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Abstract 12

The excess of 15-30 Hz (β-band) oscillations in the basal ganglia is one of the key 13

signatures of Parkinson’s disease (PD). The STN-GPe network is integral to generation 14

and modulation of β band oscillations in basal ganglia. However, the role of changes in 15

the firing rates and spike bursting of STN and GPe neurons in shaping these oscillations 16

has remained unclear. In order to uncouple their effects, we studied the dynamics of 17

STN-GPe network using numerical simulations. In particular, we used a neuron model, 18

in which firing rates and spike bursting can be independently controlled. Using this 19

model, we found that while STN firing rate is predictive of oscillations but GPe firing 20

rate is not. The effect of spike bursting in STN and GPe neurons was state-dependent . 21

That is, only when the network was operating in a state close to the border of 22

oscillatory and non-oscillatory regimes, spike bursting had a qualitative effect on the β 23

band oscillations. In these network states, an increase in GPe bursting enhanced the 24

oscillations whereas an equivalent proportion of spike bursting in STN suppressed the 25

oscillations. These results provide new insights into the mechanisms underlying the 26

transient β bursts and how duration and power of β band oscillations may be controlled 27

by an interplay of GPe and STN firing rates and spike bursts. 28

Author summary 29

The STN-GPe network undergoes a change in firing rates as well as increased bursting 30

during excessive β band oscillations during Parkinson’s disease. In this work we 31

uncouple their effects by using a novel neuron model and show that presence of 32

oscillations is contingent on the increase in STN firing rates, however the effect of spike 33

bursting on oscillations depends on the network state. In a network state on the border 34

of oscillatory and non-oscillatory regime, GPe spike bursting strengthens oscillations. 35

The effect of spike bursting in the STN depends on the proportion of GPe neurons 36

bursting. These results suggest a mechanism underlying a transient β band oscillation 37

bursts often seen in experimental data. 38

Introduction 39

Parkinson’s disease (PD) is a progressive neurodegenerative brain disease caused by the 40

depletion of dopamine neurons in the substantia nigra pars compacta (SNc) [1]. Loss of 41
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dopamine causes a host of cognitive and motor impairments. The dopaminergic cells 42

death can be attributed many causes e.g. genetic mutations [1], pathogen that affects 43

the gut microbome and travels to the central nervous systems [2, 3], excitotoxicity [4], 44

and mitichondrial dysfunction [5] etc. [6]. While the etiology of PD is still debated, the 45

behavioral symptoms of PD are accompanied by various changes in the neuronal 46

activity in Basal Ganglia (BG): e.g, increased firing rate of D2 type dopamine receptors 47

expressing striatal neurons [7–9]; increase in spike bursts in striatum, globus pallidus 48

externa (GPe), globus pallidus interna (GPi) and subthalamic nuclei (STN) [8] and 49

increased synchrony in all BG nuclei [10] including striatum [11], GPe [12,13], 50

STN [14–16] and GPi/SNr [12, 17, 18]. Besides these changes in neuronal activity, at the 51

population level, there is an increase in the power and duration of β band oscillations 52

(15-30 Hz) in local field potential (LFP) recorded from the basal ganglia of PD 53

patients [14,18–20]. The β band oscillations are mainly correlated with motor deficits 54

such as rigidity, bradykinesia and akinesia [14,16,21] and, suppression of these 55

oscillations, for example, by deep brain stimulation (DBS) ameliorates motor symptoms 56

of PD. Therefore, there is a great interest in understanding the mechanisms underlying 57

the origin of β band oscillations which are not well understood. For instance, it is 58

unclear whether the oscillations are imposed by cortical inputs [22–24] or they are 59

generated within the BG, either in striatum [25], in pallidostriatal circuit [26] or the 60

STN-GPe network [8, 27–35]. Several experimental results indicate that GPe-STN 61

network plays an integral role in generating and modulating these 62

oscillations [14,18,19,36] and their stimulation have been shown to affect 63

(disrupt/modulate) oscillations [8, 37,38]. 64

From a dynamical systems perspective, interaction between excitatory and inhibitory 65

neuronal population form the necessary substrate for oscillations where an imbalance of 66

timing and/or strength of effective excitation and inhibition leads to population 67

oscillations [39,40]. Several excitatory and inhibitory loops can be identified in the BG 68

which may underlie the emergence of β band oscillations among which STN-GPe circuit 69

has emerged as a primary candidate. In both firing rate-based and spiking neuronal 70

network models, an increase in the coupling between STN and GPe is sufficient to 71

induce strong oscillations [28,31,33]. However, the oscillations may also be created if 72

effective excitatory input to STN neurons (from the cortex) or effective inhibitory input 73

to GPe neurons (from the striatum) is increased [29,35]. Besides, the GPe-STN 74

network,the imbalance of the direct (effectively excitatory) and hyper-direct (effectively 75

inhibitory) pathways of the BG can also cause oscillations [41]. These computational 76

models not only suggest possible mechanisms underlying the β oscillations but also 77

provide explanations for the altered synaptic connectivity within the BG and how 78

increased firing rates in the striatal neuron projecting to the GPe [7] can lead to 79

pathological oscillations. 80

Recent data from human patients suggest that β band oscillations are not persistent 81

and occur in short epoch which are called β oscillation bursts [20]. The β oscillation 82

bursts in fact, might appear as persistent oscillations as a result of averaging over 83

multiple trials [42–44] in order to account for the inter-trial variability. Such β 84

oscillation bursts have also been observed in healthy animals in certain task 85

conditions [45]. In human patients, characteristics of β-oscillation bursts are associated 86

with motor performance [20, 46, 47]. The presence of oscillatory bursts might be a result 87

of transient change in external input [35] or phase slips between the population activity 88

of STN and GPe [48]. In general, however, the mechanisms due to which these 89

oscillatory bursts arise are unclear. 90

The β band oscillations are also accompanied by an increase in spike bursting along 91

with the firing rate changes. In MPTP models of non-human primates, the proportion 92

of bursty spikes in STN and GPe is significantly higher in animals with PD than the 93
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healthy animals [8, 49]. Increased spike bursting in GPe and STN is also observed in 94

6-OHDA treated rodents [50,51]. But it remains unclear how increased spike bursting 95

affects the duration and power of β band oscillations. 96

However, it should be noted neurons in the STN-GPe network show spike bursting 97

even in healthy conditions [8, 49]. Therefore, it is important to understand whether the 98

spikes bursting and the pathological oscillations share a causal relationship and if this is 99

the case, then why spike bursts are also observed in healthy states [8, 49]. In addition, it 100

is also crucial to tease apart the contribution of altered firing rates and spike bursting 101

to the β-band oscillations to better understand the pathophysiology of PD and find 102

better way to quench the pathological oscillations. 103

To understand the role of spike bursting in shaping the beta oscillations here, we 104

investigated the effect of firing rates and patterns on the presence of oscillations using a 105

computational model of the STN-GPe network. Usually, the average firing rate of a 106

neuron is tightly coupled to spike bursting and it is not easy to disentangle the effect of 107

these two variables independently. To solve this we used the State-dependent Stochastic 108

Bursting Neuron Model (SSBN) model [52], which allowed us to vary firing rate and 109

firing pattern (spike bursting) of the neuron independently and hence uncouple the 110

effects of firing rate and spike bursting on the β band oscillations. 111

Using the model, we found that the average firing rate of STN neurons was 112

predictive of oscillations but surprisingly, the average firing rate of GPe neurons was not. 113

Notably, the changes in firing rate of STN and GPe neurons resulted in persistent 114

oscillations in the β band. The effect of GPe and STN spike bursting on STN-GPe 115

oscillations was however, state dependent. When the network exhibited strong 116

oscillations or aperiodic activity, spike bursting in STN and GPe had no effect on the 117

global state of network activity. However, in the regime at the border of oscillatory and 118

non-oscillatory states (transition regime), an increase in the fraction of bursting neurons 119

in GPe, enhanced oscillations. By contrast, small to moderate fraction of bursting 120

neurons in STN quenched the oscillations whereas when most of the STN neurons were 121

bursting, network re-exhibited strong oscillations. Furthermore, in the transition regime, 122

when a small fraction of GPe and STN neurons were bursty, β band oscillations 123

occurred in short epochs that closely resembled with the population activity as observed 124

in the experimental data. Thus, our model suggests that spike bursting may be one of 125

the mechanisms to generate these β-oscillation bursts (β-bursts). Taken together, these 126

results for the first time, separate the roles of firing rates and spike bursting and shows 127

how spike bursting in the STN and GPe can either enhance or suppress the β band 128

oscillations, depending on the network activity state. That is, the nature of β band 129

oscillations is jointly determined by a combination of the underlying network state and 130

proportion of neurons that are bursty. Finally, our results revealed that STN and GPe 131

may play a qualitatively different roles in shaping the dynamics of beta band 132

oscillations. These insights suggest new means to quench the pathological oscillations. 133

Materials and methods 134

Neuron model 135

In the existing reduced neuron models (e.g. leaky-integrate-fire neuron), to achieve 136

changes in the firing patterns, the sub-threshold dynamics of the neuron model needs to 137

be altered. However, when a neuron model is modified to exhibit spike bursting, its 138

input-output firing rate relationship (f − I curve) is also altered. That is, spike bursting 139

and neuron firing rate are coupled and prevent the comparison with non-bursting neuron 140

with the same firing rate. However, to isolate the effect of changes in the firing patterns 141

on the network dynamics, the f − I curve of the neuron and its firing pattern need to 142
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be independently controlled. To achieve this, we use the State-dependent Stochastic 143

