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FGF2 modulates simultaneously the mode, the rate of division
and the growth fraction in cultures of Radial Glia
Mario Ledesma-Terrón1,Nuria Peralta-Cañadas1 and David G. Míguez1

ABSTRACT

Radial Glial progenitors in the mammalian developing neocor-
tex have been shown to follow a deterministic differentiation
program restricted to an asymmetric-only mode of division.
This feature seems incompatible with their well known ability
to expand in number when cultured in vitro, driven by Fibrob-
last Growth Factor 2 and other mitogenic signals. The changes
in their differentiation dynamics that allow this transition from in
vivo asymmetric-only division mode to an in vitro self-renewing
culture have not been fully characterized. Here we combine
experiments of Radial Glia cultures with theory and numerical
models to show that Fibroblast Growth Factor 2 has a triple
effect by simultaneously increasing the growth fraction, promot-
ing symmetric divisions and shortening the length of the cell
cycle. This combined effect of Fibroblast Growth Factor 2 in the
differentiation dynamics of Radial Glial progenitors partner to
establish and sustain a pool of rapidly proliferating in vitro pool
of Radial Glial progenitors.

KEYWORDS: cell cycle | differentiation | Branching Processes |
Radial Glial | Thymidine analogs

INTRODUCTION
The neocortex constitutes the main part of the mammalian brain,
and the location where the processing of all higher-order brain
functions resides. Understanding its formation is one of the major
interests in the field of Developmental Biology (Lodato and
Arlotta, 2015). The neocortex develops from a stratified neuroep-
ithelium, called the neural tube, into a complex structure of six
horizontal layers of excitatory and inhibitory neurons (Matsuzaki
and Shitamukai, 2015). Neurogenesis in the developing neocor-
tex initiates when self-renewing neuroepithelial progenitors (NEP)
transform into apical and basal Radial Glial (RG) progenitor cells
and start to produce neurons and intermediate neuronal precur-
sors (Beattie and Hippenmeyer, 2017; Taverna et al., 2014). Since
the discovery that RG constitute the progenitors of potentially
all neurons in the vertebrate neocortex (Frederiksen and McKay,
1988; Hartfuss et al., 2001; Miyata et al., 2001; Noctor et al.,
2004), a great effort has been focused in identifying their fea-
tures and properties: how they coordinate in time and space to
form the multiple layers of the neocortex?; which signals control
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their fate?; and how these signals orchestrate the correct balance
between proliferation or differentiation during neurogenesis?.

In principle, this balance can be robustly achieved via stochas-
tic or deterministic cell decisions (Losick and Desplan, 2008). In
brief, stochastic models assume certain probability of differentia-
tion that depends on the intracellular and extracellular signals that
the cell is receiving. In this context, the fate at the single cell level
is unpredictable and the balance between proliferation and differ-
entiation is regulated at the level of the population (Teles et al.,
2013). On the other hand, deterministic models of stem cell differ-
entiation assume that the fate of the progeny is fixed and, therefore,
the correct balance between the numbers of different types of neu-
rons is achieved at the single cell level (Müller-Sieburg et al.,
2002).

The dynamics of differentiation is often characterized based
on the fate of the two daughter cells of a cell division rel-
ative to each other (Kosodo et al., 2004). This way, prolif-
erating progenitors can perform pp (progenitor-progenitor), pd
(progenitor-differentiated) and dd (differentiated-differentiated)
divisions (Huttner and Kosodo, 2005).

In this context, differentiation in the developing chick spinal
cord (Míguez, 2015), in the zebrafish retina (He et al., 2012;
Chen et al., 2012), epidermis (Clayton et al., 2007), airway epithe-
lium (Teixeira et al., 2013), germline (Klein et al., 2010), and the
intestine (Snippert et al., 2010) of mice follow an stochastic model.
In these systems, progenitors can potentially perform each of the
three types of division, and the corresponding rates are probabilis-
tic and change overtime. On the other hand, the differentiation of
RG in the mammalian brain has been shown to follow a determin-
istic asymmetric-only mode of division (Gao et al., 2014; Beattie
and Hippenmeyer, 2017).

Several years ago, the group of Austin Smith showed that
RG extracted from mouse developing neocortex can be succes-
fully cultured in vitro (Conti et al., 2005). Driven by the multiple
phenotypic similarities between neuronal precursors differentiated
from embryonic stems cells in culture and RG, authors suggested
that these neuronal precursors are the culture analogs to RG. In
the same paper and driven by this observation, they also showed
that in vitro cultures of RG can be established with Fibroblast
Growth Factor 2 (FGF2) as the key mitogen that facilitates their
expansion (Conti et al., 2005).

FGF2 is an extensively studied neurogenic factor for prolifera-
tion and differentiation of multipotent neural stem cells both dur-
ing development and in the adult mouse brain (Kang and Hébert,
2015). FGF2 has been shown to be necessary for cell proliferation
and neurogenesis in vivo, and to induce additional mitoses in pro-
genitor cells in vitro (Raballo et al., 2000). In addition, stem cells
from the adult mouse brain have been shown to proliferate and
self-renew in vitro in the presence of FGF2 (Gritti et al., 1996).
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On the other hand, FGF2 stimulation have been shown to control
the fate, migration and differentiation but not the proliferation of
neuronal progenitors in vivo (Dono et al., 1998), while more recent
studies do show an impact in promoting the cell cycle progression
in cultures of Rat glioblastoma cells (Baguma-Nibasheka et al.,
2012).

From all these potential effects of FGF2, the specific features
that facilitate the transition of RG from a non-expanding pop-
ulation in vivo that can only perform asymmetric pd divisions
(and therefore, incompatible with cell expansion in number), to a
self-renewing in vitro culture have not been quantitatively char-
acterized in detail. In principle, this transition can be achieved
by reducing the rate of neurogenesis, by promoting proliferative
(at the expenses of asymmetric or symmetric differentiative) divi-
sions, by increasing the proliferation rate (by shortening the cell
cycle), by inducing cell cycle reentry of quiescent progenitors (i.e.,
increasing the growth fraction), by reducing apoptosis (as a pro-
survival signal), inducing intermediate progenitors (that perform
additional terminal divisions), or also by shifting RG towards its
less mature NEP phenotype (that perform pp divisions in vivo).

In this paper, we quantify the specific effects of FGF2 on key
features of the proliferation and differentiation dynamics of RG
that allow them to be cultured and expanded in vitro. To to that,
we quantify values of cell numbers of RG and differentiated neu-
rons extracted from mouse developing cerebral cortex and cultured
in the presence of different FGF2 concentrations and at different
time points. These values inform a theoretical framework based on
a branching process formalism (Míguez, 2015) that provides aver-
age values of mode and rate of division of the RG population with
temporal resolution. Our results show that FGF2 does not affect
the rate of neurogenesis (i.e., the amount of differentiated neurons
produced), it does not promote NEP or intermediate progenitor
phenotype and it does not affect significantly the apoptosis rate.
On the other hand, FGF2 does promote symmetric pp divisions, it
increases the growth fraction, and shortens the average cell cycle
length. These three key effects when combined, strongly facilitate
the propagation and expansion of the culture.

