexity filtering435

Low-complexity regions (LCRs) are a well-known features of natural sequences, that do not occur436

as frequently in random sequences. We first analyzed our data including LCRs and found that437

they majorly contribute to the total residual between natural sequences and our models (data not438

shown). Therefore, we pruned LCRs of our dataset using segmaskerWootton and Federhen (1996)439

(version 2.3.0+ with the standard settings), to obtain differences between natural and random440

sequences that are not due to this well-known feature. This pruning of LCRs leads to sequences441

of slightly higher complexity than expected for short peptides (data not shown). The pruning bias442

plays an insignificant role, especially for longer sequences, which are of most interest in our study.443

Since, N-terminal methionines were sometimes included, we stripped them to standardize our444

sequences.445

Sequence adjustments446

To simplify our analysis we changed a couple of hundred cases of uncommon amino acids to their447

most similar proteinogenic amino acid. In order to use the exact same dataset for all sequence448

lengths, we pruned our data set of sequences shorter than 100. Additionally, we removed the449

invalid amino acid X by replacing it with an end-of-line-character, effectively dividing a protein450

sequence into multiple parts. However, since some of our random models depend on shuffling451

intact genomes or proteins, we performed this division into multiple parts after the shuffling (more452

detail below).453

Complete statistics and data availability454

Taken together our dataset holds 1.2 ⋅ 109 valid amino acids of 1,307 genomes comprising 4.7 ⋅ 106455

proteins. In the supplements we provide:456

• fasta-file of original genomes457

• fasta-file of adjusted genomes458

• overall amino acid composition459

Fragment pair selection and random sequence models460

Fragment selection461

We selected random fragments such that each character (amino acids and end-of-line-character) in462

the dataset had the same probability of being chosen and that the same fragment pair would never463

be chosen twice. We ensured this by implementing two linear congruential generator Press et al.464

(2007) to enumerate all possible pairs of fragments. In detail, one linear congruential generator465

was used for each member of the pair with multiplier a = 1 and moduli m1 = 223 and m2 = 34, 211,466

where both moduli are prime numbers relative to the total number of characters 1, 168, 754, 000.467

Depending on the starting points of the two generators, a different subset of index pairs can be468

selected. This enabled us to calculate disjunctive fragment pairs in parallel. We selected 5 ⋅ 108 valid469

pairs of fragments to accurately estimate the distance distributions and rejected fragments that470

straddled protein boundaries or invalid regions, indicated by the end-of-line-character.471
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Figure 6. The E-model deviates severely from the natural dataset. (A) Distance distributions of natural dataset and E-model. In contrast to the
primarily used models (A-, T-, G-, P-, and D-models) in this paper, the distance distribution of the E-model has an obvious deviation from that of the

natural data. (B) Residuals of the E-model. Compared to the distances between fragments derived from the E-model, the distances between

natural sequences have a strong tendency towards being shorter.

Models incorporating overall amino acid composition472

The most standard random sequence model is based on the underlying amino acid composition of473

a given dataset. We obtained randomized data for this A-model by randomly shuffling all amino474

acids of the natural data. Thereby, protein length is maintained and the number of amino acids475

stays exactly the same. As all our random models are based on random permutations, we used476

the Mersenne Twister algorithm mt19337 of the C++ 14 std library with the standard seed value of477

19650218. This algorithm is considered one of the best pseudo-random number generators and in478

a test with a smaller dataset we found that our results did not depend on the type or seeding of the479

random number generator.480

For the E-model, we proceeded the same way as for the A-model. The only difference is that we481

replaced the natural dataset, by writing over all valid amino acids with the 20 possible amino acids482

in lexicographical order. When reaching the character Y for tryptophan, we started over with A for483

alanine. The distance distribution of the E-model deviates severely from that of the natural dataset484

(Figure 6) with a total residual of 30.4% for 100mers.485

Models based on the amino acid composition of genomes or proteins486

To account for genome or protein composition, we shuffled amino acids within the context of487

genomes or proteins. For the G-model, we shuffled valid amino acids within each of the 1,307488

genomes. For the P-model we shuffled valid amino acids within each protein. We used one instance489

for genome and protein composition bias and stored them to generate the distance distribution for490

the corresponding models. After shuffling, we divided proteins containing the invalid amino acid X491

by replacing it with an end-of-line-character.492

Model based on the amino acid composition of domain-sized fragments493

For the D-model, we randomly shuffled natural fragments of length 100. In contrast to the previous494

randommodels, generating a single randomly shuffled dataset is not computationally feasible since495

storing an instance of all shuffled 100mers would increase the data size approximately 100-fold. We496

therefore shuffled 100mers on the fly during the calculation of the distance distributions. In detail,497
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we select pairs of natural fragments as described above and consider the target fragment of length498

N to be located in the middle of the domain. If the domain straddles any protein boundaries, we499

adjust the domain boundaries such that the domain fits into the protein boundaries by shifting500

to the right (starting sequences) or to the left (terminal sequences). Note that because of this501

adjustment, the selection probability of amino acids into domains is not uniform but the selection502

probability of amino acids in fragments is. The alternative would be a rejection procedure, where503

we would reject fragments that are so close to protein boundaries that the domain of length of504

100 would not fit. The downside of such a rejection procedure is that fragments close to protein505

boundaries are not selected and hence the selection probability of fragments is not uniform506

anymore, which differs from the selection of natural fragments or fragments for the A-, G-, and507

P-models. The D1, D2, and D3-models, which incorporate the sequence bias of homologous and508

analogous fragments, are presented further down.509

Pairwise distances as descriptor for sequence space occupation510

Distance metric511

We define the distance between two fragments of the same length N as the normalized rounded512

score s from a Smith-Waterman alignment. In the alignment, an amino acid match is scored with513

