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Abstract

Radial Glial progenitors in the mammalian developing neocortex follow a de-

terministic differentiation program restricted to an asymmetric only mode of

division. This contrast with many other developmental systems, such as the

developing spinal cord, the retina, epidermis, airway epithelium, germline,

and the intestine, where the fate at the single cell level is unpredictable, and

differentiation takes place based on probabilities that can change overtime.

Here, we combine experimental, computational and theoretical tools to show

that Radial Glial cultured in vitro also divide symmetrically, and that the

balance between different modes of division can be modulated by external

signals, such as Fibroblast Growth Factor. Our results suggest that the con-

straint of deterministic and asymmetric mode of division of Radial Glial is

not an inherent property of this particular cell type, but a feature induced

by the complex organized pseudo-stratified structure of the mammalian de-

veloping neocortex.
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1. Introduction

The neocortex constitutes the main part of the mammalian brain, and

the location where the processing of all higher-order brain functions resides.

Understanding its formation is one of the major interests of Developmental

Biology [1]. The neocortex develops from a stratified neuroepithelium called

the neural tube into a complex structure of six horizontal layers of excitatory

and inhibitory neurons [2]. Neurogenesis in the developing neocortex initiates

when neuroepithelial progenitors transform into Radial Glial (RG) progenitor

cells and start to produce neurons and intermediate neuronal precursors [3,

4]. Since the discovery that RG constitute the progenitors of potentially all

neurons in the vertebrate neocortex [5, 6, 7, 8], a great effort has been focused

in identifying their features and properties: how they coordinate in time and

space to form the multiple layers of the neocortex?; which signals control

their fate?; and how these signals orchestrate the correct balance between

proliferation or differentiation during neurogenesis?.

In principle, this balance can be robustly achieved via stochastic or de-

terministic cell decisions [9]. In brief, stochastic models assume certain prob-

ability of differentiation that depends on the intracellular and extracellular

signals that the cell is receiving. In this context, the fate at the single cell

level is unpredictable and the balance between proliferation and differentia-

tion is regulated at the level of the population [10].

On the other hand, deterministic models of stem cell differentiation as-

sume that the fate of cell is an intrinsic property of the cell and the correct

balance between numbers of different types of neurons is achieved at the level
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of a single cell [11].

The dynamics of differentiation is often characterized based on the fate

of the two daughter cells of a cell division relative to each other [12]. This

way, proliferating progenitors can perform pp (progenitor-progenitor), pd

(progenitor-differentiated) and dd (differentiated-differentiated) divisions [13].

In this context, differentiation in the developing chick spinal cord [14], in

the zebrafish retina [15, 16], epidermis [17], airway epithelium [18], germline [19],

and the intestine [20] of mice follow an stochastic model. In these systems,

progenitors can potentially perform each of the three types of division, and

the corresponding rates are probabilistic and change overtime.

On the other hand, the formation of neurons in the mammalian brain

has been shown to follow a deterministic mode: neuroephitelial progenitors

can divide only symmetrically (pp), while RG only divide asymmetrically

(pd) [21, 3]. In this direction, it has been shown using clonal analysis that

neurogenesis in mouse occurs in a well ordered and deterministic manner,

where each RG produces around 8-9 neurons via only an asymmetric mode

of division [21, 3] with a cell cycle of (16-18 h).

This important difference between the deterministic mode of division in

the developing neocortex compared to other neurogenic tissues suggested us

to investigate whether the deterministic nature of RG is an intrinsic property

of this particular cell type or if, on the other hand, it is a property provided

externally. In this scenario, RG should be able to perform also pp and dd

type of divisions when cultured in vitro.

To do that, we develop an experimental, computational and theoreti-

cal approach that combines in vitro cultures of RG from mouse developing
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cerebral cortex with automated image segmentation, processing and quan-

tification algorithms. Quantitative values of cell numbers are then used to

inform a theoretical framework based on a branching process formalism [14].

Our results shown that RG are able to divide both symmetrically and asym-

metrically when cultured in vitro, and that the average mode of division

changes overtime, as well as the average cell cycle length [14]. In addition,

the mode of division can be modulated by external cellular signals, such as

Fibroblast Growth Factor (FGF). Our results suggest that the deterministic

mode of differentiation or RG is not an intrinsic property of the cells, and

therefore, it may be imposed by the spatio-temporal restrictions provided by

the stratified organization of the developing neocortex.

2. Results

2.1. RG proliferate in culture at a rate dependent on FGF stimulation

To initially test if the dynamics of RG growth and differentiation in vitro

recapitulate in vivo observations, RG from mouse embryo developing neo-

cortex are extracted, plated and cultured following standard protocols [22].

Starting at 24 hours post extraction (hpe) from mice embryos to allow cells

to recover and attach to the substrate, samples are then fixed at three dif-

ferent time points and stained with Hoechst (Fig. 1A). Quantification of the

number of cells in a field of view of fixed size using an automated segmen-

tation tool (see Methods) is shown in Fig. 1B for two culture conditions:

control and +FGF, where the standard culture media is supplemented with

an increased concentration of FGF ligand (see Methods).

In both conditions, the size of the population seems to grow, but only
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Figure 1: The growth rate of the population of RG can be modulated by FGF

stimulation. (A) Snapshots of RG cultures at different hours post extraction (hpe)

stained with Hoechst and growing at control and +FGF culture conditions. (B) Quantifi-

cation of total cell numbers in an area of the culture of fixed dimensions at different time

points shows that cells under extra FGF stimulation show increased proliferation with

statistical significance. *** = p < 0.005, ** = p < 0.05, ns = not statistically significant.

Error bars correspond to standard error of the mean value between multiple samples of

similar conditions.
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growth of the culture in +FGF conditions is statistically significant, com-

pared to control and to the other time points of the same condition. This

results suggest that the proliferation dynamics of RG can be modulated when

cultured in vitro.