In addition, discrepancies between predictions for the cell cycle
length and growth fraction using several methods in our study
pointed us to compare the accuracy of several common method-
ologies used to measure cell cycle features. To do that, we use
a numerical model to show that methods based on cumulative
thymidine analogs (such as Edu and BrdU) are not accurate in con-
ditions of variable differentiation dynamics. On the other hand,
the method based on branching process formalism performs bet-
ter when mode and/or rate of division are changing, which is the
case in our RG cultures and many other in vivo developmental sys-
tems. In addition, the branching process method is superior due to
its temporal resolution, robustness, minimal interference with cell
homeostasis, and simplicity of use.

Results
FGF2 stimulation increases the growth rate of cultures of RG
by shortening the length of the the cell cycle

To initially test how the dynamics of growth and differentiation
of RG in vitro is modulated by FGF2, cells derived from the
developing neocortex of mouse embryos at E11-11.5 are extracted,
plated and cultured following standard protocols (Hilgenberg and
Smith, 2007). Starting at 24 hours post plating (hpp), samples are
then fixed at three different time points and stained with Hoechst

(Fig. 1A). Quantification of the number of cells in a field of view
of fixed dimensions using an automated segmentation tool devel-
oped in house (see Supplementary Methods) is shown in Fig. 1B
for two culture conditions: SC and SC+FGF, where the standard
culture media is supplemented with an increased concentration of
FGF2 ligand (see Methods). In both conditions, the number of cells
increases, but the growth is only statistically significant (P < 0.05)
in SC+FGF conditions.

To study in detail how FGF2 affects the length of the cell cycle
of the cycling progenitors, we perform 5-ethynyl-2’-deoxyuridine
(EdU) cumulative labeling experiments to measure changes in
the length of the average cell cycle. BrdU (Nowakowski et al.,
1989), EdU (Salic and Mitchison, 2008; Buck et al., 2008) and
other thymidine analogs constitute the most used tool to estimate
the cell cycle length of cells in many contexts (Alexiades and
Cepko, 1996). The methodology is based on the replacement of
endogenous thymidine during DNA synthesis with traceable com-
pounds (Takahashi, 1966; Takahashi et al., 1996). The length
of the average cell cycle is then inferred from the dynamics of
the incorporation of these compounds into the DNA of cycling
cells (Macdonald, 1970).

To estimate the average cell cycle length of the population, sam-
ples are cultured in the presence of EdU and then fixed at different
time points (corresponding to different times of EdU incorpo-
ration). Combined nuclear Hoechst staining with EdU detection
assay and immunostaining against Sox2 is used to identify all pro-
genitors that have passed through S-phase for each EdU incubation
time.

The cell cycle length T and the growth fraction γ are calculated
using the standard cumulative curve methodology based on lin-
ear regression (see Methods). Representative snapshots are shown
in Fig. 1C-F. The resulting cumulative curves (Figs. 1E,F) reveal
that γ remains at around 72% for both conditions tested, while T
depends strongly on the culture conditions (T=35.2± 3.5 hours for
SC, T= 24.7 ± 2.0 hours for SC+FGF). In conclusion, our results
show that FGF2 stimulation shortens the average cell cycle length
in cultures of RG in vitro, while its effect in the growth fraction is
not statistically significant.

FGF2 stimulates the generation of progenitors in culture

The previous section shows that FGF2 affects the rate of division.
To study the effect of FGF2 in the number of cells of each spe-
cific population of RG progenitors and differentiated neurons, we
extract the neocortex of mouse embryos at E11-11.5 and plate cells
at same initial cell density in different wells. Next, cells are cul-
tured under the two conditions of FGF2 and samples are then fixed
them every 2-4 hours, starting at 24 hours post plating (hpp). Next,
samples are stained using antibodies against Sox2 and Map2 to
identify progenitors and differentiated cells, respectively. We then
identify the fate of each cell based on the intensity of Sox2 and
Map2 staining using our segmentation framework in images of 0.6
mm × 0.6 mm (see Supplementary Methods).

Results are shown in Fig. 2 for the two conditions tested:
SC and SC+FGF. Output provided by the segmentation script
is plotted in Figs 2B,C. Assuming the typical logistic growth
model (Juarez et al., 2016) for proliferating cells in cultures, the
corresponding sigmoidal curve fitting is also plotted (green, red,
and blue lines for RG, neurons and total cells, respectively). The
data shows that an initial regime of reduced change in cell num-
bers is followed by an increase in both cell types until the system
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Fig. 1. FGF2 shortens the division time of cycling RG in vitro. (A)
Snapshots of RG cultures at different hours post plating (hpp) stained with
Hoechst and growing at SC and SC+FGF culture conditions. (B) Total cell
numbers in a field of view of 0.6 mm × 0.6 mm at different time points. Error
bars correspond to standard error of the mean value between multiple sam-
ples of similar conditions. (C-D) Sox2 (green) and and EdU (red) staining to
mark progenitors that have gone through S-Phase in 24 hours of EdU incor-
poration. (E-F) Cumulative curve of EdU positive progenitors shows that cells
in SC+FGF conditions cycle faster (T= 24.7 ± 2.0 hours) than in SC (T=35.2
± 3.5 hours), while the growth fraction γ remains similar.

reaches a regime where few new cells are being generated. In both
conditions, the amount of progenitors (green data points, green
line) and differentiated cells (red data points, red line) increases
with statistical significance (P < 0.05) but the increase in progen-
itors is statistically more significant in conditions of SC+FGF (P=
7.25E-09) that in SC conditions (P= 7.60E-03).

In principle, this increase in the progenitor population could be
explained by an increase in the population of intermediate pro-
genitors (Molyneaux et al., 2007). This sub-population of cycling
cells emerge from asymmetric division of the RG in vivo, and they
are able to perform a terminal division to produce two terminally
differentiated neurons (Hutton and Pevny, 2011). Immunofluores-
cence against Tbr2, a marker for intermediate progenitors shows
no Tbr2 positive cells in the two culture conditions tested (data
not shown). This is in agreement with the effect of FGF2 in
inhibiting the transition from RG to intermediate progenitor (Kang
et al., 2009) (FGF2 is in the culture media in both experimental
conditions: SC and SC+FGF).

Another possibility that could explain this increase in the num-
ber of RG progenitors is the presence of neuroepithelial progeni-
tors (NEPs) in the culture (that have been shown to proliferate in
vivo via pp divisions) (Beattie and Hippenmeyer, 2017; Taverna
et al., 2014). Quantification of immunofluorescence against Pax6,
a well characterized marker for RG (Suter et al., 2009) that is not
present in NEPs (Elsen et al., 2018) shows that close to 100% of
all Sox2 positive progenitors are also positive for Pax6 (Supple-
mentary Figure S1A), suggesting that FGF2 stimulation does not
result in the presence of neuroepithelial progenitors.

In conclusion, the increase in FGF2 concentration does not pro-
duce intermediate or NEP progenitors, and results in more RG and
similar number of differentiated cells, showing that the popula-
tion of cycling progenitors does not grow at the expense of the
terminally differentiated cells.