Bursting Neuron (SSBN) [52]. The subthreshold membrane potential dynamics of the 144

SSBN model is same as that of the Leaky Integrate and Fire (LIF) neuron: 145

τmV̇m = −Vm + Isyn

where, τm is the membrane time constant,Vm is the membrane potential and Isyn is the 146

total synaptic current to the neuron. The spike generation mechanism of SSBN is 147

stochastic. On reaching the spiking threshold Vth, the SSBN generates a burst of b 148

spikes with a probability of 1/b every time Vm ≥ Vth. This allows us to vary the size of 149

spike burst without affecting the spike rate and the input output neuron transfer 150

function of the neuron (in S1 Fig). The inter-spike-interval within the burst is constant 151

and is same as the refractory period of the neuron (5ms). In order to ensure that the 152

qualitative results are independent of the choice of the refractory period, we reproduced 153

Fig 3 for two additional values of refractory periods, 3ms and 7ms. The details are 154

discussed in the section State dependent effect of spike bursting neurons on β band 155

oscillations. 156

More details about this neuron model can be found in [52]. All the neurons in the 157

STN and GPe were modelled as SSBNs. The neuron parameters used are consistent 158

with the STN-GPe network used in a recent work by [35] and are listed in Table 1. We 159

used the same neuron parameters for STN and GPe neurons, however the two neuron 160

types received different amount of external inputs as we explored network state space 161

for different external inputs to the GPe and STN. 162

Table 1. Neuron parameters as used in [35].

Parameter Value Description

Cm 200pF Membrane capacitance
τm 20ms Membrane Time Constant
Vth −54mV Firing threshold
Vreset −70mV Reset potential
τref 5ms Refractory period
Bisi 5ms Inter-spike interval within a spike burst
B 1 or 4 Number of spikes in a burst
τexc 5ms Excitatory synaptic time constant
τinh 10ms Inhibitory synaptic time constant
gL 10nS Leak conductance
Eex 0mV Reversal potential (excitatory)
Ein −80.0mV Reversal potential (inhibitory)

Synapse model 163

Synapses were modelled as a transient change in conductance. Each spike elicited an 164

alpha-function shaped change in the post-synaptic conductance. The reversal potential 165

determined whether the synapse was excitatory or inhibitory. The peak conductance of 166

each type of synapse is provided in the Fig 1 and Table 2 and the excitatory and 167

inhibitory time constants are shown in Table 1. For further details on dynamics, refer 168

to ”iaf cond alpha” neuron model in NEST [53]. 169
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Fig 1. Schematic of the STN-GPe network. The connection probability, synaptic
strength and delay for each connection is shown in red, blue and green, respectively.
The number in parentheses (1000, 2000) represent the number of neurons in STN and
GPe, respectively. The connection with arrowhead are excitatory and those with filled
circle are inhibitory. The F-I curves for the neuron model with different spike burst
lengths is plotted in S1 Fig. The inter spike interval within the burst is kept constant.

STN-GPe network model 170

The network model consisted of 2000 inhibitory (corresponding to the GPe population) 171

and 1000 excitatory (corresponding to the STN population) neurons. The neurons were 172

connected in a random manner with fixed connection probabilities. The connection 173

strength, connection probability and synaptic delays were identical to the one used in 174

the model by Mirzaei et al. [35] and are shown in Fig 1. 175

We investigated the oscillation dynamics of the STN-GPe network in two conditions: 176

Condition A: To characterize the effect of firing rates on β band oscillations we 177

studied the network when all the neurons were non-bursting type. For 178

these simulations we set B = 1 for all the neurons. 179

Condition B: To characterize the effect of spike bursting on β band oscillations we 180

used networks in which a fraction of STN and/or GPe neurons were 181

bursting type. The fraction of bursting neurons in the two populations 182

was varied systematically from 0 to 1. For these simulation we set the 183

spike burst length B = 4 for the bursting neurons and B = 1 for the 184

non-bursting (or regular spiking neurons). 185

Robustness analysis of network parameters 186

In order to ensure that our results are not dependent on a specific choice of network 187

parameters used in [35], we also performed a robustness analysis. To this end we 188

simulated 10000 different models. For each model the value of each of the model 189

parameters (i.e. network connection probability, synaptic strength and delays) were 190

drawn from a Gaussian distribution, whose mean was set to the value used in the model 191

by Mirzaei et al. [35] and the standard deviation was taken as 20% of the mean value. 192

For each parameter set (comprising of nine model parameters -see Table 2), the model 193

was simulated for different values of external input to STN and GPe neurons to 194
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Table 2. Network parameters as used in [35] The median, 25% and 75% quartiles of
the distributions are reported in brackets.

Parameter Value Description

εgpe−gpe 0.02 (0.018,0.015, 0.021) GPe to GPe connectivity
εgpe−stn 0.035 (0.036,0.032, 0.04) GPe to STN connectivity
εstn−gpe 0.02 (0.02,0.017, 0.023) STN to GPe connectivity
Jgpe−gpe −0.7nS (−0.68,−0.81, −0.57) GPe to GPe synaptic strength
Jgpe−stn −0.8nS (−0.83,−0.93, −0.72) GPe to STN synaptic strength
Jstn−gpe 1.2nS (1.0,0.85, 1.2) STN to GPe synaptic strength
τgpe−gpe 3.0ms (2.8 2.5, 3.2) GPe to GPe synaptic delay
τgpe−stn 6.0ms (5.7, 4.7, 6.4) GPe to STN synaptic delay
τstn−gpe 6.0ms (5.7, 4.9, 6.4) STN to GPe synaptic delay

generate different network activity states, characterized by their value of spectral 195

entropy. The range of STN and GPe inputs was same as used to generate the results 196

shown in Fig 2. Each model was simulated five times with different random number 197

seeds. The spectral entropy for the five trials was averaged to obtain the state space 198

(e.g. Fig 2C) for each parameter set. Next, we identified the parameter set that results 199

in a state space which had linearly separable oscillatory (spectral entropy ≤ 0.45) and 200

non-oscillatory (spectral entropy ≥ 0.55) regions. This was done using a Support Vector 201

Classifier (SVC) from python library sklearn to classify our networks into two classes 202

(class label 0: non-oscillatory, spectral entropy ≥ 0.55 and class label 1: oscillatory, 203

spectral entropy ≤ 0.45). Using this analysis we retained the models that resulted in a 204

classification score of 1. From the retained models, we estimated the distribution of 205

each network parameter. 206

We would however like to point out, that this is a preliminary robustness analysis 207

and is no way a comprehensive sensitivity analysis which may include calculation of 208

sensitivity of different features (e.g. spectral entropy) with respect to perturbations in 209

network parameters, analysis of the ”sloppy”/sensitive parameters and/or covariance 210

between the parameter values [54,55], which is beyond the scope of the this work. 211

Input 212

All neurons in the STN and GPe received external excitatory input which was modelled 213

as uncorrelated Poisson spike trains. This input was tuned to match the range of firing 214

rates of the STN and GPe observed in in vivo data during healthy and Parkinsonian 215

conditions [19,35,51]. 216

To characterize the role of firing rates simulations (condition A) we systematically 217

varied the rate of Poisson spike trains independently for the STN and GPe neurons. For 218

each parameter set we performed at least 5 trials with different random seeds. 219

Data Analysis 220

Spectrum of the population activity 221

To estimate the spectrum of the network activity we binned (bin width = 5 ms) the 222

spiking activity of all the STN or GPe neurons to obtain the population activity (S). We 223

subtracted the mean and estimated the spectrum (P ) using the fast Fourier transform 224

(frequency resolution = 5 Hz). To estimate spectral entropy (see below) we measured 225
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the P for the whole duration of simulations (7500 ms). To estimate the time-resolved 226

spectrum we measured P for sliding windows (window size = 200ms; overlap = 50ms) 227

Spectral Entropy 228

To quantify how oscillatory the network activity was, we computed the spectral entropy 229

HS , which is a measure of dispersion of spectral energy of a signal [52,56]. 230

HS =
−
∑

k PklogPk

logN

where Pk is the spectral power at frequency k and N is the total number of 231

frequency bins considered. To estimate spectral entropy we normalized Pk such that 232∑
k Pk = 1. The spectral power was calculated in the β frequency range, i.e., 233

10-35 Hz [57]. Note that we consider the frequency range wide enough to cover both low 234

(10− 20Hz) and high beta (20− 35Hz) as we span across a wide range of input firing 235

rates. There is a large variability in the peak frequency and range of the β-band 236

oscillations even among rodents. It may depend on the pathological state of the animal 237

(healthy or 6-OHDA lesioned) and/or the recording conditions (anaesthetized or awake). 238

In healthy rats, the GPe-LFPs recorded in rats during quiet rest peaked around 239

13− 17Hz across animals [58]. In 6-OHDA lesioned anaesthetized rats, mean peak 240

frequency for GPe-LFPs is reported to be ≈ 17− 22Hz [13, 59] and 16− 21Hz for 241

