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bf7 Program in Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA

8 Department of Plant Science, The Pennsylvania State University, State College, PA, USA.

9 Department of Molecular and Structural Biochemistry, North Carolina State University,

Raleigh, NC

10 Genome Center, University of California Davis, Davis, Ca 95616

* dangates@ucdavis.edu ; rossibarra@ucdavis.edu

Abstract

Threats to crop production due to climate change are one of the greatest challenges facing plant breeders today.
While considerable adaptive variation exists in traditional landraces, natural populations of crop wild relatives,
and ex situ germplasm collections, separating adaptive alleles from linked deleterious variants that impact
agronomic traits is challenging and has limited the utility of these diverse germplasm resources. Modern
genome editing techniques such as CRISPR offer a potential solution by targeting specific alleles for transfer to
new backgrounds, but such methods require a higher degree of precision than traditional mapping approaches
can achieve. Here we present a high-resolution genome-wide association analysis to identify loci exhibiting
adaptive patterns in a large panel of more than 4500 traditional maize landraces representing the breadth of
genetic diversity of maize in Mexico. We evaluate associations between genotype and plant performance in 13
common gardens across a range of environments, identifying hundreds of candidate genes underlying genotype
by environment interaction. We further identify genetic associations with environment across Mexico and show
that such loci are associated with variation in yield and flowering time in our field trials and predict
performance in independent drought trials. Our results indicate that the variation necessary to adapt crops to
changing climate exists in traditional landraces that have been subject to ongoing environmental adaptation
and can be identified by both phenotypic and environmental association.
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Introduction 1

Protecting crop and wild plant populations against the harmful effects of climate change is one of the most 2

important goals of plant genetic research today. Temperature increases of 1.5°C above preindustrial levels are 3

already occurring (1) with further increases of 4-7°C likely in the next 100 years (2). Agricultural systems have 4

already been impacted by warming (3), and models under future warming scenarios indicate this trend will be 5

exacerbated, with yield losses across major staple commodities in the range of 25-50% by 2100 (4). 6

One promising strategy for maintaining crop productivity under climate change is to harness existing 7

genetic variation (5). Traditional domesticated varieties (i.e., landraces) and the wild relatives of many crops 8

have been evolving in diverse environments for thousands of years (6; 7; 8), resulting in a broad base of genetic 9

variation and adaptation to a wide range of environmental niches. Breeders have nonetheless been reluctant to 10

use landrace and wild relative resources because incorporation of novel diversity requires many cycles of 11

backcrossing and phenotyping to minimize linkage drag (9). But recent advances in breeding techniques such 12

as rapid cycle genomic selection and molecular approaches including CRISPR/Cas9 now allow targeted transfer 13

of alleles, saving both time and cost in breeding (10; 11) and present novel opportunities to take advantage of 14

novel adaptive alleles. Transfer in this manner, however, requires detailed knowledge of candidate adaptive loci 15

with precision to the gene or even nucleotide level. A significant impediment to this approach, then, is our 16

limited understanding of the genetic basis of adaptation in most crops and their wild relatives. 17

Adaptive variation can be identified in crops by assembling germplasm sampled across gradients of interest, 18

evaluating field trials across environmental extremes, and identifying population genetic signatures consistent 19

with adaptation. Farmer seed networks and ex situ conservation efforts have preserved extensive collections of 20

wild and landrace germplasm (12). Adaptation in such materials can be identified through evaluation in 21

observation trials (common gardens) and reciprocal transplant experiments that evaluate variation in fitness 22

components across environments. Maize landraces grown across in common gardens across elevational 23

gradients in Mexico, for instance, demonstrated substantially higher fitness when grown closer to their natal 24

environments (13). Population genetic signatures of adaptation can also be identified using correlations 25

between environmental gradients and allele frequencies (14; 15; 16; 17). For example, (15) showed that 26

Sorghum alleles associated with drought and low pH can be used to predict plant phenotype, and (18) 27

predicted Medicago growth in controlled environments using environmentally associated SNPs. While there is 28

great promise for identifying adaptive variation for crop improvement using these combined approaches, 29

comprehensive efforts are lacking. 30

Maize is the most productive crop globally and has adapted to grow in nearly every environment that 31

humans inhabit (19), but yield in modern maize lines has already been impacted by climate change (20). 32