2.2. FGF stimulation of RG cultures result in shorter cell cycle length

Figure 2: Increased FGF result in a shortening of the division time of cycling

RG. (A-B) Snapshots of in vitro cultures stained with Sox2 (green) to label RG and EdU

(red) to label cells that have undergo S-Phase. Snapshots correspond to 24 hours of Edu

incubation. (C-D) Cumulative curve quantification of EdU positive progenitors in the

culture versus EdU incubation time. Cells under extra FGF cycle faster (T= 24.7 hours)

than control cells (T=35.2 hours). The growth fraction γ is similar for both conditions.

(E-F) Numerical simulations of an model of cycling and differentiating RG (green lines)

show that the experiments (red data points) fits with a scenario with constant cell cycle

and restricted asymmetric division of the RG for control condition, but not for +FGF

conditions.

In principle, increased growth rate in a differentiating stem cell population
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can be caused by changes in the number of cycling cells, reduced cell death,

reduced differentiation rate or a direct effect in the cell cycle dynamics. To

study how FGF affects the dynamics of growth of a culture of RG, we per-

form 5-ethynyl-2’-deoxyuridine (EdU) cumulative labeling experiments. To

do that, samples are cultured in he presence of Edu and then fixed at different

time points (corresponding to different EdU incubation times). Combined

nuclear Hoechst staining with immunostaining against EdU and Sox2 is used

to identify all neural progenitors cells that have passed through S-phase for

each EdU incubation time.

Quantification using an automated image segmentation algorithm (details

are explained in the Methods section) is used to calculate the cell cycle length

and the growth fraction using linear regression (see Methods). Results are

shown in Fig. 2. The data (Figs. 2C,D) reveals that the growth fraction γ

remains at around 80% for both conditions tested. On the other hand, the

cell cycle length of the population appears to be highly dependent on the

culture conditions. Control cells cycle at a rate of T=35.2 hours, while cells

under extra FGF stimulation show a faster division time (T=24.7 hours).

Therefore, our results show that FGF stimulation shortens the cell cycle

length in cultures of RG in vitro.

2.3. EdU estimation of cell cycle and asymmetric mode of division do not

reproduce the experimental observations

Next, we ask whether the values of cell cycle length measured with EdU

cumulative labeling can account for the dynamics of the population of RG

observed in Fig 1B. To do that, we developed a computational model of a

generic differentiating stem cell population that simulates cycling progenitors
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that can either proliferate, differentiate, enter quiescence of apoptosis based

on rates provided by the user. Details of the model are presented in the

Methods section. A scheme of the simulation framework is shown in Supp

Fig 1. Parameters can be kept constant throughout the simulation, or can be

set to change each time-step. Parameter values are sampled from a gamma

distribution to mimic variability.

The model is then informed with the values of initial number of cells, cell

cycle and the growth fraction measured in the previous section (cell death

is set to zero). Following the literature on RG proliferation and differenti-

ation dynamics [21, 3], the division mode is restricted to deterministic and

asymmetric pd. Results are shown in Fig. 2E,F for 30 independent numeri-

cal simulations (green lines). The dynamics of the control conditions closely

resembles the experimental data (red), while in extra FGF conditions the

simulation population grows at a rate much lower than the experimental

culture.

In conclusion, the numerical model shows that the changes in cell cycle

length alone are not sufficient to explain the increased growth rate observed

in +FGF conditions, and therefore, other features are being affected by FGF.

2.4. FGF increases the production of progenitors as well as terminally dif-

ferentiated neurons

To test if the changes in the culture conditions could also alter the balance

between proliferative versus differentiated cells in the population we perform

additional experiments where the RG are extracted and cultured under the

conditions described in the Methods section. Starting at 24 hpe, samples are

cultured and fixed every 2-4 hours and stained using antibodies against Sox2
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and Map2 to identify progenitors and differentiated cells, respectively. We

then automated the segmentation and quantification of each cell type using

a computational script that identifies the fate of each cell in the population

based on the intensity of Sox2 and Map2 staining (details are described in

the Methods section).

Results are shown in Fig. 3 for the two conditions tested: control and

+FGF. Output provided by the segmentation script is plotted in Figs 3B,C.

The average dynamics of growth of the population is obtained by nonlinear

sigmoidal fitting of the experimental values (green, red, and blue lines for

RG, neurons and total cells, respectively). The data shows that an initial

regime of reduced change in cell numbers is followed by an increase in both

cell types until the system reaches a regime where few new cells are being

generated. In both conditions, the amount of progenitors and differentiated

cells increases as time progresses, with a higher increase of both cell types in

conditions of +FGF stimulation.

In conclusion, the addition of FGF results in more progenitors and dif-

ferentiated cells, and not an increased in one population to the expenses of

the other (consistent with a reduced cell cycle length). On the other hand,

the population of RG (green data points, green line), increases significantly

in +FGF conditions. This is inconsistent with the observation that RG from

mouse neocortex can only divide asymmetrically in vivo [21, 3] (in this sce-

nario, the total amount of RG cells should remain constant or close to a

constant value).
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Figure 3: FGF increases the amount of RG as well as terminally differenti-

ated neurons. (A) Snapshots of RG cultures at 24 hours post extraction showing nuclei

(Hoechst), progenitors (stained with Sox2) and differentiated neurons (stained with Map2).

(B-C) Quantification of the number of cells of each type in both culture conditions shows

an increased number of progenitors and differentiated cells, compared to control condi-

tions. Error bars correspond to standard error of the mean. Lines correspond to nonlinear

sigmoidal fitting of the experimental data points.
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2.5. Branching process formalism predicts variable mode and rate of division

The previous observation suggests that, apart from the changes in the cell

cycle length, FGF is affecting also the mode of division of the RG. To study

the dynamics of the mode of division during the experiment, we will take

advantage of the theoretical framework developed by our lab and introduced

in Ref [14]. In brief, the approach uses a branching process formalism to

obtain analytical equations that provide the average values of proliferation

and differentiation of the population based only on changes in the number

of progenitors (P) and differentiated cells (D).