STN-LFPs [59]. In awake behaving rats beta band oscillations are faster e.g. STN-LFPs 242

mean beta band peak frequency lies between 22− 36Hz [15, 60]. To cover all these 243

cases, we set a broad range (10− 35Hz) to calculate the spectral power [57]. 244

An aperiodic signal (e.g. white noise) for which the spectral power is uniformly 245

distributed over the whole frequency range, has HS = 1. By contrast, periodic signals 246

that exhibit a peak in their spectrum (e.g. in the β band) have lower values of HS . In 247

an extreme case, for a single frequency sinusoidal signal HS = 0. Thus, HS varies 248

between 0 and 1. A simple demonstration of the measure of spectral entropy for the 249

effect of noise and multiple peaks is available at the following weblink 250

(OSF-ssbn-stn-gpe - Figures/Spectral entropy example). This includes the figure and 251

the corresponding script to reproduce the figure. 252

Duration and amplitude of beta oscillations bursts (beta bursts) 253

We defined the length of a burst of β band oscillations (β-burst) as the duration for 254

which instantaneous power in the β band remained above a threshold (βth). βth was the 255

average power in the β band for an uncorrelated ensemble of Poisson spikes trains with 256

same average firing rate as the neurons in the network. Because neurons in our model 257

had different average firing rate (averaged over 5 trials) depending on the external input 258

and network activity states, βth for each network activity state was different. The β 259

oscillation burst amplitude was estimated as the peak power in the β band. To estimate 260

the β oscillation burst amplitude we smoothened the power spectrum using a cubic 261

kernel. We also estimated the maximum frequency during the β-bursts. Because the 262

peak frequency of beta oscillation bursts was found to be between 15-20Hz, a narrower 263

band (15− 20Hz) was used to define a β oscillation burst for an accurate description of 264

the threshold. 265

Estimation of excitation-inhibition balance 266

The E-I balance a GPe neuron was calculated as the ratio of effective excitatory input it
received from the STN neurons (JEI-eff) and effective inhibitory input it received from
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other GPe neurons (JII-eff). The effective synaptic weights JEI-eff, JII-eff were estimated
as:

JEI-eff = Rstn × Jstn−gpe × εstn−gpe ×Nstn × τexc
where Rstn is the average firing rate of the STN neurons, Jstn−gpe is the synaptic
strength of STN→GPe connection, εstn−gpe is the probability connection from STN to
GPe, Nstn is the number of STN neurons and τexc is the time constant of the excitatory
synapses (Table 1). Similarly, the JII-eff was estimated as:

JII-eff = Rgpe × Jgpe−gpe × εgpe−gpe ×Ngpe × τinh

where Rgpe is the average firing rate of the GPe neurons, Jgpe−gpe is the synaptic 267

strength of GPE→GPe connection, εgpe−gpe is the probability connection from GPe to 268

GPe, Ngpe is the number of GPe neurons and τinh is the time constant of the inhibitory 269

synapse (Table 1). 270

Simulation and Data Analysis Tools 271

The dynamics of STN-GPe network was simulated using NEST (version 2.12.0) [53] 272

with a simulation resolution of 0.1ms. The SSB neuron model was added to NEST and 273

the code as well as instructions on recompilation are described in 274

https://github.com/jyotikab/stn gpe ssbn. Spiking activity of the network was analyzed 275

using custom code written using SciPy and NumPy libraries. Visualizations were done 276

using Matplotlib [61]. 277

Data and code accessibility 278

This project is shared on open science framework (OSF - https://osf.io/quycb/). The 279

project consists of the figures not included in the manuscript namely: a) An example of 280

spectral entropy mentioned in section Spectral Entropy) b) Individual trials of the 281

spectrograms of the average spectrogram shown in Fig 4. The project also consists of a 282

git link (https://github.com/jyotikab/stn gpe ssbn) to the code required to simulate 283

and analyze the model. 284

Results 285

Beta band (15-30 Hz) oscillations are a characteristic feature of the neuronal activity in 286

PD patients. Animal models have shown that the emergence of β band oscillations is 287

also accompanied by a change in the firing rate and spike bursting in both STN and 288

GPe neurons. Here we investigate the effect of firing rate changes and spike bursting in 289

STN and GPe neurons on the power and duration of β band oscillations To this end, we 290

have studied the dynamics of the STN-GPe networks by systematically and 291

independently varying the input firing rate and spike bursting of STN and GPe neurons. 292

STN firing rate determines the strength of β band oscillations 293

First, we studied the effect of STN and GPe firing rates on the emergence of oscillations. 294

To this end, we systematically varied the rate of external input to STN and GPe 295

neurons to obtain different firing rates in these neurons and measured the spectral 296

entropy of the population activity to characterize the oscillations (Fig 2). As expected 297

the GPe firing rates monotonically increased as we increased excitatory input to the 298

STN (Fig 2A). However, GPe firing rate varied in a non-monotonic fashion as we 299

increased excitatory input to the GPe neurons (Fig 2A), because of the recurrent 300

March 4, 2020 8/36

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2020. ; https://doi.org/10.1101/707471doi: bioRxiv preprint 

https://github.com/jyotikab/stn_gpe_ssbn
https://osf.io/quycb/
https://github.com/jyotikab/stn_gpe_ssbn
https://doi.org/10.1101/707471
http://creativecommons.org/licenses/by-nd/4.0/


inhibition within the GPe. By contrast, STN firing rates monotonically increased as we 301

increased the excitatory input to STN and monotonically decreased as we increased 302

excitatory input to GPe (Fig 2B). 303

Irrespective of the differences in their mean firing rate, both STN and GPe showed 304

the same oscillation dynamics. More specifically, an increase in the excitatory input to 305

STN or decrease in the excitation to GPe led to the emergence of β band oscillations in 306

the STN-GPe network (Fig 2C,D - lighter color represents an oscillatory regime). This is 307

consistent with previous studies which showed that increase in excitatory inputs to STN 308

and inhibition to GPe from upstream brain areas (e.g striatum) are sufficient to trigger 309

oscillations in the sub-thalamo-pallidal circuitry [29,35]. 310

To characterize the robustness of these results we simulated 10000 networks for 311

which each parameter (connection probability, synaptic strength and delays) were drawn 312

from a Gaussian distribution (see Methods). We estimated the state space of the 313

network activity (characterized by spectral entropy) as a function of external input to 314

STN and GPe. Only the networks which had linearly separable oscillatory and 315

non-oscillatory regions (akin to the Fig 2C,D) were selected. The distribution of these 316

selected model parameters closely matched with the parameter sampling distribution 317

(see S2 Fig) however, there were some notable exceptions. For instance, the 318

distributions of the εstn→gpe and Jstn→gpe were skewed towards lower values for the 319

selected models than the sampled distributions (see S2 Fig). The median, 25% and 75% 320

quartiles of the distribution are displayed in parenthesis (Table 2) beside the original 321

values used in [35]. Overall this robustness analysis suggests that our results are robust 322

for the parameters distributions as shown in the S2 Fig. Fig 3 is reproduced for an 323

exemplary parameter combination (S3 Fig). 324

These results (Fig 2A-D) also revealed how the β band oscillations depend on the 325

firing rate of the STN and GPe neurons as opposed to change in monotonically 326

increasing input drives. To better visualize this relationship we rendered spectral 327

entropy of the network activity as a function of STN and GPe firing rates (Fig 2E). We 328

found that GPe firing rates are not predictive of the oscillations in the network. For 329

instance, even if GPe firing rate is kept constant, an increase in firing rate of STN 330

neurons was sufficient to induce oscillations. Similarly, a decrease in STN activity 331

reduced oscillations provided GPe firing rates did not vary. On the other hand, when 332

STN firing rate was low (below 5 Hz), any change in the GPe firing rate was not able to 333

induce oscillations. This can also be observed in a scatter plot of spectral entropy 334

against the STN and GPe firing rates (S4 Fig). 335

We also analyzed the spectrograms of the network activity in three exemplary 336

activity regimes: oscillatory, non-oscillatory and transition regimes (marked as 1, 3 and 337

2 respectively in Fig 3A). These spectrograms are shown in S5 Fig. The non-oscillatory 338

network (3) showed no oscillations (S5 Fig -top) whereas the oscillatory network (1) 339

showed persistent oscillations (S5 Fig-bottom). The network operating in the transition 340

regime (2) however, showed a propensity towards β-oscillation bursts even though the 341

oscillations were weak (S5 Fig-middle). 342

Experimental data [12,19] as well as previous computational models [29,31] have 343

suggested that emergence of β band oscillations is accompanied by a decrease in the 344

firing rate of GPe neurons and an increase in the firing rate of STN neurons. Our 345

results suggest that only the STN firing rates are positively correlated with the power of 346

β band oscillations. Based on these observations we argue that a decrease in GPe 347

activity as observed experimentally may be necessary but not sufficient condition to 348

induce Parkinsonism. That is, reduction in the firing rate of GPe neurons or lesions of 349