Maize landraces and its wild relatives the teosintes are well adapted to their distinct local environments (6; 21) 33

and constitute an extensive but largely untapped well of genetic diversity (22; 23). CIMMYT (the 34

international maize and wheat improvement center), which is part of the CGIAR network, curates the world’s 35

largest collection of maize landrace accessions (>24,000), a resource that could play a crucial breeding role in 36

mitigating the negative effects of climate change on maize. 37

In this study, we identify adaptive genetic variation in a core set of CIMMYT’s global collection of maize 38

landraces based on the results of field trials replicated across a range of environments and a population genetic 39

analysis that identifies loci associated with environmental variation across the landscape. We demonstrate that 40

alleles exhibiting genotype by environment (G⇥ E) interactions for fitness across trials are predictably 41

associated with climatic variables spanning the range of landraces in Mexico. Likewise, we show that 42

environmental association (eGWAS) can identify candidate genetic loci which are linked to phenotypic and 43

fitness differences across trials. We show substantial overlap in the loci identified by these analyses; alleles at 44

loci associated with fitness difference between trials tend to be found in their beneficial environments. We 45
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Figure 1. Maize plants grown in experimental gardens are adapted to diverse environments. A) Temperature,
elevation, and precipitation across Mexico (Z-standardized). The bottom plot shows locations that landraces
originated from (black) and the location of phenotyping trials (red). B) Fitness decreases as elevational distance
between common garden and collection locality increases.

validate a set of loci associated with precipitation by demonstrating their effect on fitness in independent 46

drought trials, and identify a list of candidate genes from both approaches that also show population genetic 47

evidence of recent selection. 48

Results 49

To identify patterns of local adaptation in maize landraces we assayed plant phenotypes across 23 trials in 13 50

different common garden field locations in Mexico (Fig. 1A). Briefly, each of more than 2,200 landrace 51

individuals was crossed to a locally adapted hybrid tester and the F1 progeny were grown at each site, 52

resulting in a total of approximately 280,000 plants with phenotypic data (see Methods). Maize plants in these 53

common gardens exhibit a classic phenotypic pattern of local adaptation: plants are taller, flower earlier, and 54

exhibit higher yield (measured as field weight, bare cob weight, or grain weight per hectare) and less stress 55

(lower anthesis-silking interval) when grown at elevations closer to their original collection locality (Fig. 1B; P 56

< 1e-06 for each phenotype). We observe similar patterns for other environmental variables including mean 57

temperature, precipitation, isothermality, and the number of wet days an experimental trial receives 58

(Supplemental Figs. S4-S7), suggesting broad adaptation to local environments, consistent with previous 59

transplant experiments (24; 25). 60

To identify loci underpinning this strong genotype by environment (G⇥ E) effect on plant fitness, we 61

implemented a mixed linear model in GridLMM (26) to perform an association analysis of fitness-related 62

phenotypes (field weight, grain weight per hectare, bare cob weight) across our study sites (Fig. 2A; see 63

Methods). For each of the top 1000 SNPs, showing significant G⇥ E, we polarize the major allele by the field 64
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Figure 2. Genotype by environment effects predict SNP association with the environment and frequency
in wild populations. A) Genome-wide association of G ⇥ E effects for three fitness-related traits across all
common gardens. B) Alleles that are favored in high elevation trials exist at higher elevations across Mexico
(top) and show a larger frequency difference between the highland teosinte Zea mays ssp. mexicana and its
lowland counterpart Zea mays ssp. parviglumis (bottom). Colors represent the phenotypes in part A. Lines
extending above and below points represent 95% confidence intervals. In both plots, SNPs showing significant
GWAS effects are compared to a control set with matched allele frequencies.

trial environment in which it increases fitness. This polarization accurately predicts where alleles are naturally 65

found across the landscape: alleles that increase fitness in high elevation trials, for example, are found roughly 66