To do that, numbers of P and D provided by our automated quantification

in previous sections are used as input of the following equations for the

mode and rate of division, which correspond to a generalization of Equations

presented in Ref. [14] that now accounts for a potential reduction of the

progenitor pool:

pp− dd =
1 + ∅P (∆D

∆P
− 1)

∆D
∆P

+ 1
(1)

T = ∆t
log(1 + γ|pp− dd− ∅P |)

Ψlog Pt

P0

(2)

where pp and dd correspond to the rate of symmetric proliferative and

differentiative divisions, respectively. ∆P = Pt−P0 and ∆D = Dt−D0 cor-

respond to the number of progenitors and differentiated cells generated in a

given window of time ∆t = t−t0. The value pp−dd goes from 1 (all divisions

are symmetric proliferative) to -1 (all divisions are symmetric differentiative).

The value, pp − dd = 0 corresponds to maintenance of the progenitor pool,

either via asymmetric pd divisions of via balance between symmetric prolif-
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erative and differentiative divisions (the model cannot distinguish between

these two scenarios, since they are mathematically equivalent). Ψ takes the

value of 1 when 1 6 pp− dd < 0, while for values between 0 6 pp− dd 6 −1

takes the form Ψ = (0.9|pp− dd| − 1). ∅P is the rate of cell death of the pro-

genitors pool. Assuming that most cell death occurs via apoptosis, the value

of ∅P is obtained using double immuno-labeling against Sox2 and Cleaved

Caspase3 (see Supp Fig 2 A-B).

Parameter γ corresponds the growth fraction, which are obtained using

double immuno-labeling against Sox2 and Ki67 (see Supp Fig 2 C-D).

Output of the equations is shown in Fig. 4A for the average cell cycle

length T. Our data shows that the cell cycle length is not constant through-

out the experiment, showing initially very high cell cycling times, followed

by a regime of faster proliferation and finally again a regime of reduced pro-

liferation. Interestingly, the minimum of the cell cycle for both conditions

tested occurs around 36-37 hours post extraction, with the value of control

conditions around T= 19 hours and, T= 10 hours for +FGF conditions.

Fig 4B shows the prediction for the average mode of division pp-dd. In

both cases differentiation appears to increase with time, and this change is

more prominent in conditions of extra FGF.

Interestingly, both situations show values of pp − dd different from the

value of pp−dd = 0 (i.e., pd = 1), that could indicate a restricted asymmetric

differentiating of RG. In addition, the maximum change in the differentiation

dynamics occurs around 36-37 hpe, coinciding with the minimum of T of

both conditions. In conclusion, quantification of the cell numbers using our

branching process framework suggest that the presence of FGF in the culture
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media speeds up the cell cycle time, reduces the differentiation rate and

slightly increases the growth fraction (Supp Fig 2 C-D).

Figure 4: FGF affects the proportion of symmetric proliferative divisions in

RG culture (A-B) Plot of the average T (A) and pp− dd of the population of RG under

control (black) and +FGF (grey) conditions. (C-D) Simulations (light red and green lines)

for both conditions using parameters of mode and rate of division of (A-B). Thick lines

correspond to the sigmoidal fitting of the experimental data in Fig. 3. (E-F) Prediction

for each mode of division using a stochastic model of differentiation.

2.6. Values from the branching process analysis are able to reproduce the

experimental data

To test if the values provided by the branching process formalism are cor-

rect, we take advantage of the same numerical model of the differentiating
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stem cell population introduced previously. Now, the model is informed with

the prediction of T and pp − dd plotted in Fig. 4A-B. The growth fraction

and apoptosis rate are also obtained from the experimental data in Supp Fig

2. Results are plotted in 4C-D, where we plot the number of progenitors and

differentiated cells (thin green and red lines, respectively) for 30 indepen-

dent simulations on top of the sigmoidal fitting of the experimental values of

progenitors and differentiated cells (thick green and red lines, respectively).

Simulations are in good agreement with the experimental data for both con-

ditions, suggesting that the branching equations predicts the correct mode

and rate of division.

2.7. The number of RG labelled after a short EdU pulse increases in time

To validate the outcome of the branching process formalism that predicts

a non negligible number of pp divisions are taking place in the culture, we

designed an experiment based on Pulse-and-Chase of EdU labelled cells. Do

do that, we extracted cells from mouse developing neocortex following the

procedure explained in Methods section. Next, cell are cultured in control

and +FGF conditions until 33 hpe (when the cell cycle length is fastest,

Fig. 4A). At this point, a pulse of 30-minutes of EdU is applied to all

samples. A number of samples are fixed at this time (Pulse time point). After

washing the EdU (see methods) from the culture media, cells are cultured for

another 15 hours (corresponding to the predicted average cell cycle length for

+FGF conditions during this time) to ensure that labeled cells cannot cycle

more than once in any of the culture conditions. Next, cells are fixed and

stained with Hoechst, EdU and Sox2 immunostaining. Finally, the number

of Sox2+/EdU+ cells at the time of the pulse (33 hpe) and chase (47 hpe) is
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quantified using our automated image analysis tool (see Methods). Results

are shown in Fig. 5. The number of progenitors labeled with EdU does not

change significantly in control conditions, consistent with a large proportion

of asymmetric divisions (i.e, one EdU+ RG produces two EdU+ cells: one

RG and one neuron, so the amount of EdU+ RG remains constant). On the

other hand, in conditions of +FGF, we see a statistically significant increase

in the number of EdU+ RG when comparing pulse and chase time points.

This result shows that some of the RG originally labeled with the short EdU

pulse, divided and produced more than one RG per division, showing that,

as predicted by the branching formalism, RG are capable to undergo pp

divisions in vitro.