GPe are not sufficient to induce beta band oscillations. This suggestion is consistent 350

with the experimental findings that GPe lesions in non-MPTP monkeys do not induce 351

any discernible motor signs of PD [17]. The STN firing rates being predictive of 352
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Fig 2. Effect of STN and GPe firing rates on β band oscillations. (A)
Average firing rate of GPe neurons as a function of different input rates to the STN and
GPe. (B) Same as in A but for STN neurons. (C) Strength of oscillations in the GPe
population (quantified using spectral entropy, see Methods). (B) Same as in C but for
STN neurons. (E) The effect of the STN and GPe firing rates (as in A and B) on
spectral entropy (as in C and D). These results show that β band oscillations in the
STN-GPe network depend on the STN firing rate but not on the GPe firing rates. All
the values (firing rate and spectral entropy) were averaged over 5 trials. A scatter plot
for spectral entropy against the STN and GPe firing rates for all the 5 trials is shown in
S4 Fig.
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oscillations is also suggested by observations in MPTP treated monkeys [8], where they 353

show that treating STN with muscimol (blocking STN shows decrease in STN firing 354

rates) and intrapallidal blocking of glutamergic receptors (decreased GPe firing rates) 355

suppressed oscillations whereas intrapallidal blocking of GABAergic receptors (increased 356

GPe firing rates) had no effect on the oscillations (measured as power in the beta band). 357

State dependent effect of spike bursting neurons on β band 358

oscillations 359

Effect of spike bursting in GPe neurons on β band oscillations 360

Besides changes in average firing rate, dopamine depleted animals also show an increase 361

in spike bursting, in both STN and GPe [8,49]. Thus far it is not clear whether and how 362

spike bursts affect the β band oscillations. In both reduced or biophysical neuron 363

models introduction of spike bursting necessarily affects the total spike rate of the 364

neuron. As we have shown in the previous section firing rate itself has an effect on the 365

oscillations. That is, such neuron models cannot be used to isolate the contribution of 366

spike bursting on oscillations. Therefore, we used the SSBN model which allows us to 367

introduce spike bursting in a neuron without affecting its average firing rate [52]. Using 368

this model we systematically altered the fraction of bursting neurons in the STN 369

(FBSTN) and GPe (FBGPe). Previously, in a model of neocortical networks we showed 370

that the effect of spike bursting depends on the network activity states [52]. Therefore, 371

we studied the effect of spike bursting on three exemplary network regimes (1) a strong 372

oscillatory regime, (2) at the border between oscillatory and non-oscillatory regimes 373

(transition regime) and (3) a non-oscillatory regime (marked as 1, 2 and 3 in Fig 3A). 374

We found that when network was in a strong oscillatory regime (1), an increase in 375

the fraction of bursting neurons in GPe (FBGPe) while altered the average firing rates 376

(Fig 3B - upper panel), it had no qualitative effect on the population oscillations (Fig 377

3B - lower panel). Similarly, when the network was in a non-oscillatory regime (network 378

activity regime 3), FBGPehad no effect on the spike rates and spectrum of the 379

population activity (Fig 3D). That is, in strong oscillatory and completely 380

non-oscillatory states, spike bursting has no consequence for the population activity 381

dynamics. 382

However, when the network was in the transition regime (network activity regime 2), 383

increase in FBGPeincreased oscillations (Fig 3C - lower panel). This activity regime was 384

characterized by weak oscillations when all neurons were non-bursty (S5 Fig-middle 385

panel), but an introduction of spike bursting in ≥ 20% GPe neurons was sufficient to 386

induce oscillations in the STN-GPe network (Fig 3C - lower panel). In this network state, 387

an increase in the number of bursting neurons also increased the average population 388

firing rate (Fig 3C - upper panel) in both STN and GPe. Clearly, this increase in firing 389

rates is a network phenomenon induced by spike bursting and not because of a change 390

in the input excitation (as was shown in Fig 2) or change in the excitability of individual 391

neurons. Finally, an increase in FBGPeincreased the network oscillations irrespective of 392

the fraction of bursting neurons in the STN (Fig 3C - lower panel). 393

In order to ensure that this effect was not dependent on the choice of within burst 394

inter-spike-interval (Bisi = 5ms), we also measured the effect of spike bursts by 395

changing Bisi to 3 ms or 7 ms (S6 Fig and S7 Fig). Qualitatively the effect of spikes 396

bursts was not dependent on the Bisi however, for smaller values of Bisi (3 ms), the 397

region of non-oscillatory regime was reduced. This can also be seen in the corresponding 398

figure showing spectral entropy (S6C Fig -lower panel). By contrast, for higher value of 399

Bisi (7 ms), the region of oscillatory regime was reduced (S7B Fig-lower panel). 400
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Fig 3. State dependent effect of spike bursting on the strength of β band
oscillations. (A) Spectral entropy as a function of input to the STN and GPe neurons.
This panel is same as the Fig 2C with three regimes of network activity marked as, 1:
oscillatory, 2: transition regime, 3: non-oscillatory regime. (B):Top GPe (left) and
STN (right) firing rates as a function of the fraction of bursting neurons in the STN
(x-axis) and GPe (y-axis), in the oscillatory regime 1. (B):Bottom GPe (left) and STN
(right) spectral entropy as a function of the fraction of bursting neurons in the STN
(x-axis) and GPe (y-axis), in the oscillatory regime (i.e. state 1 in the panel A). Spike
bursting has no effect on the network activity dynamics in this regime. (C) Same as in
the panel (B) but when the network was operating in the transition regime (marked
as state 2 in the panel A). In this regime, spike bursting affects the network activity
state: increase in the fraction of bursting neurons in GPe induces oscillations whereas
an optimal fraction of bursting neurons in STN can quench oscillations. (D) Same as in
the panel (B) but when the network was operating in a non-oscillatory regime (marked
as 3 in panel A). Addition of BS neurons did not affect a strong non-oscillatory regime.
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Effect of spike bursting in STN neurons on β band oscillations 401

In contrast to the bursting in GPe neurons, the effect of spike bursting in STN neurons 402

was not only dependent on the network state but also on the fraction of spike bursting 403

neurons in the GPe. Similar to the effect of spike bursting in GPe neurons, in strong 404

oscillatory and non-oscillatory states a change in the fraction of bursting neurons in the 405

STN population had no effect on the network activity state (Fig 3B,D, S10 Fig and S8 406

Fig). 407

However, in the transition regime (network activity regime 2) spike bursts in the 408

STN affect the oscillations in a non-monotonic fashion. As shown above in this regime 409

an increase in fraction of bursty neurons in GPe pushes the network state towards 410

oscillations. We found that in this regime, the impact of STN spike bursting on 411

oscillations depended on FBGPe. For small FBGPe, the network remained in a 412

non-oscillatory state and a change in FBSTNhad no effect on the spectrum of network 413

activity. Similarly, for high FBGPe, the network remained in an oscillatory state and a 414

change in FBSTNhad no effect on the spectrum population activity. 415

At a moderate fraction of spike bursting neurons in GPe (0.2 < FBGPe< 0.6), 416

when the network showed weak oscillations, a small increase in the FBSTNreduced 417

oscillations (FBSTN< 0.6 - Fig 3C; S9 Fig) but large values of FBSTN(≥ 0.6) enhanced 418

oscillations (Fig. 3C). That is, there is a range of parameters for which oscillations 419

enhanced by FBGPecan be quenched by increasing FBSTN. As FBGPeincreased, more 420

FBSTNwas required to quench the oscillations and as our results show, beyond a certain 421

point increasing FBSTNalso leads to persistent oscillations. That is, spike bursting in 422

the STN can suppress or enhance oscillations depending on the fraction of bursting 423

neurons in the GPe. 424

The non-monotonic effect of STN spike bursting on STN-GPe network oscillation 425

can be better observed in the spectrogram of the population activity of the network 426

(Fig 4). As a fraction of GPe neurons (FBGPe=40% in this case) were changed to elicit 427

spike bursts (at 1500 ms) β band oscillations emerged (Fig. 4). These oscillations were 428

quenched when STN neurons also started to spike in bursts from time 3500 ms. When 429

≈ 50% of STN neurons were bursty, the oscillations were almost completely quenched. 430

Any further increase in FBSTN, however, led to re-emergence of oscillations, albeit at 431

lower frequencies (≈ 15Hz). 432

Why does FBSTNhas a non-monotonic effect on the STN-GPe oscillations? The 433

spectrograms of the network activity (Fig 4) revealed that spike bursting in GPe and 434

STN induces oscillations at slightly different frequencies. When FBGPe = 40% and 435

FBSTN = 0, the network oscillates at ≈ 20 Hz (1st panel of Fig 4). By contrast, when 436

FBGPe = 40% and FBSTN = 100%, the network oscillates ≈ 15 Hz (last panel of Fig 4). 437

We hypothesized that the interference of these two oscillations may underlie the 438

non-monotonic effect of spike bursting in STN on β band oscillations. For small values 439

of FBSTN, the two oscillations interfere and generate network activity resembling 440

‘beats’, which are reflected as short bursts of β band oscillations. These β bursts can be 441

observed in the single trial spectrograms - https://osf.io/quycb/ - 442

Figures/Spectrograms single trials for Fig4. It was these short β oscillations bursts that 443

resulted in a decrease in overall power in the beta-band (and higher spectral entropy). 444