100-400 meters higher than random set of frequency-matched alleles and 400-600 meters higher than alleles 67

that increase fitness at low elevations (Fig. 2B). In addition to predicting the modern geography of maize 68

variants, our top G⇥ E loci also predict allele frequency differences between distinct locally adapted teosinte 69

subspecies. Lowland (Zea mays ssp. parviglumis) and highland (Zea mays ssp. mexicana) teosinte diverged 70

60,000 years ago (27) and subsequently adaptated to distinct ecological niches (28). Yet we show that 71

long-term ecological divergence between these wild subspecies is predictable from the G⇥ E effects of an allele 72

in maize (Fig. 2C), suggesting either selection has maintained such alleles as standing variation over relatively 73

long periods or gene flow has transferred adaptive alleles into maize (29). 74

One of the clearest features of our G⇥E association is a broad peak on the long arm of chromosome 4 that 75

is identified for several distinct phenotypes (Figs. 2A and S8). This region harbors the well-characterized 76

inversion polymorphism Inv4m which spans ⇡ 15Mb. The non-reference haplotype at Inv4m appears to have 77

arisen via introgression from the highland teosinte subspecies Z. mays ssp. mexicana (29), is associated with a 78

number of adaptive phenotypes (29; 30), and shows strong population genetic signals of selection (31). 79

Although large-scale polymorphisms like Inv4m often stand out, a key advantage of our association approach is 80

its high resolution — 41% contain a single gene, and nearly 80% contain fewer than three genes. A detailed 81

description of association peaks and potential candidate genes can be found in Supplemental Tables S1-S6. 82

Variation in lipid composition has been linked with multiple environmental factors (32; 33; 34; 35; 36; 37), 83

is associated with variation in flowering time (38), and population genetic analysis suggests that lipid 84

metabolic pathways may have been important in local adaptation to highland regions in Mexico and South 85

America (31). We thus compared our results to a QTL analysis of G⇥ E for phospholipid metabolites in 86

Mexican highland maize (39). We find a number of specific lipid G⇥ E QTLs that overlap with loci we 87

identify as showing G⇥ E flowering time and yield across elevation (Supplemental Table S7). Among the 88

overlapping regions, we found three genes (Zm00001d043228, Zm00001d043207 and Zm00001d039542) involved 89
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in the synthesis and degradation of phospholipids. All three are up-regulated after cold stress in temperate 90

inbreds (40) (Supplemental Fig. S9). 91

While our G⇥ E associations directly test the link between fitness and genotype across many trial 92

environments, environmental association offers even greater climatic precision. Using genotype data from 93

nearly 4,000 geo-referenced maize landraces across the Americas (Fig. 1A 30), we evaluated the association 94

between SNP genotype and both 50-year average climate (41) and fine-scale measurements from local weather 95

stations over the course of the local growing season (see Methods). As with our previous phenotypic G⇥ E 96

results, our environmental associations (eGWAS) highlight Inv4m but nonetheless exhibit a similar fine-scale 97

resolution (41% of association peaks contain a single gene, while only 20% contain more than two genes). 98

Loci identified in our environmental association (Supplemental Figs. S10,S11 show strong G⇥ E effects on 99

yield, increasing plant survival and reproduction in trials most similar to their associated environment (Fig. 100

3B); this effect also holds for a number of relevant phenotypes (Fig. 3C). But while eGWAS SNPs show strong 101

G⇥ E for fitness, we see little difference in their average main effect S13, as expected if such alleles are 102

favorable only in a limited number of environments. In contrast, we see only a very weak G⇥ E effect of 103

eGWAS SNPs on flowering time (Fig. 3D), but a large main effect. While selection will quickly fix or remove 104

variants with large average effects on fitness, variants with large effects on flowering time or other phenotypes 105

can segregate at appreciable frequency (30) if the phenotypic optimum varies across the species’ range (e.g. 106

42; 43). 107

Figure 3. Adaptive variation from environmental GWAS. A) Manhattan plots showing associations with
temperature, precipitation, isothermality, and the number of wet days in the growing season. B) SNPs identified
via environmental association show strong G ⇥ E effects on grain weight per hectare, increasing fitness in
common gardens more similar to their environment of origin. C) Environmental GWAS hits across elevation
predict beneficial G⇥ E of DA: days to anthesis, ASI: anthesis-silking interval, BCW: bare cob weight, and
GWH: grain weight per hectare (top). D) Additional levels of adaptive flowering time are influenced by main
effect as environmental GWAS alleles originating from lowlands flower later than their highland counterparts
(and vice versa).