Figure 5: Pulse-Chase experiments shows increased EdU labeled RG cells in

presence of an extra concentration of FGF. (A) Representative images showing

Sox2 and EdU staining in green and red, respectively. (B) Quantification of the number

of Sox2 and EdU positive cells for Pulse and Chase time-points for control and FGF+

conditions. The number of EdU labelled RG cells increases in the Chase time-point in

conditions of +FGF with statistical significance. *** = p < 0.005, ns = not statistically

significant. Error bars correspond to standard error of the mean value between multiple

samples of similar conditions. (C) Scheme that summarizes the experimental observations.
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2.8. The Branching equations outperform EdU cumulative methods to mea-

sure cell cycle length

BrdU [23], EdU [24, 25] and other thymidine analogs constitute the most

used tool to estimate the cell cycle length of cells in many contexts [26]. The

methodology is based on the replacement of endogenous thymidine during

DNA synthesise with traceable compounds [27, 28]. The length of the av-

erage cell cycle is then inferred from the dynamics of the incorporation of

these compounds into the DNA of cycling cells [29].

The use of thymidine analogs has several drawbacks: it can be toxic and

mutagenic [30] and affect the normal dynamics of cell proliferation [31] by

lengthening the cell cycle. In addition, choosing the correct mathematical

analysis and interpretation of the experimental data is not straightforward

[32]. Authors have proposed several approaches, such as linear [33, 34], non-

linear fitting [35, 36], or the use of deterministic [37] or stochastic models [38].

Depending on the method used, the same input data results in quite different

predictions for the average duration of the cell cycle [39]. Due to these lim-

itations, BrdU and analogs have been referred as “one of the most misused

techniques in neuroscience” [40].

To try to understand the discrepancy between the cell cycle length mea-

sured using EdU cumulative curve (Fig 2) and the branching process formal-

ism (Fig 4), we take advantage of the numerical model presented previously.

The model is now modified to simulate EdU labeling (cells in S-phase are

marked as labeled when EdU is present). Then, the number of progenitors,

differentiated and EdU positive progenitors at each time point is used to

calculate the average cell cycle length of the population using three widely
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used EdU based methods: single cumulative curve (SC) [23], dual cumulative

(DC) using two thymidine analogs in combination [41], and the pulse-chase

(PC) method [36] (see Methods and Supp Fig 3 for a detailed explanation of

each protocol). The cell cycle is also calculated using the branching process

(BP) method [14]. All predictions are then compared with the real value of

T used for each simulation, to estimate the accuracy and reliability of each

method.

The first scenario tested corresponds to homeostasis in the progenitor

population (pp − dd=0), constant value of T=20 hours and no quiescent

or apoptotic cells (γ = 1, ∅P = 0). These are the conditions defined by

Nowakowski and coworkers when introducing the cumulative curve method

[23].

Results of the analysis are plotted in Fig. 6A. Dots in Fig. 6B correspond

to the prediction of the value of T for 10 independent simulations (crosses

represent the average). We see that, for these particular settings, all four

methods are able to predict the correct value of T (dashed line) within a

10% error margin, with both PC and BP performing slightly better than SC

and DC. Importantly, the values predicted by the 10 simulations for the two

cumulative methods show a high dispersion. This suggests that large number

of repeats should be necessary to get an accurate value of T (the typical

experimental design that involves only three independent repeats does not

guarantee a correct estimation of the cell cycle). The same conclusions apply

when considering our experimental conditions of growth of the population of

progenitors (pp− dd > 0, Supp. Fig. 4A).

Fig. 4A shows a decrease of cell cycle length followed by an increase.
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Variable cell cycle dynamics has been reported in many developmental sys-

tems [42, 43, 14, 44, 45, 46, 47, 48, 49, 50, 42, 43, 51, 52]. Fig. 6C corresponds

to output of the numerical model when a variable value of T is used as input.

The average value of T was set to 20 hours. Fig. 6D plots the quantification

of the numerical data. In this situation, SC predicts a much longer cell cy-

cle that the average (49% error), while the DC predicts a shorter cell cycle

(24% error). Interestingly both PC and BP return a value much closer to

the correct average, with less than 10% error. Again, the variability of the

cumulative methods is very high, making them unreliable methods when a

small number of repeats are used. Again, the same conclusions apply when

considering conditions where the cell cycle changes while the population of

progenitors is allowed to grow (pp− dd > 0, Supp. Fig. 4B).

Fig 4B predicts also a variable differentiation rate during the experiment.

In developmental systems, the balance between differentiative divisions and

proliferative divisions has been shown to also change overtime [42, 14]. For

instance, during motorneuron generation, the rate of differentiation has been

shown to change sharply due to a sudden switch in Shh activity [42]. A

similar scenario occurs in vitro in our system (see Fig. 4). When we inform

our simulations with a variable differentiation rate, we observe that again

both cumulative methods fail and show high dispersion between independent

samples (Supp Fig 4C). The same occurs when both mode and rate of division

are allowed to change simultaneously, as in our experiments (Supp Fig 4D).

In conclusion, our simulations show that the cumulative curves are not

ideal when used to characterize the systems where proliferation and differ-

entiation rate are variable. This fact, together with the reported effect of

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707463doi: bioRxiv preprint 

https://doi.org/10.1101/707463


BrdU and analogs in lengthening the cell cycle, could explain the different

predictions between cumulative and branching process for our experiments.

3. Discussion

A detailed analysis of the dynamics of vertebrate neurogenesis involves a

careful characterization of the features that regulate the dynamics of prolif-

eration and differentiation of RG during the generation of the mammalian

cortex. One of its most striking features is the fact that RG are restricted to

an asymmetric mode of division in vivo, in contrast to other developmental

systems [42, 14, 15, 16, 17, 18, 19, 20].