However, for higher FBSTN, slower frequency oscillations (generated by STN spike 445

bursting) become strong enough to overcome the GPe spike bursting induced 446

oscillations. To verify our hypothesis we imposed a lower frequency (15 Hz) oscillation 447

on a fraction of STN neurons instead of making them bursty. As we increased the 448

fraction of neurons that oscillated at 15 Hz we observed non-monotonic change in the 449

network oscillation power (S11 Fig). These results are qualitatively similar to those 450

observed when we varied the fraction of bursting neurons in the STN (Fig 4), and 451

provide support to our hypothesis. 452

March 4, 2020 13/36

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2020. ; https://doi.org/10.1101/707471doi: bioRxiv preprint 

https://osf.io/quycb/
https://doi.org/10.1101/707471
http://creativecommons.org/licenses/by-nd/4.0/


Fig 4. Non-monotonic effect of STN spike bursting on network oscillations
when the network operates in the transition regime. Here the fraction of
bursting neurons in the GPe was fixed to 40% of GPe neurons and the fraction of
bursting neurons in the STN (FBSTN) was increased systematically (as marked on
different subplots). 40% of GPe neurons were made to elicit spike bursts from time
point 1500 ms. This resulted in emergence of oscillations. A fraction of STN neurons
(FBSTNmarked on each subplot) were made to bursty, starting at time 3500ms. For
small to moderate FBSTN, oscillations disappeared. But when FBSTNwas larger
oscillations reappeared albeit at a lower frequency. The spectrograms shown here were
averaged over 5 trials of the network with different random seeds.
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Our results show that when the network is operating in the transition regime 453

(network activity regime 2), change in the fraction of spike bursting neurons can control 454

the emergence of β oscillations. It is interesting to note that in this regime, the firing 455

rate of STN and GPe neurons falls within the range recorded experimentally (that is, 456

37−48 spks/s for GPe, 9−16 spks/s for STN) for healthy conditions. This also suggests 457

that in healthy states, GPe-STN network may be operating in the regime at the border 458

of oscillatory and non-oscillatory state. In this regime, spike bursting may provide an 459

additional mechanism to generate short lived β band oscillations (β-oscillation bursts) 460

as has been observed in healthy rats [45], that is, an increase in spike bursting in the 461

GPe can induce oscillations, which can be quenched provided STN neurons also elicit 462

spikes in bursts. 463

Comparison of firing rate changes due to spike bursting and 464

input drive 465

When neurons do not spike in bursts, only STN firing rate is predictive of β band 466

oscillations (see Fig 2E). While in our neuron model (SSBN) spike burst and neuron 467

average firing rates can be independently varied, spike bursts may change the network 468

activity state and thereby affect the firing rates of STN and GPe neurons. However, 469

with this neuron model, we can isolate the changes in STN and GPe firing rates purely 470

due to the effect of spike bursting on the network activity (once the input drives are 471

fixed). Therefore, we estimated how the firing rates of STN and GPe neurons affect the 472

β band oscillations when neurons are allowed to spike in bursts. To this end, we fixed 473

the input rates such that the network operated in one of the six representative activity 474

states (marked as 1, 1′, 2, 2′, 3, 3′ in Fig 5) and systematically varied the fraction of 475

bursting neurons in the STN and GPe. At each operating point, spike bursting resulted 476

in a change in the average firing rate of the neurons because spike bursting perturbed 477

the network operating point (Fig 5). We found that in non-oscillatory states (3, 3′) spike 478

bursting had a very little effect on the average firing rate of the neurons and on the 479

network activity state (Fig 5 green region). By contrast, in oscillatory states (1, 1′) spike 480

bursting resulted in relatively large change in the firing rates (Fig 5 white region). In 481

both regimes, the change in firing rates due to spike bursting were not sufficient to 482

change the network state qualitatively. In the transition regime (e.g. network states 483

2, 2′) spike bursts led to higher firing rate in STN and GPe neurons. Interestingly, in 484

the transition regime, with spike bursting, an increase in the firing rate of both GPe and 485

STN neurons lead to increase in oscillations. (Fig 5 border between white and green 486

regions). 487

Lastly, this analysis is consistent with the previous observation that only in the 488

transition regime, does spike bursting qualitatively change the network state. The 489

location of the network in the STN-GPe rate state space is determined by the external 490

input drives and only in the transition regime (2, 2′), spike bursting changes the network 491

state from non-oscillatory to oscillatory with an increase in STN and GPe firing rates. 492

Control of the amplitude and duration of β band oscillation 493

bursts by spike bursting 494

Next, we explored how the proportion of GPe and STN spike bursting neurons affects 495

the amplitude and duration of β oscillation bursts. In particular we were interested in 496

identifying the fraction of spike bursting neurons needed to obtain β oscillation bursts 497

similar to those recorded in the BG during healthy conditions. The length of a β 498

oscillation burst was defined as the duration that the beta band amplitude envelope 499

remained above the threshold (Fig 6A). The threshold (Fig 6A,B) was defined as the 500
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Fig 5. Comparison of firing rate changes induced by the input drive and
spike bursting The pale background (same as in Fig 2E) illustrates the effect of GPe
and STN firing rates on oscillations. This is used to compare the effects of firing rates
and spike bursting. The inset shows the 6 network states chosen for the comparison:
two oscillatory (1 and 1′), two border (2 and 2′) and two non-oscillatory (3 and 3′). In
each of the chosen states, we varied the fraction of bursting neurons in both STN and
GPe populations from 0 to 100%. For each combination of the fraction of spike bursting
neurons we estimated the firing rate of STN and GPe neurons and their corresponding
spectral entropy. Then firing rates and spectral entropy are plotted to create the six
manifolds. The size of manifolds is much smaller than the background indicating that
the changes in firing rates induced solely by spike bursting is rather small.
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averaged maximum (over 5 trials) of the β band amplitude estimated for an ensemble of 501

Poisson type spike trains with the same firing rate as that of our network activity. Note 502

that these β oscillation bursts were calculated on the amplitude envelopes of the 503

individual trials and not on the average amplitude envelope corresponding to the 504

spectrogram shown in Fig 4. The spectrograms of the individual trials can be found on 505

the OSF project - https://osf.io/quycb/ - Figures/Spectrograms single trials for Fig4. 506

An increase in the fraction of spike bursting neuron in the GPe increased the average 507

β oscillation burst length. However, an increase in the STN spike bursting ratio had a 508

non-monotonic effect on the beta oscillation burst length as we expected given the effect 509

of FBSTNon spectral entropy (Fig 3C). This also suggests a positive correlation between 510

the β oscillation burst length/duration and measured power in the β band in 511

monkeys [42] and PD patients [46]. However note that in [46], the β oscillation burst 512

rate and amplitude are better correlated with β band power than the β oscillation burst 513

length. The β oscillation burst amplitude, however, increased with an increase in 514

fraction of bursting neuron in both GPe and STN (Fig 6D). 515

To compare the model output with the experimental data for rodents we measured 516

three features of the network activity for all combinations of FBSTNand FBGPe: average 517

β-oscillation burst length, average β-oscillation burst peak frequency, and correlation 518

between β-oscillation burst length and amplitude. The average β-oscillation burst 519

length measured in healthy mice is ≈ 0.2 s [62]. The β-oscillation burst duration and 520

β-oscillation burst amplitude in humans [20] as well as non-human primates [63] is 521

positively correlated that is, stronger oscillatory bursts also last longer. Recent data 522

also suggests a positive correlation between beta amplitude and duration in 6-OHDA 523

lesioned rats, however it is stronger in GPe as compared to STN [64]. The presence of 524

such a relationship in healthy rats is not explored and therefore remains an assumption 525

of our model. 526

According to these measures, the regime with a small fraction of bursty neurons in 527

GPe (e.g. 10%) and STN (e.g. 20%) (Fig 6C,D - cyan marker) resembled most closely 528

with the experimentally measured values of all the aforementioned features. In this 529

regime, the oscillation burst peak frequency was ≈ 20Hz. Moreover, oscillation burst 530

amplitude and oscillation burst length (mean value:≈ 0.24 s) were positively correlated 531

(rbl,ba = 0.46, p ≤ 0.0002) (Fig 6E). 532

For a higher fraction of spike bursting neurons in GPe (40%) and STN (40% - 533

Fig 6F), the average β-oscillation burst lengths increases to ≈ 0.8s, the intraburst 534

frequency decreases to ≈ 16Hz and the positive correlation between β-oscillation burst 535

amplitude and β-oscillation burst length is high and significant (rbl,ba = 0.92, 536

p < 0.0001). In a regime with a lower fraction of spike bursty neurons for GPe (10%) 537

and a higher fraction of spike bursting neurons in STN (80%), the positive correlation 538

between β-oscillation burst length and β-oscillation burst amplitude was not significant, 539

however the β-oscillation burst length is slightly higher (≈ 0.4 s) and β-oscillation burst 540

peak frequency is slower (≈ 15Hz). 541

The β-bursts are a population phenomenon in our model. To test whether β-bursts 542

are also observed in individual neurons we estimated the spectra of individual neuron 543

firing rates (S12 Fig). As expected, the β oscillation bursts were more prevalent in 544

neurons with higher firing rates. Moreover, it was not necessary for a neuron to spike in 545

all β-oscillation bursts, which indicates that the these oscillatory bursts are a network 546

effect. Furthermore, the oscillation frequency for the single neuron was more variable 547

than the population frequency at β (S12 Fig -GPe bursty #3, STN bursty #3 ). 548

Based on these results, we predict that short lived β-burst in healthy mice are 549

generated when ≈ 10% of GPe neurons and ≈ 20% of STN neurons elicit spike bursts. 550