To validate our eGWAS analyses, we tested whether alleles associated with annual precipitation would 108

impact yield in a pair of independent drought trials including more than 1,000 of our genotyped accessions (see 109

Methods). We find that alleles associated with low precipitation across the landscape are more likely to 110
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increase yield in drought conditions than either high precipitation alleles or alleles from randomly sampled 111

frequency-matched loci (P < 1e-7, Supplemental Figure S3. We combined information from this drought 112

experiment with expression data of leaf and ovary response to drought (44) in order to further refine candidate 113

drought adaptation genes (Figure 4; a full list is in Supplemental Tables S8-S10). For example, 6 SNPs in 114

Zm00001d003176 (Nodule inception protein-like protein 3; nlp3 ) are associated with precipitation across 115

Mexico and 3 are associated with yield in our drought trials. Interrogation of the expression data shows that 116

nlp3 also shows significant gene expression differences between well watered and drought conditions (P = 117

7.3e-05). nlp3 acts as a central signaling protein to control nitrate and phosphate responsive genes (45), is 118

responsive to multiple environmental stress conditions, and nlp3 responses change carbon, nitrogen, and 119

phosphorous metabolism (46). Another candidate is Zm00001d002999 (textitga2ox2), which functions in 120

giberellin catabolism. Consistent with our expression analysis (Figure 4), textitga2ox2 is upregulated in areas 121

of active growth during drought stress (47), leading to a reduction in gibberellic acid that slows elongation and 122

in turn allows for resources to be allocated to other drought dependent processes (48). Zm00001d004621 (ntr1 ) 123

is a peptide transporter and another clear for drought adaptation — when overexpressed in soybean it 124

increased seedling adaptation to drought (49). Finally, candidate gene Zm00001d046621 is glossy15, an 125

apetala2 type transcription factor. Variation at textitglossy15 hastens or delays the transition from juvenile to 126

adult stage (50; 51; 52), which will influence drought avoidance ability as the transition from juvenile to adult 127

stage is required for flowering in maize. Additionally, glossy15 variation influences the composition and amount 128

of epicuticular waxes on young maize leaves (53) which can reduce drought tolerance in maize seedlings (54). 129

Finally, we note that drought expression data further strengthens candidates identified previously — all three 130

of the candidates highlighted as showing G⇥ E for both phospholipid content and phenotypes additionally 131

show differential expression under drought as well as cold conditions (Supplemental Fig. S9). 132

We also compared out results to published yield data from drought and heat stress trials in the ”Drought 133

Tolerant Maize of Africa” (DTMA) panel (55). We compared our top 5000 eGWAS hits to G⇥ E associations 134

with yield across environments in the DTMA, finding that 142 of our eGWAS hits are associated with 135

significant (P < 1e-3) drought-specific yield effects in one of the three measured traits (Supplemental Tables 136

S11-S13). At the end of chromosome 9, for example, is the strongest eGWAS hit for precipitation and wet days 137

during the growing season (Figure 3A) as well as diurnal temperature range and isothermality S11. Although 138

this association peak includes roughly 7 different genes, an annotated heat-shock-related transcription factor 139

(hsftf9; Zm00001d048041) is a compelling candidate, as its Arabidopsis ortholog (AtHSF1) is expressed under 140

heat stress and is responsible for activation of heat-shock-protein-based thermotolerance (56; 57), while its 141

tomato homolog HSFA1 acts as a master regulator of thermotolerance (58). Indeed, a SNP in the 5’ UTR of 142

hsftf9 showed a strong G⇥ E association for yield between drought and well watered treatments (p=0.00012) 143

in the DTMA drought panel. Another candidate gene identified from our eGWAS (Zm00001d007709; Figure 4) 144

is from a family of proteins containing In Between Ring (IBR) domains, and likely functions in protein 145

degradation through protein-protein interaction. Little is known about the function of this gene in maize or of 146

its most similar relative (ATARI7) in Arabidopsis. But despite the lack of functional information around this 147

gene, the SNPs tested within the coding sequence of this gene show at least one significant (P < 0.01) hit for 148

all three traits (DA, ASI, and Yield) tested in the DTMA drought trials. 149

To highlight a combined set of candidates for characterization, we complemented our G⇥ E and 150

environmental associations with a phenotype- and environment-independent scan for SNPs showing extreme 151

patterns of allele frequency differentiation across the landscape (see Methods). We focused our assessment of 152

gene function on the set of 39 genes (Supplemental Table S14) identified as candidates in all three approaches 153