Our study suggests that RG are not restricted to an asymmetric mode

of division when cultured in vitro. On the contrary, the mode of division

seems to be dependent on the culture conditions. Several authors propose

that the mode of division is modulated by the distribution of cell fate de-

terminants during mitosis, the orientation of the spindle or the inheritance

of the primary cilium or the different centrosomes [4]. It is possible that

the apical-basal polarized structure of the RG, or their organization and

orientation of the radial processes along the stratified neuroephitelium re-

sults in asymmetric inheritance of these cell fate regulators [4]. The loss of

these features provided by the niche when cells are cultured in vitro may

result in a probabilistic scenario where each of the 3 modes of divisions is

possible, similarly to neuronal progenitor cells and other developmental sys-

tems [42, 14, 15, 16, 17, 18, 19, 20].

In these situations, the branching process framework is able to estimate

the rates of each of the three modes of division [14]. This prediction for
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Figure 6: Simulations explain the difference in cell cycle length calculated by

EdU and Branching process. (A,C) Cumulative curves generated numerically for

each protocol for 10 independent runs of the model. (B,D) Quantification of T for each

simulation (dots) and average (crosses). Each color corresponds to the same simulation

analyzed using each framework. A-B correspond to conditions of constant cell cycle. C-D

correspond to conditions of variable cell cycle.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707463doi: bioRxiv preprint 

https://doi.org/10.1101/707463


the case of RG in culture is shown in Fig. 4E-F, where we can see that

the predominant mode of division is pp (green). This symmetric mode of

division is even more probable in conditions of +FGF, to the expenses of a

reduction in pd and dd. A scheme that illustrates our findings is shown in

Fig 5C. In brief, the single mode of division observed in vivo contrast with

the probabilistic scenario observed in vitro, where all modes of division are

possible. Changes in the culture conditions can shift the balance between the

three modes of division, and increase the rate of pp divisions to the expenses

of the other modes.

To rule out the possibility that a reduced number of neuroepithelial pro-

genitors in the culture (that proliferate only via pp) are responsible for the

generation of new RG, we performed immunofluorescence against Pax6, a

well characterized marker for RG [53] that is not present in neuroepithelial

progenitors [54]. Automated quantification is shown in Supp Fig 5, where

around 100% of all Sox2 positive progenitors are also positive for Pax6 (so,

there is no neuroepithelial progenitors at this stage in the culture, in agree-

ment with the in in vivo data [3]). Another possibility is the presence of

intermediate progenitors [55] that divide once to produce two terminally dif-

ferentiated neurons [56]. Immunofluorescence against Tbr2, a marker for

intermediate progenitors shows that no Tbr2 positive cells in the culture in

the two culture conditions tested (data not shown). This is probably due

to the fact that FGF has been shown to inhibit the transition from RG to

intermediate progenitor [57] (FGF is in the culture media in both control

and +FGF conditions).

A detailed analysis of the dynamics of vertebrate neurogenesis involves a
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careful characterization of the rate of division. The most direct method to

measure the cell cycle length requires to monitor the time between consec-

utive mitotic evens at single cell resolution [58]. Unfortunately, due to the

high degree of variability, many cells in a population need to be sampled, seg-

mented and tracked simultaneously to obtain an accurate value, even when

dealing with clonal samples [59].

Indirect methods based on cumulative incorporation of thymidine analogs

perform well in conditions of constant proliferation and differentiation, but

they are not designed to study systems where the cell cycle changes overtime,

which is is potentially the case in many developmental systems. In these con-

ditions, the Branching Process formalism and the Pulse-Chase outperform

cumulative curve methods. On the other hand, the Pulse-Chase method re-

quires experiments that are longer that cell cycle length. Therefore, the effect

of the labeling agent for long periods of time may affect strongly the normal

cell cycle progression [31, 30]. A clear advantage of the Branching Process is

that it does not involve manipulation of the samples before fixation, so there

is no interference with the normal progression of the cell cycle. In addition,

the Branching Process formalism also provides the correct value of T with

temporal resolution, and the measurement of the average differentiation rate,

(also with temporal resolution).

Several studies have shown that the length of G1 phase increases pro-

gressively when neurogenesis starts, resulting in a overall increase of the cell

cycle [44, 45, 46, 47, 48, 49]. Alternatively, others studies show that the cell

cycle length is shorter in neurogenic divisions, compared to proliferative divi-

sions [50, 42, 43, 51, 52], due mainly to a shortening in S-phase. Our results
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show that FGF promotes pp divisions and shortens cell cycle, consistent with

the hypothesis that proliferative divisions have a shorter cell cycle, maybe

via a shortening of G1-phase (similarly to insulin-like growth factor [60, 61]).

A careful characterization of how FGF affects each phase of the cell cycle it

is far from the scope of this contribution.

In addition, our data also shows an increase in the growth fraction γ in

conditions of extra FGF compared to control, when monitoring the cycling

progenitors using Ki67 staining (Supp Fig 2C-D), in agreement with pre-

vious studies [62]. Interestingly, this is not shown in the cumulative curve

estimation, maybe due to the fact that the growth fraction seems to be also

changing during the experiment (Supp Fig 2C-D).

The culture and differentiation of RG cells in vitro provides a very good

framework to study basic features that orchestrate the formation of the mam-

malian neocortex. In brief, the system provides a well controlled environment

where the effect of signaling molecules and other conditions can be tested re-

liably, while providing easier manipulation and imaging compared to studies

performed in vivo. We use this framework to study the features that re-

strict the division mode of RG as deterministic versus the more common

probabilistic scenario observed in many other scenarios. Our combined ex-

perimental/computational/theoretical approach can be also used to test the

effect of other signaling networks by quantifying the cell cycle and mode after

small molecule inhibition and comparison with the control culture.
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5. Methods

5.1. Preparation of dissociated mouse cortical neuron cultures and cell cul-

turing

Cortical neurons and neural progenitors were obtained from E11/E11.5

mouse embryos of the C57 BL/6JRCC strain, as previously described in Ref.