It is unclear how these neurons are entrained to produce spike bursts. The spike 551

bursts in the GPe neurons could be caused by spike bursts in striatal neurons [64, 65] in 552
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Fig 6. Effect of spike bursting on beta-band oscillation bursts. (A) An
example of the amplitude envelope of the beta band (15-20 Hz) oscillations (blue trace).
Beta oscillation burst threshold (red dashed line) was determined by averaging the
maximum of beta band amplitude envelop for a Poisson process (orange trace) with the
same firing rate as the neuron in the STN-GPe network. The averaging was done over
Poissonian firing rates corresponding to all GPe and STN spike bursting ratios and 5
trials per STN-GPe bursty ratio combination. (B) Low pass filtered (15-20 Hz band)
trace of population firing rate in the STN population in the beta band (15-20Hz). The
orange trace shows the population firing rate of the Poisson process with same average
firing rate as the STN activity. (C) Beta oscillation burst length as a function of the
fraction of spike bursting neurons in the GPe and the STN. (D) Beta oscillation burst
amplitude as a function of the fraction of spike bursting neurons in the GPe and the
STN. (E,F,G) Correlation between β oscillation burst length and amplitude for three
different combinations of FBSTNand FBGPe(marked with cyan, orange and green colors
in the pane C. Cyan marker shows beta oscillation burst length and amplitude for 10%
of spike bursting neurons in GPe and 20% in STN - this combination of spike bursting
neurons gives an average oscillation burst length of 0.24 s which is comparable to
experimentally measured values. In panels E-F the p-values are listed to 4 places after
decimal point.
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rats. In 6-OHDA lesioned rats, with an increase in number of spikes/burst in striatal 553

neurons, GPe neurons show an increased burst index [65]. Striatal inactivation (by 554

muscimol) significantly decreased such spike bursts in the GPe [65]. This could be a 555

result of both alleviating changes in the operating point of STN-GPe network as result 556

of striatal inactivation (increased GPe firing rates [65]) or/and the lack of entrainment 557

of GPe neurons into bursts. The GPe bursting could in turn entrain STN neurons to 558

burst with large bouts of synchronized inhibition, which has been also suggested by [64] 559

because the phase of prototypical GPe neurons leads that of STN neurons by a cycle. 560

On the other hand, STN and GPe could also be entrained simultaneously by cortical 561

β-bursts directly or via striatum respectively [64]. Besides, these network interactions, 562

spike bursts could be caused by changes in the neuron properties due to lack of 563

dopamine or appropriate inputs. This is consistent with increased spike bursting in rat 564

STN slices with an increase in hyperpolarization of the neuron’s membrane 565

potential [66]. 566

Dependence of the network states on the excitation and 567

inhibition balance 568

Finally, to better understand the impact of firing rate changes and spike bursting 569

neurons on the β band oscillations we analyzed the balance of effective excitation and 570

inhibition (E-I balance) in the network for different input firing rates and fractions of 571

spike bursting neurons. E-I balance is the primary determinant of oscillations in spiking 572

neuronal networks [40]. To get an estimate of the E-I balance for a GPe neuron we 573

measured effective excitation it received from a STN neuron (JEI-eff) and effective 574

inhibition it received from other GPe neurons (JII-eff). We estimated the effective 575

excitation and inhibition for all combinations of external input as shown in Fig 2 (See 576

Methods). 577

Consistent with the previous theoretical work on neuronal network dynamics we 578

found that the non-oscillatory states emerged when effective inhibition received by a 579

GPe neuron was much higher than the effective excitatory inputs, whereas oscillatory 580

states appeared when the effective excitation from STN to a GPe neuron increased (Fig. 581

7). 582

Next we mapped the effect of GPe and STN spike bursting on the E-I balance in the 583

three exemplary network states (1: oscillatory, 2: border of oscillatory and 584

non-oscillatory, 3: non-oscillatory). As expected we found that in the oscillatory state 1, 585

increase in GPe spike bursting increased the effective inhibition and excitation whereas 586

STN spike bursting has a non-monotonic effect (Fig 7 - state marked as 1). However, in 587

this state bursting in either population was not strong enough to change the E-I balance 588

in order to introduce a qualitative change in the network state. Similarly for the 589

non-oscillatory state 3, a change in the fraction of spike bursting neuron in the GPe and 590

STN spike bursting was not sufficient to introduce any qualitative change in the state of 591

the network (Fig 7). When the network was in the regime 2, even though increase in 592

fraction of bursting neuron in the GPe introduced a small change in the effective E-I 593

balance, it was sufficient to move the network activity into the oscillatory regime from 594

non-oscillatory regime. Increased in the fraction of bursting neuron in the STN showed 595

a non-monotonic effect on the E-I balance and while a moderate amount of 596

FBSTNpushed the network towards the non-oscillatory regime, which was not the case 597

for a higher FBSTN(Fig 7). 598
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Fig 7. Effect of spike bursting on the excitation-inhibition balance in
different network activity regimes. E-I balance was characterized by estimating
the total effective excitation and inhibition received by a GPe neuron (see Methods).
E-I balance for oscillatory and non-oscillatory network states for 100% non-bursting
neurons. Each filled circle shows E-I balance for different external inputs to STN and
GPe neurons shown in Fig 2-3. The effect of spike bursting on E-I balance is shown for
the three exemplary network activity regimes: 1-Oscillatory regime, 2-Transition regime,
3-Non-oscillatory regime (see Fig 3 for details). Different colored stars and filled circles
show how the E-I balance varied as function of change in the fraction of spike bursting
neurons in the GPe (warmer colors indicate higher % of spike bursting neurons). The
trajectory from the star (STN spike bursting ratio = 0%) to the filled circle shows
change in the E-I balance as the fraction of spike bursting in STN is varied from 0% to
100%. In all the states spike bursting tends to make the network activity more
oscillatory, however, the amount by which spike bursting is able to push the network
towards oscillatory regime depends on the network activity regime itself.
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Discussion 599

PD is characterized by change in both firing rate and firing patterns of GPe and STN as 600

shown in animals models [8, 49–51]. In this study, we focused on uncoupling the roles of 601

STN and GPe population firing rate and firing patterns (spike bursting) in determining 602

the presence of oscillations. Our results show that an increase in the firing rate of STN 603

neurons is the primary determinant of oscillations in the STN-GPe network, however 604

the effect of changes in GPe firing rates is contingent on the firing rate of STN neurons. 605

Similarly, the effect of increase in spike bursting in STN and GPe neurons is contingent 606

on the dynamical state of the network. 607

Effect of firing rate changes on β band oscillations 608

In our model network, an increase in the firing rate of STN neurons was sufficient to 609

drive the network into an oscillatory state, irrespective of the firing rate of the GPe 610

neurons. By contrast, a decrease in the firing rate of GPe neurons was able to generate 611

β band oscillations only when STN neuron firing rate also increased (Fig 2E, S4 Fig). 612

A change in GPe and STN firing rates also alter the effective excitation-inhibition of 613

the network (Fig 7, 8). The non-oscillatory network states were observed in the 614

inhibition dominant regime (when effective inhibition to a GPe neuron was higher than 615

effective excitation). An increase in effective excitation altered the regime to oscillatory. 616

This result may explain the experimental observation that the therapeutic effect of DBS 617

in human and non-human primates is accompanied by a corresponding decrease in STN 618

firing rates [67,68] and an associated corresponding increase in GPe/GPi firing 619

rates [67–69] and thereby tipping the network balance towards the inhibition dominant. 620

Our results also show that if the firing rate of STN neurons remains fixed, changes in 621

the firing rate of GPe neurons are not sufficient to influence the oscillations. Indeed, it 622

can be argued that because STN and GPe are recurrently connected, their firing rates 623

cannot independently change. However, these results imply that the β band oscillations 624

are more sensitive to changes in STN firing rates than to GPe firing rates. This is 625

consistent with the observations that STN inactivation with muscimol (decreased STN 626

firing rates) suppressed oscillations [8] in monkeys. By contrast, intrapallidal blocking of 627

GABAergic receptors (increased GPe firing rates) either had no effect or increased the 628

oscillations [8]. In our model there are two possible mechanisms to induce beta-band 629

oscillations: (a) Theindirect pathway induced oscillations can be initiated by reducing 630

the firing rate of GPe neurons via transient increase in firing rate of D2- spiny projection 631

neurons. (b) The hyper-direct pathway induced oscillations can be initiated by a 632

transient increase in the firing rate of cortical neurons projecting onto the STN neurons. 633

Our results suggest that the indirect pathway induced oscillations can be quenched by 634

transiently decreasing the activity of STN neurons but the hyper-direct pathway induced 635

oscillations cannot be countered by transiently increase the activity of GPe neurons. 636

At the behavioral level, the sensitivity of β band oscillations to STN firing rates 637

could provide an explanation for the importance of STN in response inhibition in 638

general and, especially when there is an increase in potential responses (high conflict 639

task). Experimental data in humans have shown that the STN firing rates increase in 640

proportion to the degree of conflict in an action-selection task [70]. Interestingly, the 641

increase in STN firing rates during a high conflict task is also accompanied by an 642

increase in β band activity [71] and is reminiscent of increase in rat STN activity [72] as 643

well as power of the β band oscillations observed in successful STOP trials [73]. 644