Branching process formalism predicts variable mode of
division that is affected by FGF2 stimulation

The previous observation suggests that, apart from the changes in
the cell cycle length, FGF2 may also be affecting the mode of
division of the RG. It has been shown previously that the fate of
differentiating RG can be modulated by FGF2, by changing the
differentiation progeny of RG from neurons to glia (Qian et al.,
1997). To quantify the effect of FGF2 in the mode of division, we
take advantage of a branching process theoretical formalism devel-
oped by our lab (Míguez, 2015). In brief, the tool provides the
average rates of each mode of division with temporal resolution
simply based on numbers of progenitors and differentiated cells at
different time points (see Supplementary Methods).

Input data of the framework are the numbers of progenitors and
differentiated cells, the rate of apoptosis and the growth fraction.
To obtain the average rate of apoptosis, we perform immunos-
taining against anti-Cleaved Caspase 3 at three time points in the
cultures at SC and SC+FGF conditions. Comparison between both
conditions show a very reduced rate of apoptosis that is not sig-
nificantly affected by the addition of extra FGF2 (Supplementary
Figure S1B).

Next, the fitted values of cell numbers for progenitors and dif-
ferentiated cells from the previous section, and the apoptosis rate
are used as input in Eq. 1 in the Supplementary Methods (Míguez,
2015) to obtain the average value of pp-dd divisions. Results are
shown in Fig. 3A. In both cases, differentiation appears to increase
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Fig. 2. FGF stimulation increases the amount of progenitor cells. (A) Snapshots of RG cultures at 24 hours post plating showing nuclei (Hoechst),
progenitors (stained with Sox2) and differentiated neurons (stained with Map2). (B-C) Quantification of the number of cells of each type in both culture
conditions at different time points shows an increased number of progenitors is SC+FGF, compared to SC conditions. Error bars correspond to standard error
of the mean. Lines correspond to nonlinear sigmoidal fitting of the experimental data points.

in time, and this change is reduced in SC-FGF conditions. Inter-
estingly, both situations show values of pp− dd 6= 0, which would
correspond to the in vivo situation of asymmetric only divisions
pd = 1 (pp+ pd+ dd = 1). Also, the average rate of differenti-
ation is not constant in time, with the maximum change in the
differentiation dynamics occurs around 36-37 hpp. Comparison
between the two curves show that the value of pp− dd predicted
is higher when more FGF2 is present in the culture media, which
corresponds with the higher increase in the number of progenitors
observed in SC-FGF conditions (Fig. 2C).

To further validate the result that an increase in FGF2 increases
the amount of pp divisions, we designed an experiment based
on Pulse-and-Chase of EdU labelled cells. Do do that, we plate
cells from mouse developing neocortex following the procedure
explained in Methods section. Next, cells are cultured in SC and
SC+FGF conditions until 33 hpp. At this point, a pulse of 30-
minutes of EdU is applied to all samples. A number of samples
are fixed at this time point (and labeled as “Pulse” time point).
The rest of samples are washed with fresh culture media 5 times
to remove the Edu (see Methods). These samples are cultured for
another 15 hours (corresponding to the predicted average T for
SC+FGF conditions during this time, to ensure that labeled cells
cannot cycle more than once in any of the culture conditions).
Next, cells are fixed and stained with Hoechst, EdU and Sox2
immunostaining. Finally, the number of Sox2+/EdU+ cells at the
time of the pulse (33 hpp) and chase (47 hpp) is quantified using
our automated image analysis tool (see Supplementary Methods).
Results are shown in Fig. 3B-C. The number of progenitors labeled
with EdU does not change significantly in SC conditions, consis-
tent with a large proportion of asymmetric divisions (i.e, one EdU+
RG produces two EdU+ cells: one RG and one neuron, so the
amount of EdU+ RG remains constant) or a balanced ratio between
pp and dd. On the other hand, in conditions of SC+FGF, we see a

statistically significant (P<0.05) increase in the number of EdU+
RG when comparing “pulse” and “chase” time points. This result
shows that more RG originally labeled with the short EdU pulse,
divided and produced more RG when FGF2 is increased.

The length of the cell cycle is variable and shortens in
conditions of FGF2 stimulation

The Branching Process formalism also provides the average cell
cycle length of the progenitors in the culture with temporal res-
olution (Eq. 2 in Supplementary Material). This equation uses as
additional input the value of the growth fraction γ, which can be
indirectly obtained from the EdU experiments in Figs. 1E-F. To
obtain a more direct estimation of the amount of quiescent progen-
itors, we perform immunofluorescence against KI67 at different
time points (Fig. 4A) (Scholzen and Gerdes, 2000). The auto-
mated quantification of the number of Sox2+ cells that are also
KI67+ in both culture conditions (Fig. 4B) shows statistically sig-
nificant differences between SC and SC+FGF conditions, contrary
to the results obtained with EdU cumulative curves in Figs. 1E-
F. In SC conditions, the growth fraction is around 55%, while the
value in SC+FGF conditions is closer to 90%. This discrepancy
between the EdU data (Figs. 1E-F) and the KI67 immunofluores-
cence (Figs. 4A-B) is discussed and studied in detail in the next
section.

The value of the cell cycle length obtained as output of Eq. 2
is plotted in Fig. 4C, showing an average value of T that is not
constant: a continuous decrease in cell cycle length is followed
by an increase at later time points, and the minimum values for
SC (around T = 19 hours) and SC+FGF (around T = 10 hours)
conditions occur around 36-37 hpp. These values are close to the
values measured in vivo in Refs. (Gao et al., 2014; Beattie and
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Fig. 3. FGF affects the proportion of symmetric proliferative divisions
in RG culture. (A) Plot of the average value of pp− dd of the population
of RG under SC (black) and SC+FGF (grey) conditions. (B) Representative
images showing Sox2 and EdU (stained in green and red respectively) for
“pulse” and “chase” time points. (C) Quantification of the number of Sox2
and EdU positive cells for time-points for SC and SC+FGF conditions. Error
bars correspond to standard error of the mean value between independent
repeats of the experiment.

Hippenmeyer, 2017), that report an average cell cycle length of
16-18 h in the temporal window corresponding to E11-E13.

The branching process tool outperforms cumulative curve
methods to monitor cell cycle dynamics.

Interestingly, and despite showing the same trend of shortening T
with FGF2, the absolute values of the cell cycle length predicted
by the branching process formalism do not agree with the val-
ues obtained by the EdU cumulative experiments in Figs. 1E-F.
This discrepancy in cell cycle dynamics and in the growth frac-
tion (Fig. 4B) pointed us to study the potential source of conflict
between the cumulative method and the Branching Process tool.
To do that, we developed a numerical model of a generic differen-
tiating stem cell population that simulates cycling progenitors that
can either proliferate, differentiate, enter quiescence or apoptosis
based on rates and probabilities provided by the user. Values of
cell cycle length, mode of division, quiescence and death rate can
be kept constant throughout the simulation, or can be set to change
each time-step. Parameters are sampled from a gamma distribution
to mimic intrinsic cell-to-cell variability. Details of the model are
presented in the Supplementary Methods section. A scheme of the
simulation framework is shown in Supplementary Figure S2.

