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Abstract 

 

Automated image analysis has become key to extract quantitative information from biological 

microscopy images, however the methods involved are now often so complex that they can 

no longer be unambiguously described using written protocols. We introduce BIAFLOWS, a 

web based framework to encapsulate, deploy, and benchmark automated bioimage analysis 

workflows (the software implementation of an image analysis method). BIAFLOWS helps 

fairly comparing image analysis workflows and reproducibly disseminating them, hence 

safeguarding research based on their results and promoting the highest quality standards in 

bioimage analysis. 
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Introduction 

 

As life scientists collect microscopy images of increasing size and complexity [1], the use of 

computational methods has become inescapable in order to extract quantitative information 

from these datasets. Unfortunately, state of the art image analysis methods published in 

biomedical journals are often shared as poorly documented source code sometimes 

requiring expert configuration; and seldom packaged as user friendly modules for 

mainstream BioImage Analysis (BIA) platforms [2][3][4]. Additionally, test images are not 

consistently provided with the software and it can be difficult to identify what is the baseline 

for valid results, and the critical parameters to adjust in order to optimize the analysis. 

Overall, this does not only impair the reusability of the methods and impede reproducing 

published results [5], but it also makes it difficult to adapt these methods to process similar 

image datasets. To improve this situation, scientific datasets are now increasingly made 

publicly available through web-based software [6][7][8] and open data initiatives [9], but 

existing web platforms do not systematically offer advanced features such as the ability to 

remotely view multidimensional microscopy images, process the images online by remotely 

launching image analysis workflows, and compare the results of the methods against a 

ground-truth reference (a.k.a. benchmarking). Benchmarking is known to stimulate the 

continuous improvement of BIA methods and promote their wider diffusion [10]. For this 

reason, biomedical image analysis challenges are becoming more and more popular. But, all 

these competitions have limitations [11]: they each focus on a single bioimage analysis 

problem and they often rely on poorly reusable, ad-hoc, data access protocols and scripts to 

compute performance metrics. Both challenge organizers and participants are therefore 

duplicating efforts from one challenge to the next, whereas participants’ workflows are rarely 

available in a sustainable and reusable fashion. Finally, the vast majority of annotated 

images released in these challenges come from medical imaging, not from biology: for 

instance, as of September 2019, only 15 out of 188 Grand-challenges datasets [12] were 

collected from fluorescence microscopy, arguably the most common imaging technique for 

research in biology. There is hence a critical lack of public annotated datasets illustrating BIA 

problems. 

 

 

Results 

 

Within the Network of European BioImage Analysts (NEUBIAS1), an important body of work 

focuses on channelling the efforts of bioimaging stakeholders to address these issues and 

ensure a better access to and assessment of existing bioimage analysis software. Together, 

we have envisioned and implemented BIAFLOWS (Fig. 1), an open-source web platform to 

benchmark bioimage analysis workflows on publicly shared annotated multidimensional 

imaging data. Whereas some emerging bioinformatics web platforms [13][14] simply rely on 

Dockerized environments and interactive notebooks to analyse scientific data accessed from 

a public database, BIAFLOWS offers a complete framework to 1) import multidimensional 

annotated images, 2) encapsulate and version BIA workflows (running as standalones or 

scripts for BIA platforms), 3) remotely visualize images and workflow results together and 4) 

automatically assess the performance of the workflows from widely accepted benchmark 

metrics. The workflows integrated to BIAFLOWS are versioned and can be run remotely to 

                                                

1 NEUBIAS: Network of European BioImage Analysts, COST Action CA15124. www.neubias.org  
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process image datasets recapitulating important classes of BIA problems. All content, 

including images, workflows, object annotations and benchmark metrics, can be browsed 

and interactively explored through the web interface (Fig. 1). To complement the numerical 

results from the benchmark metrics, it is also possible to visualize the results of one or 

multiple workflows at once by synchronizing several image viewers (Fig. 2). This more 

qualitative assessment can reveal interesting features that are not necessarily captured by 

the benchmark metrics (Supplementary Methods sections 5 and 7). 