Furthermore, the latency [73] as well as amount of modulation [74] in STN β band 645

oscillations are correlated with the speed of an action. All these observations suggest 646

there may be a functional rationale to the sensitivity of oscillations to STN firing rates 647

as shown by our results. That is, an increase in STN firing rates could be a mechanism 648

March 4, 2020 21/36

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2020. ; https://doi.org/10.1101/707471doi: bioRxiv preprint 

https://doi.org/10.1101/707471
http://creativecommons.org/licenses/by-nd/4.0/


to delay the decision making (“hold the horses” [75]) by increasing the β band activity, 649

which cannot be vetoed by the GPe and thereby plays a vital role at response 650

inhibition [76]. 651

Effect of changes in spike bursting on beta band oscillations 652

Our results show that the effect of GPe or STN spike bursting is dependent on the state 653

of the network as defined by the firing rates of the STN and GPe neurons. In a regime 654

with strong oscillations, GPe and STN spike bursting does not qualitatively change the 655

network state and the network remains oscillatory. Similarly, in a non-oscillatory regime, 656

GPe and STN spike bursting has no qualitative effect on the network state. However, in 657

a regime at the border of oscillatory and non-oscillatory, an increase in bursting neurons 658

in the GPe induces oscillations but the effect of increasing STN spike bursting neurons 659

depends on the fraction of GPe spike bursting neurons. In this regime, when spike 660

bursting neurons in the GPe induce oscillations (0.1≤FBGPe≤0.4), a small increase in 661

the fraction of bursting neurons in the STN disrupts the oscillations. However, a large 662

fraction of spike bursting neurons in the STN re-instate the β band oscillation (Fig 4). 663

This non-monotonic effect of spike bursting neurons in the STN is because when 664

neurons spike in bursts both STN and GPe tend to induce oscillations at slightly 665

different frequencies (Fig 4, S11 Fig). The relative power of these oscillations depends 666

on the fraction of spike bursting neurons in the two populations. When 667

FBGPe = FBSTN≈ 0.5 the magnitude of the two oscillations is comparable and they 668

produce ‘beats’ resulting in a reduction in the power of β band oscillations. However, if 669

FBGPe≥ 0.5 or FBSTN≥ 0.5, the stronger of the two oscillations overcomes the other, 670

resulting in the higher power in the β band. 671

Similar to the rate effect, the effect of spike bursting can also be captured by 672

calculating the balance of effective excitation and inhibition in the network (Fig 7, 8). 673

GPe bursting increases both the effective excitation and inhibition to a GPe neuron. 674

Therefore, when a network is operating close to the border of oscillatory and 675

non-oscillatory regime, increase in bursting in GPe neurons pushes the network to an 676

oscillatory regime (Fig 8). An increase in spike bursting neurons in the STN, however, 677

has a non-monotonic effect – a small number of bursting neurons counter the effect of 678

GPe bursting by decreasing both effective excitation and inhibition. However the effect 679

of larger number of STN neurons bursting collude with the effect of GPe spike bursting 680

by increasing both effective excitation and inhibition (Fig 8). 681

During PD, both STN and GPe neuron show an increase in spike bursting activity in 682

monkeys [8, 49] and rats [50, 51]. Based on our results, we propose that increase in STN 683

bursting might play a compensatory role in an attempt to quench the burst induced 684

oscillations as a self-regulating mechanism. However, it has been shown that dopamine 685

depletion itself leads to increased spike bursting in STN slices [77–79]. 686

The effective excitation-inhibition change induced by the striatal/cortical inputs to 687

STN/GPe neurons is much bigger than the change induced by spike bursts. We 688

corroborated this by the observation that the firing rate changes solely due to spike 689

bursting are much smaller than the firing rate changes due to input drives (Fig 5). This 690

is the reason why spike bursts failed to change the network states when it was operating 691

in strongly asynchronous or oscillatory states (Fig 3B,D). These modest firing rate 692

changes due to spike bursting, however can change the state of a network operating at 693

the border of the oscillatory and non-oscillatory regime. Thus, based on these results we 694

propose that the change in GPe and STN firing rates determines the underlying 695

network state whereas neuronal spike bursting fine tunes it. 696
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Fig 8. Summary of the effect of firing rate and spike bursting on network
state. The background image (same as Fig 7) show the oscillatory and non-oscillatory
regimes of STN-GPe network as a function of effective excitation and inhibition. The
arrows schematically show the change in EI-balances as we increase spike bursting in
the STN or GPe. The STN-GPe network oscillations are more sensitive to the STN
firing rate. The balance of STN and GPe firing rates determines the global state of
network activity. Spike bursting in GPe always increases both effective inhibition and
effective excitation. Small increases in spike bursting in STN results in a decrease in
both effective excitation and effective inhibition and thereby, reduces oscillations. By
contrast, a large increase in the fraction of spike bursting neurons in the STN increases
both effective inhibition and effective excitation and thereby, enhances oscillations.
However, this effect is smaller and therefore, spike bursting is effective in altering the
network oscillations only when the network is operating close to the border of oscillatory
and non-oscillatory states.
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Tandem of GPe-STN spike bursting generates beta oscillations 697

bursts 698

In healthy conditions, short epochs of oscillations (β bursts) have been observed in 699

rodents [45,62] and non-human primates [63]. They are also observed in Parkinsonian 700

patients during dopamine ON state [20]. The precise function of β bursts in healthy 701

conditions is currently unknown but they tend to occur before movement (e.g after the 702

cue [45]) and disappear when the movement is initiated [80–83]. Beta bursts become 703

longer and stronger during Parkinsonian conditions [20], therefore, they are thought to 704

be correlated with impairment of voluntary movement in PD patients [20,46,47]. The 705

average length of the β bursts in healthy rodents last for an average of 0.2 sec [62]. In 706

our model, we can generate the oscillatory β bursts of average burst length 0.24 s by 707

making 10% of GPe and 20% of STN neurons are of spike bursting type (Fig 6). We 708

propose that an interplay of spike bursts in a STN-GPe network lying on the border of 709

oscillatory and non-oscillatory regime may be the underlying mechanism to generate 710

short bursts of β oscillations. 711

Experimental results in rat brain slices have shown that an increased spike bursting 712

in STN is associated with an increase in hyperpolarization of the neuron‘s membrane 713

potential [66]. That is, spike bursts in the GPe network (e.g. because of striatal 714

bursts [64]) can induce spike bursting in the STN neuron by inducing large synchronized 715

inhibition. However, if only less than 50% of the GPe neurons generate spike bursts, an 716

equivalent proportion of neurons bursting in STN will quench the oscillations resulting 717

in a short-lived “β burst”. 718

However, in pathological conditions, the network state could be pushed into the 719

oscillatory regime (either due to a change in firing rates or excessive spike bursting) 720

where these oscillations can no longer be quenched. This has been explained in the 721

summary figure (Fig 8). 722

Our results also suggest that in healthy conditions the network might operate on the 723

boundary of synchronization and asynchronization regime. Operating at the boundary 724

enables the network to make incursions into the oscillatory regime (when GPe neurons 725

elicit spike bursts) and retreat to the asynchronization regime (when STN neurons elicit 726

spike bursts) with a proportion of spike bursting neurons where such self-regulated 727

transitions are possible. However, in pathological conditions, the network very likely 728

shifts deeper into the oscillation regime (due to the change in firing rates or excessive 729

spike bursting), where no amount of STN bursting can push the network back to 730

asynchronized regime. A similar idea was suggested by [84,85] where they explored the 731

effect of excitatory input drive to GPe (Iapp) and STN-GPe synaptic strength (gsyn) on 732

β band oscillations. They found that a higher drive to GPe (Iapp) and lower STN-GPe 733

synaptic strength (gsyn) leads to asynchronous activity whereas low input drive to GPe 734

and high STN-GPe synaptic strength leads to a strong oscillatory state. These results 735

are consistent with our observations, that an increased excitatory drive to GPe leads to 736

asynchronous activity and vice versa (Fig 2C,D). The regime on the border yields 737

intermittent synchronous states that resembles the experimental data measured from 738

PD patients. 739

Rubchinsky and colleagues argued that healthy states should also operate on the 740

boundary, as it offers many advantages such as easy creation and dissolution of 741

transient neuronal assemblies [84,85] as required by functioning of network shown in 742

other parts of basal ganglia (especially striatum, [86–90]). We also propose that the 743

STN-GPe network should operate close to the border between oscillatory and 744

non-oscillatory states because it makes it easy to generate short epochs of β band 745

oscillations which are often observed in behaving animals. 746
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Model Limitations 747

Here we aimed to use a minimal model sufficient to dissociate the effect of firing rates 748

and spike bursts on the dynamics of STN-GPe network. The model was constrained by 749

experimental data on synaptic connectivity and neuronal firing rates in healthy states. 750

However, the model has a number of limitations. For instance, the neuron model that is 751

effective in isolating the effects of firing rates and spike bursts, assumed that in every 752

spike bursts, a fixed number of spikes are elicited. Therefore, our model cannot account 753

for phenomena such as firing rate adaptation within bursts. Furthermore, we have 754

focused on spike burst changes in the STN-GPe network alone. Inputs from other 755

sources such as pallidostriatal [26], thalamocortical or thalamostriatal projections may 756

also influence the β oscillation bursts but were not considered in our model. 757