A numerical analog of Edu is simulated computationally, in
such a way that cells in S-phase are marked as labeled when EdU is
present). Then, the number of progenitors, differentiated and EdU

Fig. 4. The growth fraction and the length of the cell cycle change in
response to FGF2. (A) Example of cells stained with nuclei (blue), KI67 (red)
and Sox2 (green) at 36 hpp. (B) Quantification of the percentage of progeni-
tor cells that are actively cycling in both conditions and at three different time
points. Columns represent the mean between independent repeats. Error
bars represent the standard error or the mean. (C) Cell cycle prediction by
the branching process formalism for the two different FGF2 concentrations
tested.

positive progenitors at each time point is used to calculate the aver-
age cell cycle length of the population using three widely used
EdU based methods: single cumulative curve (C1) (Nowakowski
et al., 1989), dual cumulative (C2) (Shibui et al., 1989), and the
pulse-chase (PC) method (Weber et al., 2014). The cell cycle is
also calculated using the branching process (BP) method (Míguez,
2015) (Eq. 2 in Supplementary Methods). A detailed description
of each method and how it is applied in this context is illustrated
in Supplementary Figure S3 and explained in the Supplementary
Methods section. All predictions are then compared with the input
value of T used for each simulation, to estimate the accuracy and
reliability of each method.

The first scenario tested corresponds to homeostasis in the pro-
genitor population (pp− dd = 0), constant value of T = 20 hours
and no quiescent or apoptotic cells (γ = 1, ∅P = 0). These are the
conditions defined by Nowakowski and coworkers when introduc-
ing originally the cumulative curve method (Nowakowski et al.,
1989). Results of the analysis are plotted in Fig. 5A. Dots in
Fig. 5B correspond to the prediction of the value of T for 10 inde-
pendent simulations (crosses represent the average). We see that,
for these particular settings, all four methods are able to predict
the correct value of T (dashed line) within a 10% error margin,
with both PC and BP performing slightly better than C1 and C2.
Importantly, when comparing the individual values for the 10 sim-
ulations predicted by single and double cumulative curve methods
(C1 and C2), there is a higher dispersion than in PC and BP meth-
ods. This means that a high number of repeats should be necessary
to get an accurate value of T, and that the typical experimental
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Fig. 5. The branching process tool outperforms cumulative curve
methods. Cumulative curves and quantification for Single Cumulative (C1),
dual cumulative (C2), pulse-chase (PC) and Branching Process (BP) meth-
ods for 10 independent runs of the numerical model for conditions of (A-B)
constant and (C-D) variable cell cycle length. Each color corresponds to the
same simulation analyzed using each framework (see text). The cell cycle is
also calculated using the branching process (BP) Dots correspond to single
runs of the model, crosses show the average value for the 10 independent
simulations.

design that involves only three independent repeats does not guar-
antee a correct estimation of the cell cycle. The same conclusions
apply when considering growth of the population of progenitors,
as in the case of RG reported here (pp− dd > 0, Supplementary
Figure S4A).

Variable cell cycle dynamics has been reported in many devel-
opmental systems (Míguez, 2015; Saade et al., 2013; Le Dréau
et al., 2014; Takahashi et al., 1995; Calegari and Huttner, 2003;
Calegari et al., 2005; Dehay and Kennedy, 2007; Mairet-Coello
et al., 2012; Roccio et al., 2013; Arai et al., 2011; Iulianella et al.,

2008; Locker et al., 2006). Fig. 5C shows the output of the numer-
ical model when a variable value of T is used as input (with an
average value T= 20 hours). Fig. 5D plots the quantification of the
cell cycle in these conditions. In this situation, C1 predicts a much
longer cell cycle that the average (49% error), while the C2 pre-
dicts a shorter cell cycle (24% error). Interestingly both PC and
BP return a value much closer to the correct average, with less
than 10% error. Again, the variability of the single cumulative SC
method (the one used in Figs. 1E-F and the most commonly used
in the literature) is very high, making it unreliable when a small
number of repeats are used (less than 10). Again, the same con-
clusions apply when considering conditions where the cell cycle
changes while the population of progenitors is allowed to grow
(pp− dd > 0, Supplementary Figure S4B).

The balance between differentiative and proliferative divisions
has been shown to also change overtime in many developmental
systems (Saade et al., 2013; Míguez, 2015). For instance, during
motorneuron generation, the rate of differentiation changes rapidly
due to a sudden switch in Shh levels (Saade et al., 2013). We show
here that even in vitro, with cells growing in constant controlled
conditions, the mode of divisions is highly non-constant (Fig. 3A).
When we set a variable differentiation rate in our simulations, we
observe that again both single SC and dual DC cumulative meth-
ods fail and show high dispersion between independent samples
(Supplementary Figure S4C). The same occurs when both mode
and rate of division are allowed to change simultaneously (Sup-
plementary Figure S4D). In these more realistic conditions closer
to our experimental findings (variable mode and rate of division),
the branching process equation predicts a value that is closer to the
one used in the simulations, and the variability between samples is
highly reduced.

In conclusion, these results show that methods based on cumu-
lative curve labeling are not suitable when proliferation and/or dif-
ferentiation rates are not constant. This, together with the reported
effect of BrdU and analogs in lengthening the cell cycle (Levkoff
et al., 2008), and the high dispersion when comparing sets of cells
growing at the same exact conditions, could explain the discrep-
ancy values of the cell cycle reported in Figs. 1E-F and Fig. 4C.
In addition, the error in the growth fraction measured in Figs. 1E,F
versus Fig. 4A can be due to the same problems. Both Pulse-Chase
PC and Branching Process BP perform well, while the branching
formalism has the advantage of providing temporal resolution, as
well as accurate values of the average mode of division during the
experiment.

Values from the branching process analysis are able to
reproduce the experimental data

To test if the values provided by the branching process formalism
are correct, we take advantage of the same numerical model of the
differentiating stem cell population introduced previously. Now,
the model is informed with the values of initial number of cells as
in the experiments, the prediction of T and pp− dd predicted by
the branching process (Fig. 3A and Fig. 4C), and the growth frac-
tion γ and apoptosis measured in the previous sections (Figs. 4B,
and Supp Fig. 1B).

Results are plotted in 6A-B, where we plot the prediction for
number of progenitors and differentiated cells (thin green and red
lines, respectively) for 30 independent simulations. Comparison
with the fitting of the experimental data for progenitors and dif-
ferentiated cells (thick green and red lines, respectively) show a
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Fig. 6. Values derived using the branching process formalism repro-
duce the correct dynamics observed experimentally. (A-B) Numerical
simulations (light red and green lines) for both conditions using the parame-
ters of mode and rate of division predicted by the equations of the branching
process. Thick lines correspond to the sigmoidal fitting of the experimental
data in Fig. 2. Black regions mark the uncertainty that result from the fitting.
(E) Changes in the population of cycling progenitors due to each of the three
effects of FGF2 alone or in combination.

good agreement in both conditions, suggesting that the branching
equations are able to predict the correct average mode and rate of
division of RG in vitro.