[22]. Briefly, meninges were carefully removed and after the isolation of the

cortex from all embryos, these were incubated in Hank’s Buffered Salt Solu-

tion free of Ca2+ and Mg2+ (HBSS, ThermoFisher 14185) and mechanically
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disaggregated using Pasteur pipettes. Cells were plated in glasses treated

with Nitric Acid and Fibronectin at 10 g/ml (Fisher Scientific; 15602707) to

maximize cell adhesion, using as standard medium Neurobasal without L-

glutamine (ThermoFisher 21103-049) and: Glutamax (ThermoFisher 35050-

038); B-27 (ThermoFisher 17504-044); 0.02 ng/µl of recombinant murine

EGF (PeproTech 315-09, lot number 0517179-1); 0.02 ng/µl of human FGF

basic (PreproTech 100-18B, lot number 0311706-1); and Penicillin, Strepto-

mycin and Antimicotic (concentrations standard for cell culture). Cells were

plated at constant density (250000 cells in each M24 well) for all experiments.

After 24 hours post-extraction (hpe) to allow for recovery post extraction,

half of the culture media is removed and replaced with standard media (con-

trol conditions) standard media complemented with human FGF basic for a

final concentration of 0.06 ng/µ (+FGF conditions). All experimental pro-

tocols were in accordance with the guidelines of the European Communities

Directive (2012/63UE) and the actual Spanish legislation (RD 53/2013).

5.2. Immunofluorescence and cells mounting

Cells were fixed for 20 minutes at Room Temperature (RT) with 4%

paraformaldehyde and washed twice for 5 minutes with Phosphate Buffer

Saline (PBS) 1X. Fixed cells were incubated with a permeabilization solu-

tion composed of triton (ChemSupply 9002-93-1) at 0.6% in PBS 1X for 20

minutes at RT. Next, cells were washed 3 times with PBS 1X. Next, block-

ing solution is added (Bovine Serum Albumin, BSA. Sigma ;A7906) at 3%

in PBS 1X for at least 30 minutes. Later, cells were incubated with primary

antibodies dissolved in the blocking solution overnight at 4C. The next day,

cells were washed with PBS 1X 3-4 times, for 5 minutes for each one, and they
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were incubated with secondary antibodies in the blocking solution for 45 min-

utes at RT, protected from light. Then, secondary antibodies were removed,

and nuclei were stained with Hoechst 3342 (1/2000, ThermoFisher 1399)

dissolved in PBS 1X for 5 minutes at RT. Finally, the cells were washed in

PBS 1X, double distilled water, and ethanol at 70% and, after, the coverslips

with the cells were mounted with Fluoromount G (Southern Biotechnology

Associates, Inc, Birmingham, Alabama 0100-01) on microscope glass slides.

Primary antibodies used were: anti-Sox2 (1/2000, GeneTex GTX124477),

anti-Map2 (1/200, Santa Cruz Biotechnology sc-74421); anti-Pax6 (1/1000,

BioLegend B244573); anti-Cleaved Caspase 3 (1/1000, Cell Signaling 9661);

and anti-KI67 (1/200, ThermoFisher 14-5698-82). Secondary antibodies used

were: anti-Rabbit 488 (1/1000, ThermoFisher A-21206) and anti-Mouse 555

(1/1000, ThermoFisher A-21137) and anti-Rat 555 (1/1000, ThermoFisher

A-21434).

5.3. Image acquisition and analysis

Samples were imaged in a confocal microscope AR1+ of high speed in

acquisition and sensibility coupled to an inverted microscope model Eclipse

Ti-E (Nikon) with a 20X objective and a resolution of 1024x1024 pixels.

Image processing has been conducted with the free software Fiji [63], using

implemented algorithms and in house developed computational routines. The

software allows us to monitor a large number of cells per condition (around

105 cells per experiment) to minimize the effect of variability and hetero-

geneity in each sample. A number of cells in the culture are simultaneously

Sox2- and Map2-, and have a nucleus that is substantially larger that Sox2+

or Map2+. This cells are considered non RG or differentiated neurons, and
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are not quantified by our script. In brief, image processing and analysis de-

signed routines for the identification and classification of cells were based

on the segmentation of nuclei and the classification of each nuclei based on

fluorescent intensity in each channel. The sequence of processing algorithms

and filters is as follows.

1. Definition of the Kernel Radius (KR) used by several of the filters in

the framework. The KR defines the portion of the image used for

calculations and processing of the filters. KR was fixed as 2.5.

2. Local increment of differences between the foreground and background

intensities applying a local kernel window of size 8xKRxKR that was

moving across the image, removing all pixels with a value less than the

median of each local kernel window.

3. The previous filter separates adjacent objects, but also generates holes

and breaks the integrity of objects. To solve it, the following sequence

of filters is applied to remove noise and increase the definition of the

boundaries of each object: Gaussian Blur filter, Maximum Filter, Me-

dian filter and Unsharp Mask filter.

4. Thresholding was performed using as cutoff value the median value

calculated from all intensity values from the image higher than zero.

5. Euclidean Distance Map (EDT) was performed in the binary image to

generate the primordium points (seeds) for all detected objects. Later,

using the seeds a flood fill algorithm was applied to find the boundaries

of each object [64].
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6. Finally, image analysis of all objects was performed using Fiji [63]. All

segmented objects were fitted to ellipses using standard tools from Fiji.

Objects smaller than KR*KR are discarded from the analysis.

Due to the specific features of each staining, a different set of processing

filters is applied to remove background and noise for each channel.

• Map2: Double sequential thresholding to extract foreground information

(cutoff 1 = mean, cutoff 2: median); morphological opening to re-

move neurons fibers (structuring element: lines at different angle with

a length of 2xKR); Gaussian filter to remove noise (radius=KR).

• Sox2: Double sequential thresholding to extract foreground information

(cuttof 1, = mean, cutoff 2: median); morphological opening to select

only nuclei with minimal size (structuring element: circumference of

radius equal to 2xKR); Gaussian filter to remove noise (radius=KR).

• EdU: Single thresholding to extract foreground information (cutoff = me-

dian); morphological opening (structuring element: circumference of

radius equal to 2xKR); Gaussian filter to remove noise (radius=KR).