1, a mismatch with 0, gap opening penalty is equal to 3 and gap extension penalty is 0.1, which514

are the same parameters for gaps as used in Rost (1999) Schneider et al. (1997). Due to gaps, the515

alignment scores p can rank between 0 and N in 0.1 steps; to obtain integer distances, we round516

scores to the closest integer number. Distances exactly between two integers (such as 1.5) are517

assigned to the smaller one. To compare the score p across different fragment lengths N , we518

transform it into the normalized score s, scaling between 0-100%, as follows:519

s =
round(p)

N

This score s thereby reflects the number of dimensions in sequence space (positions in sequence),520

which differ between two fragments, while allowing for gaps and insertions. In some cases, we use521

the normalized global alignment score from a Needleman-Wunsch alignment with identical scoring522

parameters, the Hamming distance or a Shift metric that allows for terminating and starting gap523

without penalties, to illustrate differences to the used Smith-Waterman metric.524

We also diversified gap penalties, leading to comparable results (data not shown). For all alignments,525

we used the SeqAn C++ library, version 2.4 Rahn et al. (2018), which enables many sequence526

comparisons in parallel.527

Comparing distance distributions528

The residual corresponds to the variational distance at each possible sequence identity between529

two distance distributions. We use it to demonstrate the qualitative difference between the distance530

distribution of a randommodel and that natural sequences. Denoting the residual by r, the random531

model distance distribution by Drand and the natural one by Dnat we have:532

r(s) = Dnat(s) −Drand(s)

where s is the alignment score. For residuals r(s) exceeding zero, there is a higher frequency of533

these alignment scores in natural fragments relative to random fragments.534

To summarize the difference between natural and random model distance distributions in a single535

metric, we sum the absolute residuals over all sequence identities and normalize it to a range536

between 0 and 100%:537
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R =
∑

0≤s≤N

|r(s)|
2

We call R the total residual, which is variously called the variational distance, total variation distance538

or Kolmogorov distance Deza and Deza (2014).539

Decomposition into homologous and analogous relationships540

Homology541

We derived the fraction of sequence pairs that are confidently homologous using the tools of542

HH-suite (version number 3.0.3) Remmert et al. (2012). To derive this fraction, we systematically543

sampled our dataset and extracted 10 sets of natural 100mers that are equally distributed over our544

dataset, each containing approximately 650 fragments. With HHblits, we generated HMMs with the545

standard settings for each of these fragments with two iterations, using uniclust30 as underlying546

database (version August 2018).547

Then, we pairwise aligned the generated HMMs with HHalign, in order to estimate whether two548

fragments are homologous. We did this by aligning all fragments in one set to all of those in another549

set, resulting in 90 possible directed combinations of which we chose 10 as representative sets of550

pairwise relationships. Each set of fragments was considered twice in this comparison, once as the551

set of query sequences and once as the set of target sequences in the alignment. This resulted552

in 2 Million pairwise fragment comparisons divided into 10 disjunctive sets. Pairs of fragments553

were considered to be homologous, if HHalign predicted them to be homologous with a probability554

above 90%. In total 0.11% of the fragment pairs were found to be homologous; the standard error555

of the mean (SEM) derived from the 10 sets of 0.0033%.556

Analogy557

We derived the fraction of sequence pairs that are confidently analogous using a similar procedure558

as used for the homology detection. We first assigned structured domains to each 100mer. We559

then assumed a pair of 100mers to be of analogous origin, if the two 100mers matched only distinct560

domains that are confidently not related to each other.561

For the assignment of structured domains, we used the ECOD classification Cheng et al. (2014),562

which is the currently best resource for distinguishing between homology and analogy in protein563

domains. The HMMs of each 100mer (same as in the homology detection) were thereby compared564

against all ECOD entries (retrieved on 9.4.2019) with HHsearch. We used HHsearch with the standard565

parameter and assigned the best-scoring non-overlapping hits with a probability above 90% to the566

corresponding fragment. Of all 100mers 70% could be assigned to a single domain and less than567

1% to multiple domains, of which we considered each. Other 100mers were not assigned to any568

domain, which we directly excluded to be analogous to any other sequence, since we are uncertain569

about their origin.570

For the assignment of analogous relationships, we considered only pairs of 100mers that were571

assigned to at least one domain. If their domains matched only distinct X-groups in the ECOD572

hierarchy, the pair was assumed to have an anologous relationship. The X-group is the highest level573

at which homology still needs to be considered as a possibility. All pairs of fragments that were574

assigned to domains of only distinct X-levels were considered to be confidently analogous.575

With this procedure 52.22% of the fragment pairs were found to be analogous; the standard error576

of the mean derived from the 10 sets is 0.84%. The remaining 47.6% of the fragment pairs is of577

unknown relationship.578
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Mixed models containing sequence bias of homology or analogy579

In order to estimate the influence of homology and analogy to the natural distance distribution,580

we generated mixed models that that account for their sequence bias. The D1-model includes the581

homologous sequence bias by including the distances between all confidently homologous fragment582

pairs without shuffling. We applied the D-model to the remaining fragment pairs and shuffled583

the fragments of the corresponding pairs that are not homologous with the Unix command shuf584

followed by deriving their distance. All distances combined resulted into the distance distribution585

of the D1-model. The sequence bias between homologous fragments is therein preserved while for586

other fragment pairs only their composition is accounted for. We proceeded the same way for the587

D2-model by including the distances of unshuffled fragments that are confidently analogous, and588

distances of the remaining pairs after shuffling the residues within each fragment. For the D3-model589

we included both sequence bias of homologous and analogous natural fragments.590
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