 

 
 

Figure 1. BIAFLOWS web interface. A user selects a BIA problem (1) and browse image 

datasets illustrating this problem (2). The user selects a workflow (3) to process the images, 

and sets its parameters (4) before running it. Finally the results can be visualized overlaid on 

the original images (5), and benchmark metrics are reported as overall statistics for all the 

images or per image (6). 
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Figure 2. Synchronizing several viewers showing results from different workflows. 
Results for 2D nuclei segmentation problem from custom ImageJ macro (upper right), 
custom CellProfiler pipeline (lower left) and custom Python script (lower right). The original 
image (zoomed in region) is also displayed without overlay (upper left). 
 

 

BIAFLOWS is open-source and extends Cytomine [15], a web platform developed for the 

collaborative annotation of high-resolution biomedical images (especially large 2D histology 

images). The critical features that were developed for BIAFLOWS to enable the 

benchmarking of bioimage analysis workflows on multidimensional microscopy images are 

subsequently described. First, a module has been implemented for the upload of (C, Z, T) 

images in OME-TIFF format through the web interface, as well as their remote visualization. 

Next, the core architecture of the platform has been completely re-designed to support the 

remote execution of bioimage analysis workflows by encapsulating them and their original 

software environment in Docker images, and describing their interface (input, output, 

parameters) by an extended version of Boutiques, a rich application description schema [16] 

(Supplementary Methods, section 4). BIAFLOWS is designed to monitor trusted user spaces 

hosting Docker images and automatically pull new or updated workflows (Fig. 3, 

DockerHub). In turn, Docker images are automatically built whenever a new release is 

triggered from their source code repositories (Fig. 3, GitHub). To ensure reproducibility, all 

Docker images are versioned and permanently accessible from the system. Moreover, they 

can be run on virtually any type of computational resources including high-performance 

computing and multiple server architectures. This is seamlessly achieved by converting the 

Docker images to a compatible format (Singularity, [17]) on the server and dispatching them 

over the network to the target computational resources using a workload manager (SLURM, 

[18], Fig. 3, additional computing servers). Finally, to enable benchmarking and inter-

operability between all components, standard object annotation formats were specified for 

each class of BIA problems (Supplementary Methods, Section 5) and scripts to compute 

benchmark metrics were adapted from biomedical challenges [12] and scientific publications 

[20]. 
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Figure 3. BIAFLOWS architecture and deployment scenarios. Workflows are hosted in a 

trusted code repository (GitHub). Docker images encapsulate workflows and their exact 

execution environments to ensure reproducibility. They are automatically built and available 

through DockerHub upon new version releases of the workflows. BIAFLOWS monitors 

DockerHub and automatically pulls new or updated workflows; this works equally for the 

online instance or any locally installed BIAFLOWS instance configured to do so. Docker 

images can also be manually downloaded to process local images in a standalone fashion. 

 

A BIAFLOWS online instance managed by NEUBIAS is available at this URL: 

https://biaflows.neubias.org/ (Fig. 3, biaflows.neubias.org). A complete user guide and 

video tutorials are available from the platform, and all content can be viewed in read only 

mode from the guest account (user: guest, password: guest). This instance is populated with 

a substantial collection of annotated image datasets and associated workflows and can be 

browsed in read only mode from the guest account (user: guest, password: guest). The 

datasets were mainly imported from existing biomedical challenges, or created by synthetic 

image generators [19]. Currently 14 annotated datasets and 19 workflows are available and 

illustrate 8 classes of BIA problems (Supplementary Methods, Section 1, Table 1): object 

detection/counting, object segmentation, and pixel classification (Fig. 4); particle tracking, 

object tracking, filament tree tracing, filament network tracing, and landmark detection (Fig. 