• Pax6: Single thresholding to extract foreground information (cutoff = mean);

morphological opening (structuring element: circumference of radius

equal to 2xKR); Gaussian filter to remove noise (radius=KR).

• Cleaved Caspase-3: Double sequential thresholding to extract foreground

information (cutoff 1= mean, cutoff 2 = mean + plus standard devi-

ation); morphological opening to select only nuclei with minimal size
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(structuring element: circumference of radius equal to 2xKR); Gaus-

sian filter to remove noise (radius=KR).

• Ki67: Single thresholding to extract foreground information (cutoff = mean);

morphological opening (structuring element: circumference of radius

equal to 2xKR); Gaussian filter to remove noise (radius=KR).

Finally, the fitted ellipse for each nucleus was used to identify the fate of

each cell. To do that, ellipses were overlapped in the image of each marker,

and the phenotype was assigned attending to the area with pixels values

higher than zero comparing between images of used markers. For the MAP-

2, area was set to at least 15%, and 1% for the rest.

5.4. Statistical and Data analysis

P values were calculated assuming that both samples follows a students

t distribution. Cell cycle values in Fig. 2C-D were obtained after linear re-

gression of the four first data points. Rates of quiescence in Fig. 2C-D were

obtained after linear regression of the four last points. Three-parameter

sigmoidal fitting was used to fit data from fig. 3B-C (slope was adjusted

manually). Sample size for all experiments is at least 4. Fittings and sta-

tistical analysis were performed using Matlab c© algorithms and scripts (The

Mathworks c©, Natick, MA).

5.5. EdU cumulative curve

Cumulative curve of the thymidine analog 5-Ethynyl-2’-deoxyUridine (EdU)

incorporation was performed using Click-iTTM Plus EdU Alexa FluorTM 647

Imaging Kit (ThermoFisher; C10640). Briefly, EdU was added around 24 hpe
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at 2 µM. Cells were then fixed at increasing times of EdU exposition. Staining

of EdU positive cell was performed based on previously published protocols

[65]. Next, immunostaining against Sox2 is used as standard marker for RG

progenitors [3]. Later, the number of cells positive simultaneously for Sox2

and EdU was quantified in all time points using automated image processing.

To calculate the cell cycle length, the percentage of progenitor cells that have

incorporated EdU was plotted against the hours of EdU incorporation. The

saturation value at long incubation times was used to calculate the growth

fraction γ. This value is then used to calculate the average cell cycle using

linear regression at short EdU accumulation times (see figure 2).

5.6. EdU pulse-and-chase experiments.

Cells were exposed to a short pulse of 30 minutes of EdU at 36 hpe. Pulse

points were fixed at this time pont. Chase points were washed three times

with fresh medium, and fixed 15 hours after the pulse. Later, the number

of EdU positive/Sox2 positive cells were quantified in both pulse and chase

time points for both conditions using automated image processing.

5.7. Numerical simulations of cell populations.

We developed an in silico model of the culture of cells as numerical en-

tities that proliferate, differentiate enter quiescence or apoptosis according

to probabilities established by the user. An initial set of un-synchronized

progenitors cells are allowed to cycle following the different phases of the cell

cycle: from G1 to S to G2 to finally M phase. Upon division, the tow result-

ing daughter cells either remain as progenitors (pp division), they become
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terminally differentiated cells and stop cycling (dd division), or one remains

as progenitor while the other differentiates (pd division).

A scheme of how the population is defined and develops overtime is shown

in Supp Fig 1. Parameters of the simulation are: the number of initial cells

m, the average cell cycle T at each time point (defined as T =
∑
T i/n,

being n the number of cells at time t), the fraction of cycling progenitors (or

growth fraction) γ, the rate of apoptosis of progenitors ∅P , and the length

of the experiment tend. The age of each cell is defined as the time since

its birth, and the type corresponds to its characteristic as progenitors (P ,

cycling cells), differentiated (D, non cycling cells), quiescent (Q, non cycling

progenitors) and apoptotic (dying cells).

For simplicity, the cell cycle is divided into just three main steps of equal

length: G1, followed by S and finally followed by G2 +M . (T = TG1 + TS +

TG2M). Changes in the cell cycle length affect all phases of the cell cycle

identically (simulations where the phases are of different length and that

changes affecting differently different phases of the cell cycle show equivalent

results). The value for each parameter is obtained from a gamma distribution

with mean defined by the user and standard deviation of 30% of the mean,

to mimic variability in a clonal population [66].

5.8. Simulations of Cell Cycle determination methods

The previous model is then adapted to perform a computational analog

of one or two thimidine compounds. At any time in the simulation, EdU can

be added to the cells, so cells undergoing S-phase will be labeled as “posi-

tive”, and will remain as positive throughout the rest of the simulation. The

input parameters of the model are varied to simulate different dynamics of
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a population of cells in different conditions, in terms of quiescence, apop-

tosis, cell cycle length and differentiation rate. For each condition tested,

we will perform four measurements of the cell cycle based on the following

methodologies:

Cumulative Curve method.

This technique has been extensively used both in in vitro and in vivo

situations to quantify the rate of cells in the population entering S-phase [67,

43]. A scheme of the method is shown in Supp Fig 3A. In brief, a nucleoside

analog is added to several identical samples that are fixed and stained at

different times. Labeled cells in all samples are quantified using microscopy

or flow-cytometry. The ratio of progenitor cells that are labeled for each

sample is plotted, and the values corresponding to the cell cycle length T

are obtained from the slope of a linear regression fitting of the data at short

exposure times. In addition, the fraction of cycling progenitor cells γ, or

growth fraction, can be estimated from the rate of labeled cells after long

exposure times. This method, when combined with dyes to measure DNA

content can be used to determined the length of the different phases of the

cell cycle [68].