Discussion
A detailed analysis of the dynamics of vertebrate neurogenesis
involves a careful characterization of the features that regulate the
dynamics of proliferation and differentiation of RG during the gen-
eration of the mammalian cortex. One of its most striking features
is the fact that RG are restricted to an asymmetric mode of divi-
sion in vivo, as oppose to a more probabilistic scenario observed

in other developmental systems (Saade et al., 2013; Míguez, 2015;
He et al., 2012; Chen et al., 2012; Clayton et al., 2007; Teixeira
et al., 2013; Klein et al., 2010; Snippert et al., 2010). FGF2 has
been shown to facilitate the expansion of RG in vitro cultures, but
the details of this process have not been studied. Our quantitative
characterization of the effects of FGF2 show a multiple effect in
the growth fraction (Fig. 4B), the mode of division (Fig. 3A) and
in the length of the cell cycle (Fig. 4C).

The overall influence of each of these effects in the expansion
potential of the RG culture can be assessed using our numerical
model. To do that, we inform the simulations with the experi-
mental values for SC, and quantify the increase in the number of
cycling progenitors after 22 hours (as a measure of the potential
of the culture to expand in size). Next, we substitute each of the
predictions for cell cycle length, growth fraction and differentia-
tion rate predicted for the SC+FGF2 conditions, individually or in
combination. The increase in cycling progenitors for 30 indepen-
dent numerical simulations for each condition is shown in Fig. 6E.
Surprisingly, the analysis suggests that the most influential feature
is not the differentiation rate or the growth fraction, but the change
in cell cycle length. The change in growth fraction or differentia-
tion rate do not significantly impact the culture in terms of cycling
progenitors (1 % and 9%, respectively), but when combined with
the effect on the cell cycle, they can increase the expansion by an
additional 25%.

Several authors propose that the mode of division depends on
the distribution of cell fate determinants during mitosis, the ori-
entation of the spindle or the inheritance of the primary cilium
or the different centrosomes (Taverna et al., 2014). It is possible
that the apical-basal polarized structure of the RG, or their orga-
nization and orientation of the radial processes along the stratified
neuroephitelium results in asymmetric inheritance of these cell fate
regulators (Taverna et al., 2014). The loss of these polarizing fea-
tures provided by the niche when cells are cultured in vitro may
result in a probabilistic scenario where the fate of the two daugh-
ter cells is independent of each other and all of the 3 modes of
divisions are possible, similarly to neuronal progenitor cells and
other developmental systems (Saade et al., 2013; Míguez, 2015;
He et al., 2012; Chen et al., 2012; Clayton et al., 2007; Teixeira
et al., 2013; Klein et al., 2010; Snippert et al., 2010). In fact, early
studies in the mouse neocortex suggest that the model that fits best
the clone distribution assumes that the fate of the daughter cells
is independent of each other (Cai et al., 2002). In this situation,
the branching process framework is able to estimate the rates of
each of the three modes of division (Míguez, 2015). This predic-
tion for the case of RG in culture is shown in Fig. 6C-D, where we
can see that the predominant mode of division is pp (green). This
symmetric mode of division is even more probable in conditions
of SC+FGF, to the expenses of a reduction in pd and dd.

A detailed analysis of the dynamics of vertebrate neurogen-
esis involves a careful characterization of the rate of division.
The most direct method to measure the cell cycle length requires
to monitor the time between consecutive mitotic evens at sin-
gle cell resolution (Sigal et al., 2006). Unfortunately, due to the
high degree of variability, many cells in a population need to be
sampled, segmented and tracked simultaneously to obtain an accu-
rate value, even when dealing with clonal samples (Sandler et al.,
2015). Therefore, the most used approach is the use of thymidine
analogs, but this approach has several drawbacks: it can be toxic
and mutagenic (Duque and Gorfinkiel, 2016) and affect the normal
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dynamics of cell proliferation (Levkoff et al., 2008) by lengthen-
ing the cell cycle. In addition, choosing the correct mathematical
analysis and interpretation of the experimental data is not straight-
forward (Johansson et al., 1999). Authors have proposed several
approaches, such as linear (Begg et al., 1985; Hoyer et al., 1994),
nonlinear fitting (Johansson et al., 1994; Weber et al., 2014), or
the use of deterministic (Lee and Perelson, 2008) or stochastic
models (Zilman et al., 2010). Depending on the method used, the
same input data results in quite different predictions for the aver-
age duration of the cell cycle (Ritter et al., 1992). Due to these
limitations, BrdU and analogs have been referred as “one of the
most misused techniques in neuroscience” (Taupin, 2007).

Our results shown that methods based on cumulative incorpo-
ration of thymidine analogs perform well in conditions of constant
proliferation and differentiation, but they are not designed to study
systems where the cell cycle changes overtime, which is is poten-
tially the case in many developmental systems. In these conditions,
the Branching Process formalism and the Pulse-Chase outperform
cumulative curve methods. On the other hand, the Pulse-Chase
method requires experiments that are longer than the cell cycle
length, so an estimation of the value of the cell cycle has to be
known beforehand. In addition, the toxic effect of the labeling
agent for such long periods of time may affect strongly the normal
cell cycle progression, probably by enlarging its real value (Lev-
koff et al., 2008; Duque and Gorfinkiel, 2016). A clear advantage
of the Branching Process is that it does not involve manipulation
of the samples before fixation, so there is no interference with the
normal progression of the cell cycle. In addition, the Branching
Process formalism also provides the correct value of T with tempo-
ral resolution, and the measurement of the average differentiation
rate, (also with temporal resolution).

Several studies have shown that the length of G1 phase
increases progressively when neurogenesis starts, resulting in a
overall increase of the cell cycle (Takahashi et al., 1995; Cale-
gari and Huttner, 2003; Calegari et al., 2005; Dehay and Kennedy,
2007; Mairet-Coello et al., 2012; Roccio et al., 2013). Alterna-
tively, others studies show that the cell cycle length is shorter
in neurogenic divisions, compared to proliferative divisions (Arai
et al., 2011; Saade et al., 2013; Le Dréau et al., 2014; Iulianella
et al., 2008; Locker et al., 2006), due mainly to a shortening in
S-phase. Our results show that FGF promotes pp divisions and
shortens cell cycle, consistent with the hypothesis that prolifera-
tive divisions have a shorter cell cycle, maybe via a shortening of
G1-phase (similarly to insulin-like growth factor (Mairet-Coello
et al., 2009; Hodge et al., 2004)). A careful characterization of
how FGF2 affects each phase of the cell cycle it is far from the
scope of this contribution.

CONCLUSION
The culture and differentiation of RG cells in vitro provides a
very good framework to study basic features that orchestrate
the formation of the mammalian neocortex. In brief, the system
provides a well controlled environment where the effect of signal-
ing molecules and other conditions can be tested reliably, while
providing easier manipulation and imaging compared to studies
performed in vivo. We use this framework to study the features
that promote the expansion of RG in culture driven by FGF2. Our
combined experimental/computational/theoretical approach can be
also used to test the effect of other signaling networks by quantify-
ing the cell cycle and mode of division after ligand stimulation

or small molecule inhibition, after a comparison with a control
culture.