(G⇥ E, eGWAS, and PCAdapt), many of which have functions that consistent with adaption to abiotic and 154

biotic stress. Zm00001d046909 (homogentisate phytyltransferase hpt1 ), for example, is active in Vitamin E 155

biosynthesis (59; 60), known to play a role in tolerance to salinity, drought, cold temperature, metal toxicity, 156
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Figure 4. Environmental GWAS identifies candidate drought improvement genes. Candidate SNPs (columns)
have low precipitation associated alleles that increase yield in drought trials (top row) and show differential
expression under drought (middle row). Significant environmental GWAS (precipitation) p-values for each gene
are highly localized and do not extend to nearby genes. Manhattan plots (bottom row) show the precision of
environmental GWAS around each candidate SNP (broken red line) and 5KB upstream and downstream of
each candidate. Each candidate has no other gene models present within the extent of the windows.

ozone, and UV radiation stress (reviewed in (61)). SNPs in Zm00001d046909 are associated with daily 157

temperature variability during the growing season, and show G⇥ E effects for ear mass and temperature, 158

precipitation, and elevation. The candidates Zm00001d024909 (CCT domain transcription factor) and 159

Zm00001d010752 (pebp8, zcn8 ) are known to be involved in photoperiod sensitivity, flowering time, and 160

long-day stress response (62; 63; 64). The former shows environmental association with mean temperature and 161

is a candidate in our G⇥E analysis between ear mass and temperature, precipitation, and elevation, and the 162

latter is a G⇥ E candidate for flowering time and temperature as well as annual precipitation and wet days). 163

Finally, we identify Zm00001d045972 (umc81 ) as a candidate for G⇥ E between yield and elevation, and as 164

showing allele frequency associations with temperature and water vapor pressure, but it has been previously 165

highlighted as a candidate for days to anthesis (65), plant height (66), drought stress tolerance (67), and root 166

hair length plasticity (68). 167

Conclusions 168

Developing diverse crops that can deliver increased yields in the face of a changing global climate is one of the 169

greatest challenges facing modern agricultural research. Understanding and characterizing adaptive loci will 170

allow for the incorporation of novel variation into breeding efforts to adapt crops to changing climates. 171

Although in situ breeding remains an important source of adaptive variation (6), our work highlights the 172

utility of leveraging ex situ germplasm collections to evaluate phenotype across a diverse set of environments. 173

Such collections typically have location information which can further increase the value of genomic data by 174

information about the environments to which taxa have been locally adapted (69; 18; 15; 70; 14; 16; 30; 17). 175
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We use these data to identify loci underlying phenotypic and fitness differences in maize across environments 176

and demonstrate that our environment-specific effect estimates successfully predict where alleles are found 177

across the landscape. We then show that approaching the problem from the other direction — identifying loci 178

that associate with environmental variables — can precisely delineate individual genes that show predictable 179

phenotypic effects in field trials. In sum, we have validated the utility of phenotypic and environmental 180

association approaches for identifying relevant adaptive variation and provided a high-resolution list of 181

hundreds of candidate genes showing environmental and phenotypic associations that can be directly tested in 182

targeted experiments (e.g. CRISPR-mediated knockout 71; 72) to improve climate adaptation in modern 183

breeding populations. 184

Methods 185

Samples and Genotyping 186

The Seeds of Discovery project (SeeD) has genotypically characterized the CIMMYT International Germplasm 187

Bank maize collection containing over 24,000 landrace accessions primarily from North, Central, and South 188