With regard to the oscillations we specifically focused on the β band, however the 758

oscillations in β-band are known to be closely related to oscillations in other frequency 759

bands, especially γ-band [26,59,91–93]. The analysis should be extended to include 760

other frequency bands and their relation to β oscillation bursts. Moreover, we also do 761

not distinguish between high and low frequency β bands oscillation. We show that the 762

frequency of oscillations could be determined by the proportion of GPe and STN 763

neurons that are bursty. There is evidence for a drift in oscillation frequency from high 764

to low β bands in striatal LFPs during episodes of increased β band power triggered by 765

infusion of cholinergic agonist in awake mice [25]. Moreover, it has been suggested that 766

the low β band oscillations are anti-kinetic and gets regulated by dopamine whereas 767

high β maybe non-pathological in nature [10] in humans [94], monkeys [95] and rats [59]. 768

Hence the issue of different β oscillations bands needs to be investigated in further 769

detail. 770

In terms of the mechanisms underlying the emergence of β band oscillations we have 771

explored only two causes of these oscillations: changes in firing rates and spike bursting, 772

however there may be various other factors that can modulate the β band oscillations. 773

Indeed, the BG network has multiple excitatory-inhibitory loops capable of inducing 774

oscillations. We have also assumed that input the STN-GPe neurons is aperiodic, 775

uncorrelated Poisson distributed spike trains. This choice was made to explore the 776

response of the network to firing rate changes in the input drive. However, inputs to 777

STN-GPe are richer in their statistics and dynamics, e.g. bursty, periodic, 778

correlated [24, 30, 35, 64, 96, 97]. Such non-Poissonian inputs might underlie resonance of 779

STN-GPe network at certain frequencies [34]. In future models effect of non-Poissonian 780

inputs should explored in more detail. 781

As is typical for computational models, necessary parameters are rarely available 782

from a single animal model and single experimental conditions. To counter this 783

limitation, we varied the parameters by 10-20% to ensure the robustness of our results. 784

Even though the model was constrained by data from rodents some of the model results 785

are consistent with experimental observations made in non-human primates and human 786

patients. This similarity underscores the generality of the model and the experimental 787

phenomena (i.e. properties of beta band oscillations). 788

Conclusions 789

Despite the simplicity of our model, our analysis of the STN-GPe network provides new 790

insights about the role of spike rates, spike bursts and varied roles of STN and GPe in 791

shaping of the dynamics of beta band oscillations suggest several means of quenching 792

the pathological oscillations for instance by (1) reducing the firing rate of the STN 793

neurons, (2) reducing the excitability of STN neurons, and (3) by balancing the fraction 794

of bursting and non-bursting neurons in the STN and GPe. 795
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S1 State dependent Stochastic Bursting Neuron (SSBN) model (A) 802

Membrane potential and spiking pattern for different number of spikes per burst.(B) 803

Input current and output firing rate (f − I) curve of the SSBN for different number of 804

spikes per burst. 805

S2 Robustness analysis. The areas in gray color of the violin plot shows the 806

distribution that was sampled for robustness analysis. The areas in brown color of the 807

violin plots show the distribution of the parameters that qualitatively reproduce the key 808

results shown in the Fig 3A. See Methods for more detail. 809

S3 Effect of spike bursting on STN-GPe network oscillations for an 810

example network from robustness analysis. (A) Spectral entropy as a function 811

of input to the STN and GPe neurons for a different set of model parameters than used 812

in Fig 3. In this panel the location of the red dotted line and the three exemplary 813

activity regimes are marked in the same place as in Fig 3A for the ease of comparison. 814

(B):Top Same as Fig 3B-top. GPe (left) and STN (right) firing rates as a function of 815

the fraction of spike bursting neurons in the STN (x-axis) and GPe (y-axis), in the 816

regime 1. (B):Bottom Same as Fig 3B-bottom in the main text. However note that, in 817

this network, regime 1 is on the border and hence shows the non-monotonic effect of 818

STN spike bursting on oscillations as observed in Fig 3C-bottom. (C) Same as Fig 3C 819

in the main text. However note that in this network regime 2 is deeper into 820

non-oscillatory regime as compared to Same as Fig 3C. Hence, the effect of spike 821

bursting on oscillations is close to being ineffective. (D) Same as in the panel Fig 3D in 822

the main text. These results are qualitatively similar to the ones shown in the Fig 3. 823

Here, however we have used a different set of parameters than the Fig 3 (Jgpe−gpe = 824

-0.67, Jgpe−stn = -1.0, Jstn−gpe = 1.04, εgpe−gpe = 0.02, εstn−gpe = 0.02, εgpe−stn = 825

0.03, τstn−gpe = 5.96ms, τgpe−gpe = 3.14ms, τgpe−stn = 5.34ms. 826

S4 Spectral entropy as function of GPe (Top) and STN (Bottom) firing 827

rates. Different colors indicate five different trials with same parameters. 828

Different dots correspond to network simulations with different parameters. For a wide 829

range of GPe firing rates the network can be in an oscillatory or non-oscillatory states, 830

however, high firing rate in STN is necessary to induce oscillations. 831

S5 Spectrograms of network activity in three exemplary network activity 832

regimes. top: Non-oscillatory regime (marked as 3 in Fig 3A). middle: Transition 833

regime (marked as 2 in Fig 3A). bottom: Oscillatory regime (marked as 1 in Fig 3A in 834

the main text). 835

S6 Reproduction of results shown in Fig 3 for a smaller intra-burst 836

inter-spike-interval (Bisi = 3ms). The positions of the regimes 1, 2 and 3 as well as 837

the dashed line dividing the oscillatory and non-oscillatory regime are kept same as in 838

Fig 3A in the main text. Decreasing the within burst inter-spike-interval resulted in 839

reduction in the area of non-oscillatory regime. 840

S7 Reproduction of results shown in Fig 3 for a larger intra-burst 841

inter-spike-interval (Bisi = 7ms.) The positions of the regimes 1, 2 and 3 as well as 842

the dashed line dividing the oscillatory and non-oscillatory regime are kept same as in 843

Fig 3A. Increasing the within burst inter-spike-interval reduced the region of the 844

oscillatory regime. 845

March 4, 2020 27/36

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2020. ; https://doi.org/10.1101/707471doi: bioRxiv preprint 

https://doi.org/10.1101/707471
http://creativecommons.org/licenses/by-nd/4.0/


S8 Effect of spike bursting when the network was operating in an oscillatory state 846

(regime 1). 40% of GPe neurons (golden yellow) were converted into bursting neurons at 847

time 1500ms - this had no effect of on the network activity state. To see the effect of 848

spike bursting in STN neurons, in addition to the 40% GPe neurons, we also converted 849

30% of STN neurons (cyan) in bursting neurons at 3500ms. Even this change failed to 850

alter the network activity state. The instantaneous firing rate (binsize = 10 ms) is 851

plotted in black for bursting and non-bursty populations for GPe and STN. 852

S9 Effect of spike bursting when the network was operating in the transition regime 853

(regime 2). 40% of GPe neurons (golden yellow) were converted into spike bursting 854

neurons at time 1500ms. This led to the emergence of weak beta band oscillations (see 855

the spike raster in the right panel before 3500ms). To see the effect of bursting in STN 856

neurons, in addition to the 40% GPe neurons, we also converted 30% of STN neurons 857

(cyan) in bursting neurons at 3500ms. Spike bursting in STN quenched the oscillation 858

initiated by spike bursting in the GPe. The instantaneous firing rate (binsize = 10 ms) 859

is plotted in black for bursting and non-bursty populations for GPe and STN. 860

S10 Effect of spike bursting when the network was operating in an non-oscillatory 861

state (regime 3). 40% of GPe neurons (golden yellow) were converted into bursting 862

neurons at time 1500ms - this had no effect on the network activity state. To see the 863

effect of spike bursting in STN neurons, in addition to the 40% GPe neurons, we also 864

converted 30% of STN neurons (cyan) in bursting neurons at 3500ms. Even this change 865

failed to alter the network activity state. The instantaneous firing rate (binsize = 10 ms) 866

is plotted in black for bursting and non-bursty populations for GPe and STN. 867

S11 STN spike bursting quenches oscillations by imposing a lower frequency on STN 868

population. At 3500 ms, an oscillation of 15Hz was imposed on STN population, instead 869

of replacing STN neurons by bursting neurons. These change in the beta band 870

oscillations because of the injection of 15 Hz oscillations in a fraction of STN neurons 871

are qualitatively similar to the results show in Figure 4. These results explain how spike 872

bursting in STN can quench oscillations when a small fraction of neurons are bursting. 873

S12 Spectrograms for single neurons with 40% of bursty neurons in GPe 874

and 90% of bursty neurons in STN. (A) Firing rate histograms of bursty (left) 875

and non-bursty (right) neurons in the GPe. (B) Firing rate histogram of bursty (left) 876

and non-bursty (right) neurons in the STN. For both GPe and STN we chose three 877

exemplary neurons, #1 - neuron with average firing rates ≤ mean population firing rate 878

(37.16 spks/s), #2 - neuron with average firing rate = mean population firing rate, #3 - 879

neuron with average firing rate > mean population firing rate. C: Spectrograms of each 880

of the six chosen neurons from the STN and GPe. 881
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