Materials and Methods
Preparation and culture of dissociated mouse cortical RG

Cells were obtained from mouse embryos of the C57 BL/6JRCC
line at E11/E11.5, following standard methods described previ-
ously (see Ref. (Hilgenberg and Smith, 2007)). The initial time
point is labeled as 0 hours post plating (hpp) and it is used as the
reference point for our experiments. Briefly, after careful remov-
ing of the meninges, the cortex is isolated and placed in Hank’s
Buffered Salt Solution free of Ca2+ and Mg2+ (HBSS, Ther-
moFisher 14185). Next, samples are mechanically disgregated
using Pasteur pipettes and plated in coverslips treated with Nitric
Acid and Fibronectin at 10 µg/ml (Fisher Scientific; 15602707)
to facilitate cell adhesion. Cells are plated at constant density
(250000 cells in each M24 well) for all experiments in Neurobasal
medium without L-glutamine (ThermoFisher 21103-049), Gluta-
max (ThermoFisher 35050-038), B-27 (ThermoFisher 17504-044)
Penicillin, Streptomycin and Antimicotic (concentrations standard
for cell culture). Media is complemented with 0.02 ng/µl of recom-
binant murine EGF (PeproTech 315-09, lot number 0517179-1)
and 0.02 ng/µl of human FGF basic (PreproTech 100-18B, lot
number 0311706-1). This culture media is referred as standard
culture (SC) conditions in our study. Cells are allowed to rest a
full day in the incubator to recover the dissection process. 24 hpp,
the culture media is changed with fresh SC media, or to SC media
complemented with additional human FGF basic to a final con-
centration of 0.06 ng/µ). This culture conditions are labeled as
SC+FGF in this study. All experimental protocols were in accor-
dance with the guidelines of the European Communities Directive
(2012/63UE) and the actual Spanish legislation (RD 53/2013).

Immunofluorescence

Cells are fixed for 20 minutes at Room Temperature (RT) with
4% paraformaldehyde and washed twice for 5 minutes with Phos-
phate Buffer Saline 1X (PBS). Fixed cells are incubated with the
permeabilization solution composed of Triton x-100 (ChemSup-
ply 9002-93-1) at 0.6% in PBS 1X for 20 minutes at RT. Next,
cells are washed 3 times with PBS and blocking solution is added
(Bovine Serum Albumin, BSA. Sigma ;A7906) at 3% in PBS for
at least 30 minutes. Later, cells are incubated with primary anti-
bodies dissolved in the blocking solution overnight at 4ºC. The
next day, cells are washed with PBS 3-4 times for 5 minutes, and
they are incubated with secondary antibodies in the blocking solu-
tion for 45 minutes at RT, protected from light. Next, secondary
antibodies are washed out (PBS 3-4 times for 5 minutes), and
nuclei is stained with Hoechst 3342 (1/2000, ThermoFisher 1399)
dissolved in PBS for 5 minutes at RT. Finally, cells are washed
in PBS, double distilled water, and ethanol at 70%. Cover-slips
are finally mounted with Fluoromount G (Southern Biotechnology
Associates, Inc, Birmingham, Alabama 0100-01) on microscope
glass slides. Primary antibodies used are: anti-Sox2 (1/2000, Gene-
Tex GTX124477), anti-Map2 (1/200, Santa Cruz Biotechnology
sc-74421); anti-Pax6 (1/1000, BioLegend B244573); anti-Cleaved
Caspase 3 (1/1000, Cell Signaling 9661); and anti-KI67 (1/200,
ThermoFisher 14-5698-82). Secondary antibodies used are: anti-
Rabbit 488 (1/1000, ThermoFisher A-21206), anti-Mouse 555
(1/1000, ThermoFisher A-21137) and anti-Rat 555 (1/1000, Ther-
moFisher A-21434).
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Statistical and Data analysis

One way ANOVA test is used to measure statistical significance
between different time points. Cell cycle values in Fig. 1E-F are
obtained after linear regression of the four first data points. Rates
of quiescence in Fig. 4B are obtained from the mean value of
the four last points. Slope error is calculated doing a linear fit-
ting with values of the average plus standard error and another
one with values of the average minus standard error to get the dif-
ference in the slope between these two values. Quiescence error
is the standard error of the four last points, and the T error is
derived from the error propagation of the previous values. Three-
parameter sigmoidal fitting is used to fit data from Fig. 2B-C.
Black regions in Figs. 6A-B mark the uncertainty derived from
the fitting, calculated from the difference between the result of the
fitting using as values the mean plus the standard error, and the
result of the fitting using as values the mean minus the standard
error (with the same values of the parameters). Sample size for all
experiments is at least 4. Unless specified, errorbars represent the
standard error of the mean, calculated using error propagation. All
curve fitting and statistical analysis are performed using Matlab©

(The Mathworks©, Natick, MA) and Julia programming language
(Statistics package).

EdU cumulative curve

Cumulative curve of the thymidine analog 5-Ethynyl-2’-
deoxyUridine (EdU) incorporation is performed using Click-
iTTM Plus EdU Alexa FluorTM 647 Imaging Kit (ThermoFisher;
C10640). Briefly, EdU was added around 24 hpp at 2 µM. Cells
are then fixed at increasing times of EdU exposition. Staining of
EdU positive cell is performed based on previously published pro-
tocols (Harrison et al., 2018). Next, immunostaining against Sox2
is used as standard marker for RG progenitors (Beattie and Hip-
penmeyer, 2017). Later, the number of cells positive for both Sox2
and EdU is quantified using automated image processing. To cal-
culate the cell cycle length, the percentage of progenitor cells that
have incorporated EdU is plotted against the hours of EdU incor-
poration. The saturation value at long incubation times is used to
calculate the growth fraction γ. This value is then used to calcu-
late the average cell cycle using linear regression at short EdU
accumulation times (see figure 1).

EdU pulse-and-chase experiments.

Cells are exposed to a short pulse of 30 minutes of EdU at 36
hpp. “Pulse” points are fixed at this time point. “Chase” points are
washed three times with fresh medium and are fixed 15 hours after
the “Pulse” time point. The number of EdU positive/Sox2 positive
cells is quantified in both “Pulse” and “Chase” time points for both
conditions using automated image processing.
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Supplementary

Image acquisition and analysis

Samples are imaged in a confocal microscope AR1+ of high speed in acquisition
and sensibility coupled to an inverted microscope model Eclipse Ti-E (Nikon) with
a 20X objective and a resolution of 1024x1024 pixels. The field of view is set to 0.6
mm × 0.6 mm. In brief, image processing and analysis (performed in Fiji (Schin-
delin et al., 2012)) is based on the segmentation of nuclei and the classification of
each cell as progenitor, differentiated neuron, quiescence or apoptotic based on
the intensity of the fluorescence staining of each marker. A large number of cells
(around 105 cells) is processed for each data point to minimize the effect of vari-
ability and heterogeneity of the samples. The sequence of processing algorithms
and filters is as follows.
1. Definition of the Kernel Radius (KR) that sets the size of the region used for
calculations and filter processing. Several KR sizes were tested (values from 1 to
5 pixels). The final KR was fixed as 2.5.
2. A local thresholding is applied to remove background based on the median
intensity as cutoff value (radius= 8xKR).
3. To remove breaks and holes inside the objects generated by the previous fil-
ter, the following sequence of filters is applied to enhance the definition of the
boundaries of each object: Gaussian Blur filter, Maximum Filter, Median filter and
Unsharp Mask filter (radius = KR).
4. The resulting image is binarized using the median value as threshold.
5. Euclidean Distance Map (EDT) is performed in the binary image to generate
seeds that are used by a flood fill algorithm to define the boundaries of each
object (Kang et al., 2010).
6. Finally, all objects are fitted to ellipses for posterior analysis. Ellipses smaller
than 4× π × KR2 are discarded from the analysis.