America. Here, we used data generated across a core collection of ⇡ 4, 500 individual accessions from this 189

project representing the breadth of environmental variation across the Americas as described in (30). Briefly, 190

each individual was sequenced using genotype-by-sequencing (73) to a median 2X coverage. Genotypes were 191

called using TASSEL (74), resulting in an initial set of 955,120 SNPs reported in (30). In addition to these 192

data, we used GBS genotypes from the wild teosintes Zea mays ssp. parviglumis and Zea mays ssp. mexicana 193

from (75). All genotype data were uplifted to coordinates on the B73 v4 reference genome (76) using the 194

crossmap liftover tool (77). 195

Multi-Environment Estimation of Phenotypes 196

As part of the SeeD evaluation of the landrace core collection, offspring of each of the genotyped individuals 197

were planted in multiple environments under a replicated F1 crossing design (see 30, for design details). Two 198

important features of the crossing experiment were added to ensure that phenotype data was not overly biased 199

by elevational adaptation. First, plants were preferentially grown in locations that were of similar adaptation 200

(highland tropical, sub-tropical or lowland tropical) to their home environment. While F1s with a highland 201

accession parent were grown in low elevation and vice versa, on average, more plants from highland accessions 202

were grown in high elevation than low elevation trials (Figure S2). Second, each plant was crossed to a test 203

plant that was adapted to the environment that the F1 seeds were grown in. Both of these design features 204

facilitates comparison of a larger sample but reduces adaptive differences among landraces and make our 205

estimates of adaptive differences more conservative. The resulting F1 offspring were then grown in replicate in 206

ambient field conditions across a total of 23 trials in 13 locations in 2 years. Trials used in the study are 207

detailed in Supplemental Table S15, data is available from http://hdl.handle.net/11529/10548233. 208

Although the collections are from across the Americas, the overwhelming majority were sampled from the 209

center of maize diversity in Mexico. Because these samples had the best climate data, and to minimize 210

complications arising from large differences in plant environment of origin, trial environments, and population 211

structure (31), we restricted our analysis of field phenotype data to the 2433 landrace accessions of Mexican 212

origin. A range of 9-26 (average of 16) offspring per landrace cross were measured in an augmented row-column 213

design to provide additional control for random stochastic variation; Figure S2 shows the number of accessions 214

with phenotypes across the elevational range of the trials. 215

Across the 13 sites plants were phenotyped for a variety of traits. We used data from plant height (PlH), 216

field weight (FW), bare cob weight (BCW), and moisture adjusted grain weight per hectare (GWH). In 217
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addition to these phenotypes, we added previously published data on flowering traits (days to anthesis (DA), 218

days to silking (DS), and anthesis-silking interval (ASI)) from these same trials (30). 219

Phenotypic Analysis 220

Breeding values for each landrace were estimated as described in Navarro et. al.(30), controlling for tester, 221

checks, and field position in a complete nested model. We then removed any plots that had a reported disease 222

score and also removed trials and accessions with outlying phenotype scores (typically > 4 standard deviations 223

from the mean). Overall, there were 23 distinct trials between the 13 sites over 2 years, each with breeding 224

values calculated for an average of approximately 850 accessions. The GxE phenotype datasets that we used for 225

calculating GxE outliers ranged from 11,762 to 4,851 measurements depending on what trait was measured 1. 226

To test for associations between markers and responses to environmental variation across the trials (i.e. 227

GxE effects) for each phenotype, we used the following mixed-effects GWAS model for each marker i = 1 . . . p: 228

y = X↵+ �0e Fixed effects

+ �1xi + �2(Diag(e)xi) Marker effects

+ Z(um + gm) Landrace main effects

+ Diag(e)Z(ue + ge) Landrace plasticity

+ ✏ Residual error

Here, y is a vector of n phenotypes (breeding values) for each landrace across all trials that it was tested in; 229

X is a n⇥ 8 design matrix specifying fixed effects for year (2) and testers (7) with coefficient vector ↵; e is a 230

vector representing the environmental value, i.e. the elevation, mean temperature or precipitation of the trial, 231

with mean effect �0; xi is a vector or genotypes at marker i for each observation and �1 and �2 are marker 232

effects on the intercept and response to the environment, respectively; Z is a n⇥ r design matrix for landraces, 233

and um, gm, ue, and ue are random effects accounting for the expected correlations of intercepts (m) and 234

responses to the environment (e) among observations due to shared background additive (u) and non-additive 235