Dual Cumulative Curve Method. This method combines dual stain-

ing with thymidine analogs [24]. It also provides the possibility of fixing all

samples simultaneously to ensure that quantification is performed always at

the same developmental time. In addition, it can also provide some posi-

tional information of regions in a given tissue where cells cycle at different

rates [41, 69]. On the other hand, it requires a more complex experimental

design, and it may also result in increased toxicity. In addition, it does not
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provide information about the growth fraction. The method (Supp Fig 3B)

involves a first labelling agent administered to all samples simultaneously,

and a second agent administered at different time points. All samples are

collected at the same time, and they are stained for both labelling agents.

The amount or cells that are double positive overtime for the two different

thymine analogs is plotted, and the average length of T and TS can be ex-

tracted using linear or nonlinear regression (some corrections regarding the

potential differential incorporation of both agents are required).

Pulse-Chase method. Both previous methods rely on long term ex-

posure of the samples to nucleoside analogs, which can result in toxicity

effects. Alternative, a short pulse can be also applied [36] to label only cells

that where in S-phase at a given time. Then, the population of positive

cells is “chased” in the different samples by fixing and staining at different

times. Several variations of this method have been developed. A commonly

used technique is to stain cells in mitosis (using immunofluorescence against

phospho-histone-3), or using a second thymine analog in S-phase to chase

cells that have re-entered in a new S-phase. A scheme of the method is

shown in Supp Fig 3C.

The ratio of double positive cells in the different samples is plotted over-

time, and the average value of T corresponds to the time between the pulse

and the maximum of double positive cells in the population. The slope of the

curve at shorter time scales can be used to calculate the length of S-phase.

Measurements of the cell cycle using this methods requires significantly longer

experiments than the two previous methods.

Branching Process method
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Our lab recently developed an alternative method based on quantification

of the amount of proliferative, differentiated, quiescent and apoptotic cells in

the population at different times. A scheme of the method is shown in Supp

Fig 3D, and an example of its experimental implementation can be found in

Ref. [14]. In brief, samples are allowed to develop without interfering with the

normal dynamics of the cells, and then are fixed at different developmental

times. After fixation, the amount of cells in each state is quantified by

antibody staining to distinguish progenitor cells [70], differentiated cells [71],

cycling cells [72] and apoptotic cells [73], while the growth fraction can

be identified from the progenitor population using antibodies, such as the

proliferation-related antigen Ki-67. This nuclear protein is present in the

nuclei of cells in the G1, S and G2 phases of the cell cycle as well as in

mitosis, but not in quiescent cells (cells in G0) [72].
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Figure 7: Supplementary Figure 1: Scheme of the simulation of the population

model. In brief: (a) an initial number m of un-syncronized progenitor cells proliferates

and differentiates. (b) At any given time t, each cell i in the population of n cells is

characterised by four parameters (c): phase, T, age and Type. (d) Cells cycle in their

phase from G1 to S to G2 + M . When a given cell i reaches the end of G2 + M , a

division event takes place, with three different outcomes (g): pp, pd or dd division. In the

presence of a labelling agent, cells incorporate it only during S-phase, and become labeled

as ”positive” (showed in yellow). Depending on their type, cells are sorted into 4 groups

(h): progenitors, differentiated, quiescent and apoptotic.
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Figure 8: Supplementary Figure 2: Experiments to obtain the growth fraction

and apoptosis rate. (A) Example of cells stained with nuclei (blue), cleaved Caspase3

(green), and Map2 (red) at 36 hpe. (B) Quantification of the percentage of progenitor cells

that show positive staining for Caspase3 for both conditions and at three different time

points. (C) Example of cells stained with nuclei (blue), KI67 (red) and Sox2 (green) at

36 hpe. (D) Quantification of the percentage of progenitor cells that are actively cycling

both conditions and at three different time points. Columns represent the mean between

independent quantifications. Error bars represent the standard error or the mean.46
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Figure 9: Supplementary Figure 3: Scheme of methods tested to measure cell

cycle length. (A) Cumulative curve: A thymidine analog is added to all samples simulta-

neously. Samples are fixed at different times and stained for quantification. Linear fitting

of the rate of labelling is used to determine the average T and γP . (B) Dual Cumula-

tive: The first thymidine analog (red) is administered to all samples simultaneously. The

second thymine analog (green) is administered at different times. All samples are then

fixed simultaneously. Quantification of all double positive cells (yellow) is plotted against

exposure time. This method does not provide an estimation of the growth fraction. (C)

Pulse-chase: A short pulse of a first nucleoside analog is added to all samples simultane-

ously. A second nucleoside analog is added at different times, and the samples are fixed

and stained immediately after. The amount of double positive cells is plotted overtime.

(D) Branching process: Cells are fixed at different times and stained with antibodies to

distinguish progenitors, differentiated, quiescent and apoptotic cells. The resulting num-

bers are used to inform the equations 1-2, that will give us the values of the average rate

and mode of division overtime.
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Figure 10: Supplementary Figure 4: Values of cell cycle predicted for differ-

ent conditions of growth and differentiation of the culture. Dots correspond to

independent simulations. Crosses represent the average between 10 simulations. Dashed

horizontal line corresponds to the average value of T used in the simulations (20 hours).

Shorter distance between crosses and dashed line represent better performance of the

method. Lower dispersion between dots in each method represents better accuracy. (A)

Predicted value of T by each method in conditions of constant mode and rate of division,

but for values of increased in the population of progenitors (pp− dd > 0). (B) Predicted

value of T by each method in conditions where the cell cycle is set to decrease and then in-

crease. (C) Predicted value of T by each method in conditions where the differentiation is

increasing monotonically during the simulation. (D) Predicted value of T by each method

in conditions where both cell cycle and differentiation rate are set to change during the

simulation.
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Figure 11: Supplementary Figure 5. All progenitors cells in the culture express

markers of RG. (A) Example of cells stained with nuclei marker (blue), Pax6 (green), and

Map2 (red) at 36 hpe. (B) Quantification of the percentage of progenitors that are Pax6

positive for all conditions and three time points. Columns represent the mean between

independent quantifications. Error bars represent the standard error or the mean.
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