The specific features of each staining requires a different set of processing fil-
ters to enhance signal for each channel.
1. Map2: Double sequential thresholding to extract foreground information (cut-
off 1 = mean, cutoff 2: median); morphological opening to remove neurons fibers
(structuring element: lines at different angle with a length of 2xKR); Gaussian filter
to remove noise (radius=KR).
2. Sox2: Double sequential thresholding to extract foreground information (cuttof
1, = mean, cutoff 2: median); morphological opening to select only nuclei with min-
imal size (structuring element: circumference of radius equal to 2xKR); Gaussian
filter to remove noise (radius=KR).
3. EdU: Single thresholding to extract foreground information (cutoff = median);
morphological opening (structuring element: circumference of radius equal to
2xKR); Gaussian filter to remove noise (radius=KR).
4. Pax6: Single thresholding to extract foreground information (cutoff = mean);
morphological opening (structuring element: circumference of radius equal to
2xKR); Gaussian filter to remove noise (radius=KR).
5. Cleaved Caspase-3: Double sequential thresholding to extract foreground infor-
mation (cutoff 1= mean, cutoff 2 = mean + plus standard deviation); morphological
opening to select only nuclei with minimal size (structuring element: circumference
of radius equal to 2xKR); Gaussian filter to remove noise (radius=KR).
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6. KI67: Single thresholding to extract foreground information (cutoff = mean); mor-
phological opening (structuring element: circumference of radius equal to 2xKR);
Gaussian filter to remove noise (radius=KR).

Finally, the identity of each ellipse is established based on the number of pix-
els above threshold in each channel. For the MAP-2, this area was set to at least
15%, and 1% for the rest. A subset of cells are both Sox2- and Map2-, and have
a nucleus that is much larger that Sox2+ or Map2+. Since these cells are not RG
or differentiated neurons, they are not taken into account in the study.

Numerical simulations of cell populations.

We developed an in silico phenomenological model of the culture of cells as
numerical entities that proliferate, differentiate enter quiescence or apoptosis
according to probabilities established by the user. Each cell has the following fea-
tures: length of its cell cycle (T), current phase of cell cycle, time since birth (age),
and fate (progenitor, quiescent, differentiated or apoptotic). These features are
updated for each cell at each time point, since they can change due to events
such as cell division, changes in the culture media. Values of average mode of
division, average cell cycle length of the population and percentage of cycling pro-
genitors, percentage of cell undergoing apoptosis, are set by the user. To mimic
the inherent cell-to-cell variability and intrinsic noise in a clonal population (León
et al., 2004), the value for each parameter is obtained from a gamma distribution
with mean defined by the user and standard deviation of 30% of the mean (other
values from 0% to 50% provide similar results).
A scheme of how the population is defined and develops overtime is shown in
Supp Fig 2. Parameters of the simulation are: the number of initial cells m, the
average cell cycle T at each time point (defined as T =

∑
T i/n, being n the

number of cells at time t), the fraction of cycling progenitors (or growth fraction)
γ, the rate of apoptosis of progenitors ∅P , and the length of the experiment tend.
The age of each cell is defined as the time since its birth, and the type corresponds
to its characteristic as progenitors (P , cycling cells), differentiated (D, non cycling
cells), quiescent (Q, non cycling progenitors) and apoptotic (dying cells).
The simulation takes palace as follows: an initial set of un-synchronized progeni-
tors cells are allowed to cycle following the different phases of the cell cycle: from
G1 to S to G2 to finally M phase. Upon division, the two resulting daughter cells
either remain as progenitors (pp division), they become terminally differentiated
cells and stop cycling (dd division), or one remains as progenitor while the other
differentiates (pd division). For simplicity, the cell cycle is divided into just three
main steps of equal length: G1, followed by S and finally followed by G2 +M .
(T = TG1 + TS + TG2M ). Changes in the cell cycle length affect all phases of
the cell cycle identically (simulations where the phases are of different length and
that changes affecting differently different phases of the cell cycle show equivalent
results).

Branching Process formalism

Our lab has developed a method to measure the dynamics of proliferation and dif-
ferentiation that do not depends on thymidine cumulative labeling. Instead, it uses
a branching process formalism to obtain analytical equations that provide the aver-
age values of proliferation and differentiation of the population based only on the
numbers of proliferative, differentiated, quiescent and apoptotic cells at different
times points. A scheme of the method is shown in Supp Fig 3D, and an example
of its experimental implementation can be found in Ref. (Míguez, 2015).
To obtain these values, samples are allowed to develop without interfering with the
normal dynamics of the cells, and then are fixed at different developmental times.
After fixation, the amount of cells in each state is quantified by antibody staining
to distinguish progenitors (P) (Graham et al., 2003), differentiated (D) (Míguez,
2013), and the number of progenitors undergoing apoptosis (∅P ) (Blanchard et al.,
2010). The growth fraction γ is obtained using double immuno-labeling against
Sox2 and KI67 (Scholzen and Gerdes, 2000).
These values (quantified using the automated quantification described in the
Methods Section) are used as input of the following equations for the mode and
rate of division, which correspond to a generalization of Equations presented in
Ref. (Míguez, 2015) updated to account for a potential reduction of the progenitor
pool:

pp− dd =
1 + ∅P ( ∆D

∆P − 1)
∆D
∆P + 1

(1)

T = ∆t
log(1 + γ|pp− dd− ∅P |)

Ψlog
Pt
P0

(2)

where pp and dd correspond to the rate of symmetric proliferative and differen-
tiative divisions, respectively. ∆P = Pt − P0 and ∆D = Dt −D0 correspond
to the number of progenitors and differentiated cells generated in a given win-
dow of time ∆t = t− t0. The value pp− dd goes from 1 (all divisions are
symmetric proliferative) to -1 (all divisions are symmetric differentiative). The
value, pp− dd = 0 corresponds to maintenance of the progenitor pool, either
via asymmetric pd divisions of via balance between symmetric proliferative and
differentiative divisions (the model cannot distinguish between these two sce-
narios, since they are mathematically equivalent). Ψ takes the value of 1 when
1 6 pp− dd < 0, while for values between 0 6 pp− dd 6 −1 takes the form
Ψ = (0.9|pp− dd| − 1). ∅P is the rate of cell death of the progenitors pool,
obtained using double immuno-labeling against Sox2 and Cleaved Caspase3 (see
Supp Fig 1B). This reduced value of apoptosis rate (assuming that most cell death
occurs via apoptosis) is consistent with estimations from in vivo experiments (Cai
et al., 2002).