5). To showcase the versatility of the platform, the workflows available consist of a mixture of 

standalone software and scripts (ImageJ/Fiji, ICY, CellProfiler, Vaa3D, ilastik, Python scripts 

and Jupyter Notebooks). As a proof of concept, some of these workflows also leverage deep 
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learning Python libraries (Keras, PyTorch). In addition, workflows hosted in the system are 

referenced from Bioimage Informatics Search Engine (http://biii.eu/) to enhance their visibility 

(BISE is an online repository of bioimage analysis tools maintained by NEUBIAS). Interested 

developers can package their workflows (Supplementary Methods, Section 4) and make 

them available for benchmarking from BIAFLOWS online instance by sending a request to 

BIAFLOWS administrators2. BIAFLOWS can also be deployed on a local server and 

populated locally (both images and workflows) as a local image analysis solution (Fig. 3 

BIAFLOWS Local, Supplementary Methods, Section 3). To simplify this process, migration 

tools were developed to transfer content between existing BIAFLOWS instances 

(Supplementary Methods, Section 6), and BIAFLOWS content can be accessed 

programmatically through a RESTful interface (see Supplementary Methods, Section 6) to 

ensure a complete data accessibility and inter-operability. Finally, for full flexibility, 

BIAFLOWS workflows can be manually downloaded to process local images independently 

of any BIAFLOWS server (Fig. 3, Standalone Local, Supplementary Methods, Section 6).  

 

 

Discussion 

 

On one hand, regardless of the platform it is deployed on (e.g. ImageJ), end users running a 

BIA workflow might have a hard time assessing the quality of the results, optimizing them by 

tweaking the parameters, and ensuring that this workflow is among the best achieving for 

their images. On the other hand, BIA workflow developers contributing to a biology research 

project would largely benefit from assessing the performance of the workflow they developed 

for the images of the project on similar public datasets. BIAFLOWS is a web-based platform 

enabling the testing and benchmarking of BIA workflows extracting annotations (e.g. 

biological objects) from raw images. This critical step is often the building blocks of more 

complex workflows extracting quantitative information from microscopy images. The online 

instance managed by NEUBIAS is available at https://biaflows.neubias.org and it is 

populated with a substantial collection of annotated bioimage datasets and associated 

workflows recapitulating common BIA problems. All workflows can be run and benchmarked 

from a simple web browser. BIAFLOWS is designed to expose the functional parameters of 

a BIA workflow, and to provide default optimal values (Fig. 1, step 4) for the images of a 

given problem. This responsibility is essentially left to the workflow developer. The 

parameters can however be freely adjusted by the user to assess their impact on the final 

results. It is easy to add new images, annotations and workflows to the platform and they 

can be migrated between BIAFLOWS instances. To increase the content currently 

accessible, calls for contribution will be continuously launched to gather more microscopy 

annotated images and encourage developers to package their methods so that they can be 

compared to other existing methods and be made readily available to the users. New 

problem classes will also be shortly supported by the platform, for instance the detection of 

blinking events in the context of super-resolution localization microscopy and landmark 

matching for image registration. BIAFLOWS addresses a number of critical requirements to 

foster open image analysis for life sciences: (i) providing and visualizing annotated images 

illustrating BIA problems faced within imaging based biology research projects, (ii) sharing 

versioned image analysis workflows in a reproducible way, (iii) exposing the critical 

functional parameters of these workflows and their optimal default values, (iv) computing 

                                                