(g) genetic variation for the multiple observations of the same landrace across different trials; and e is a vector 236

of the environmental variable (i.e. mean phenotype value of the trial). The random effects have distributions: 237

um ⇠ N(0,�2
umK), ue ⇠ N(0,�2

ueK)

gm ⇠ N(0,�2
gmIr), ge ⇠ N(0,�2

geIr)

✏ ⇠ N(0,�2
eIn)

where K is the r ⇥ r kinship matrix for the r ⇡ 2200 landraces computed in Tassel 5 (74) using a set of 238

⇡ 6, 500 unimputed loci that contain over 95% complete genotype data, Ir is the r ⇥ r identity matrix and In 239

is the n⇥ n identity matrix. 240

We used the GridLMM GWAS function (26) to perform a GWAS scan across all markers, re-estimating the 241

four variance components by REML separately at each marker (method = ‘‘REML’’) using GridLMM-fast 242

heuristic (algorithm = ‘‘Fast’’) with h2 step = 0.1, and tested the significance of the marker main 243

effects �1 and plasticity effects �2 independent by Wald tests. 244

Environmental associations 245

In order to identify loci important for environmental adaptation, we performed an additional association 246

analysis between allele frequency and environmental variables across the landscape. Here, to take advantages of 247
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a wider array of environmental variation, we expanded our sampling of individuals to all 4,127 genotyped 248

accessions with latitude and longitude coordinates, including samples collected outside of Mexico. For general 249

environmental layers (such as elevation, mean annual temperature, diurnal temperature range, mean 250

isothermality, mean annual precipitation, and precipitation seasonality) we used latitude and longitude 251

coordinates to infer values using the WorldClim 2 (41) layers at 0.5 minute resolution 252

(https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548079) based on longterm 253

averages for 1970-2000 for the climatic parameters as well as elevation data at 90 m resolution from the global 254

elevation model from NASA and CIAT (78). In addition to these broader climate measurements, we included 255

detailed weather station measurement based gridded datasets of the frequency of wet and frost-free days, cloud 256

cover, vapor pressure covering the period 1950-2012 (79) and a longterm aridity index (80), each averaged over 257

the approximate six month local growing season of accessions. Additional data sets representing soil pH (81), 258

and soil waterlogging percentage (82; 83) were used to extract values to represent soil-based abiotic stresses in 259

the environments where accessions originated. Due to differences in collection specificity, some individuals in 260

the panel have unverified latitude longitude coordinates, and we restrict our detailed climate analyses to a 261

curated subset of individuals (roughly 2,900 individuals) with verified location data. 262

For each different environmental layer we fit a model to measure the association between SNP genotype xi 263

and the given environmental values for each accession p, correcting for population structure using the first five 264

principal components Q: 265

p = µ+ �xi +Q↵+ ✏. (1)

We then tested the significance of � with an F-test. In this analysis we only use loci with a minor allele 266

frequency greater than 10%. 267

To determine if environmentally associated loci are contributing to adaption we test whether outlier loci 268

contribute more to adaptive phenotypic differences in our experimental trials. We first selected 1,000 SNPs 269

with the strongest association (lowest p-value) with elevation and a set of randomly selected SNPs that match 270

the frequency deciles of associated SNPs. For each SNP in both sets, we used our field evaluation to estimate 271

the standardized genetic value (in z-scores) of the main effect and the G⇥ E term and tested if 272

environmentally associated loci had a larger phenotypic effect than randomly matched loci. To ameliorate issue 273

with sampling nonindependent SNPs, we excluded SNPs inside the large inversion Inv4m from this analysis. 274

Gene Identification 275

To identify genes in our GWAS signal, we first smoothed the per-SNP association p-values across each 276

chromosome using a spline analysis implemented in the R package GenWin (84). We used the maize reference 277

B73 v4 annotation (76) to define gene positions and used the ’countoverlaps’ function from the GenomicRanges 278

R package (85) to determine the number and identity of genes that overlap with outlier SNP windows. 279