Simulations of Cell Cycle determination methods

The previous model is then adapted to perform a computational analog of one or

two thymidine compounds. At any time in the simulation, EdU can be added to the

cells, so cells undergoing S-phase will be labeled as “positive”, and will remain as

positive throughout the rest of the simulation. The input parameters of the model

are varied to simulate different dynamics of a population of cells in different condi-

tions, in terms of quiescence, apoptosis, cell cycle length and differentiation rate.

For each condition tested, we will perform four measurements of the cell cycle

based on the following methodologies:

Cumulative Curve method. This technique has been extensively used both in in

vitro and in vivo situations to quantify the rate of cells in the population entering

S-phase (Martinez-Morales et al., 2010; Le Dréau et al., 2014). A scheme of the

method is shown in Supp Fig 3A. In brief, a nucleoside analog is added to several

identical samples that are fixed and stained at different times. Labeled cells in all

samples are quantified using microscopy or flow-cytometry. The ratio of progenitor

cells that are labeled for each sample is plotted, and the values corresponding to

the cell cycle length T are obtained from the slope of a linear regression fitting

of the data at short exposure times. In addition, the fraction of cycling progenitor

cells γ, or growth fraction, can be estimated from the rate of labeled cells after

long exposure times. This method, when combined with dyes to measure DNA

content can be used to determined the length of the different phases of the cell

cycle (Dolbeare and Selden, 1994).

Dual Cumulative Curve Method. This method combines dual staining with thymi-

dine analogs (Salic and Mitchison, 2008). It also provides the possibility of fixing

all samples simultaneously to ensure that quantification is performed always at the

same developmental time. In addition, it can also provide some positional informa-

tion of regions in a given tissue where cells cycle at different rates (Shibui et al.,

1989; Bradford and Clarke, 2011). On the other hand, it requires a more com-

plex experimental design, and it may also result in increased toxicity. In addition,

it does not provide information about the growth fraction. The method (Supp Fig

3B) involves a first labelling agent administered to all samples simultaneously, and

a second agent administered at different time points. All samples are collected at

the same time, and they are stained for both labelling agents. The amount or cells

that are double positive overtime for the two different thymine analogs is plotted,

and the average length of T and TS can be obtained using linear or nonlinear

regression (some corrections regarding the potential differential incorporation of

both agents are required).

Pulse-Chase method. Both previous methods rely on long term exposure of the

samples to nucleoside analogs, which can result in toxicity effects. Alternative, a
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short pulse can be also applied (Weber et al., 2014) to label only cells that where

in S-phase at a given time. Then, the population of positive cells is “chased” in the

different samples by fixing and staining at different times. Several variations of this

method have been developed. A commonly used technique is to stain cells in mito-

sis (using immunofluorescence against phospho-histone-3), or using a second

thymine analog in S-phase to chase cells that have re-entered in a new S-phase.

A scheme of the method is shown in Supp Fig 3C.

The ratio of double positive cells in the different samples is plotted overtime, and

the average value of T corresponds to the time between the pulse and the max-

imum of double positive cells in the population. The slope of the curve at shorter

time scales can be used to calculate the length of S-phase. Measurements of the

cell cycle using this methods requires significantly longer experiments than the

two previous methods.

Branching process Method. The number of cells and their fate as progenitors,

differentiated, quiescent or apoptotic is recorded at each time point during the sim-

ulation. These values are then used as input of the branching process equation 2

described briefly in other subsection of the Methods section. The average value is

then plotted for each condition tested.
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Fig. 7. Supplementary Figure 1: Experiments to obtain the apoptosis rate and the amount of NEP. (A) Example of cells stained with nuclei marker
(blue), Pax6 (green), and Map2 (red) at 36 hpp. Quantification of the percentage of progenitors that are Pax6 positive for all conditions and three time points.
Columns represent the mean between independent repeats. (B) Example of cells stained with nuclei (blue), cleaved Caspase3 (green), and Map2 (red) at 36
hpp. Quantification of the percentage of progenitor cells that show positive staining for Caspase3 for both conditions and at three different time points. This
low value of apoptosis rate is consistent with estimations from in vivo experiments (Cai et al., 2002). Error bars represent the standard error or the mean.
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Fig. 8. Supplementary Figure 2: Scheme of the simulation of the population model. In brief: (a) an initial number m of un-syncronized progenitor cells
proliferates and differentiates. (b) At any given time t, each cell i in the population of n cells is characterised by four parameters (c): phase, T, age and Type.
(d) Cells cycle in their phase from G1 to S to G2 +M . When a given cell i reaches the end of G2 +M , a division event takes place, with three different
outcomes (g): pp, pd or dd division. In the presence of a labelling agent, cells incorporate it only during S-phase, and become labeled as "positive" (showed
in yellow). Depending on their type, cells are sorted into 4 groups (h): progenitors, differentiated, quiescent and apoptotic.

Fig. 9. Supplementary Figure 3: Scheme of methods tested to measure cell cycle length. (A) Cumulative curve: A thymidine analog is added to all
samples simultaneously. Samples are fixed at different times and stained for quantification. Linear fitting of the rate of labelling is used to determine the
average T and γP . (B) Dual Cumulative: The first thymidine analog (red) is administered to all samples simultaneously. The second thymine analog (green)
is administered at different times. All samples are then fixed simultaneously. Quantification of all double positive cells (yellow) is plotted against exposure
time. This method does not provide an estimation of the growth fraction. (C) Pulse-chase: A short pulse of a first nucleoside analog is added to all samples
simultaneously. A second nucleoside analog is added at different times, and the samples are fixed and stained immediately after. The amount of double
positive cells is plotted overtime. (D) Branching process: Cells are fixed at different times and stained with antibodies to distinguish progenitors, differentiated,
quiescent and apoptotic cells. The resulting numbers are used to inform the equations 1-2, that will give us the values of the average rate and mode of division
overtime.
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Fig. 10. Supplementary Figure 4: Values of cell cycle predicted for different conditions of growth and differentiation of the culture. Dots correspond
to independent simulations. Crosses represent the average between 10 simulations. Dashed horizontal line corresponds to the average value of T used in
the simulations (20 hours). Shorter distance between crosses and dashed line represent better performance of the method. Lower dispersion between dots
in each method represents better accuracy. (A) Predicted value of T by each method in conditions of constant mode and rate of division, but for values of
increased in the population of progenitors (pp− dd > 0). (B) Predicted value of T by each method in conditions where the cell cycle is set to decrease and
then increase. (C) Predicted value of T by each method in conditions where the differentiation is increasing monotonically during the simulation. (D) Predicted
value of T by each method in conditions where both cell cycle and differentiation rate are set to change during the simulation.
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