2 Send a request to biaflows@neubias.org 
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relevant performance metrics to compare the workflows, and (v) providing a standard way to 

store and visualize the results of the workflows. There is no limitation in using BIAFLOWS in 

other fields where image analysis is a critical step to extract scientific results, for instance 

material science and biomedical imaging. BIAFLOWS could also naturally be used as a 

platform to organize image analysis challenges. This would simplify the task of the challenge 

organizers by automating benchmarking and opening the results to the community, and it 

would increase the content of BIAFLOWS by integrated new annotated images and 

workflows. Another potential application is to trigger BIAFLOWS to span workflow parameter 

spaces so as to automate parameter optimization or assess the impact of their 

misadjustments, a critical feature from the usability standpoint. More generally, BIAFLOWS 

could be adopted as a central and federated platform to make scientific images available to 

the community and publish them together with the workflows that were used to extract 

annotations from these images. This is a milestone of open science not yet reached by any 

existing image sharing platform. This should accelerate scientific progress and help 

surpassing individualist practices where image datasets, algorithms, quantification results, 

and associated knowledge are stored and accessible only to a restricted circle. 

 
 
Methods 

 

Accessing BIAFLOWS online instance 

 

BIAFLOWS online instance is available at https://biaflows.neubias.org and it can be browsed 

in read-only mode from the guest account (username: guest password: guest). An account 

with workflow execution right is also temporarily provided for the reviewers (username: 

reviewer password: reviewer13). The web platform is maintained by NEUBIAS 

(http://neubias.org). Video tutorials and a user guide illustrating how to navigate and use the 

platform are available from the Help section of the website. 

 

  
 

A list of all the content currently available from the website is provided in Supplementary 

Methods (Section 1, Table 1) and some of the BIA problems currently available in the 

platform are illustrated in Fig. 4 and Fig. 5. The image datasets have been selected to 

recapitulate common BIA analysis tasks: spot detection (2D/3D), nuclei segmentation 

(2D/3D), nuclei tracking (2D), landmark detection (2D), filament tracing (3D), and tissue 

detection (2D) in whole-slide histology images. All image datasets are imported from 

previously organized challenges (DIADEM [21], ISBI Cell Tracking Challenge [22], ISBI 

Particle Tracking Challenge [23], Kaggle Data Science Bowl 2018 [24]), created from 

synthetic data generators (CytoPacq [25], TREES toolbox [26], Vascusynth [27], SIMCEP 

[28]), or contributed by NEUBIAS members [37]. To showcase the versatility of the platform, 

the image analysis workflows available to process these images are running on different BIA 

platforms: ImageJ macros [29], Icy protocols [30], CellProfiler pipelines [31], Vaa3D plugins 
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[32], ilastik pipelines [33], Python scripts leveraging Scikit-learn [34] for supervised learning 

algorithms, and Keras/PyTorch [35][36] for deep learning. These workflows were mostly 

contributed by members of NEUBIAS Workgroup 5, or imported from existing challenges. 

 

 

 

 
Figure 4 Some sample images illustrating BIA problems from BIAFLOWS online 

instance and results from associated workflows. Original image (left) and workflow 

results overlay (right). 1. Spot / object detection & counting, synthetic image displaying spots 

generated by SIMCEP [38]. 2. Object segmentation, synthetic image displaying nuclei 

generated by SIMCEP [38]. 3. Pixel classification, red areas circle pixels classified as gland, 

image from 2015 MICCAI challenge of gland segmentation [38]. 
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Figure 5 Some sample images illustrating BIA problems from BIAFLOWS 

online instance and results from associated workflows. Original image (left) and 

workflow results overlay (right). 1. Particle / object tracking, synthetic time-lapse 

displaying non-dividing nuclei generated by CytoPACQ [25], single frame + dragon 

tail tracks showing nuclei past positions. 2. Neuron tracing, Z-stack from DIADEM 

challenge [21], single slice + dilated Z-projection of traced skeleton (red). 3. 

Landmark detection, Drosophila wing, image from UPMC [37].  
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Additional information 

 

Methods to access BIAFLOWS online instance including a user guide, and video tutorials, as 

well as the procedure to install and populate a local instance of BIAFLOWS (images, 

annotations, workflows) and migrate content between instances are available in 

Supplementary Methods. 
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