Drought Trials 280

We also use drought trials to validate adaptive drought tolerance loci. The first drought experiment dataset we 281

use was generated as part of the SeeDs of discovery phenotyping data discussed earlier and consists of 1,057 282

different accessions grown in drought and well watered trials in the Iguala and Obregon localities. These 283

accessions were phenotyped for dry grain weight in drought and well-watered conditions at both locations, for a 284

total of 2,047 yield phenotypes. We used GridLMM to fit a model with tester and location as covariates and 285

measured the strength of the G⇥ E yield response as above. In order to determine the effect of environmental 286

GWAS loci on phenotypes in drought we ran an association analysis on the top 1,000 environmental 287

association hits from annual precipitation and 1,000 randomly chosen loci matched for allele frequency. As 288
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above, we tested whether alleles associated with low precipitation would increase yield in drought trials in 289

comparison to the alternate high precipitation alleles by making a prediction of the low and high precipitation 290

genotypes from the model for both the environmentally associated and randomly paired loci. 291

Drought Tolerant Maize in Africa 292

Three hundred maize lines from CIMMYT IITA (the International Institute of Tropical Agriculture) were 293

previously genotyped and tested for drought tolerance in yield trials of well watered, drought, high heat, or 294

combined conditions in the Drought Tolerant Maize for Africa (DTMA) GWAS panel (55). We used GBS 295

genotypes for the DTMA from (86), allowing us to test associations between individual genes and phenotypes. 296

We used GridLMM (26) to fit a G⇥ E model analogous to that used previously in our phenotypic trials. In 297

this model we fit grain weight per hectare of the as explained by genotype, the treatment the phenotype was 298

collected in, and the interaction term (the change in yield across different trials). 299

Expression analyses 300

To test for regulatory variation in candidate drought genes we downloaded raw RNA-seq data from (44). This 301

experiment consists of replicated individuals of the inbred line B73 grown in drought and well watered 302

conditions, with expression measured in the meristem of the three youngest leaves and ovary tissue at 1 day 303

after pollination. We used kallisto (87) to estimate expression based upon kmer abundance of RNA-seq data at 304

the gene models from the maize v4 genome. We used sleuth (88) to normalize and fit a factorial model to test 305

the strength of the effect of growth condition and the growth condition by tissue interaction effect compared to 306

a null model with only the main effect of tissue specific differences. 307
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Figure S1. Average elevation of origin of plants grown in elevations at different trials.

Supplemental Tables and Figures 491

Phenotype Total phenotypes Trial Sites Accession per Trial Trials per Accession

Days to anthesis 12353 12 1029 5.0
Plant height 8381 10 838 3.5

Anthesis silking interval 12899 13 992 5.4
Field weight 8182 10 818 4.1

Bare cob weight 5327 8 665 2.4
Grain weight per hectare 6947 7 992 3.0

Table 1. Number of accessions and trials of different traits
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Figure S2. Number of phenotypes collected at different elevational classes
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Figure S3. Yield performance in drought trials of precipitation outlier alleles categorized by environmental
preference
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Figure S4. Plant phenotypes by difference in home and experimental trial temperature
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Figure S5. Plant phenotypes by difference in home and experimental trial precipitation
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Figure S6. Plant phenotypes by difference in home and experimental trial isothermality
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Figure S7. Plant phenotypes by difference in home and experimental trial wet days
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Figure S8. Manhattan plots for GxE GWAS analysis
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Figure S9. Expression values of lipid QTLxE candidate genes overlapping with GxE outliers. Data at each
condition shows expression values of B73, Mo17, Oh43 and PH207 inbreds. Data was taken from (40).
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Figure S10. Manhattan plots for environmental GWAS analysis
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Figure S11. Manhattan plots for environmental GWAS analysis (continued)
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Figure S12. Pairwise comparisons of outliers calculated through different GWAS methods TASSEL, lm(R
function), LFMM. All analyses use the first two PCs (TASSEL,lm) or two latent factors (LFMM) as a
representative of population structure. TASSEL and lm are most similar likely reflecting differences in how
latent factors and principal components account for population structure. All correlations are significant P <
2e-16
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Figure S13. The main effect estimates of elevation associated alleles on phenotypes of the six different traits.
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