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Abstract 
 
Automated image analysis has become key to extract quantitative information from scientific 
microscopy bioimages, but the methods involved are now often so refined that they can no 
longer be unambiguously described using written protocols. We introduce BIAFLOWS, a 
software tool with web services and a user interface specifically designed to document, 
interface, reproducibly deploy, and benchmark image analysis workflows. BIAFLOWS allows 
image analysis workflows to be compared fairly and shared in a reproducible manner, 
safeguarding research results and promoting the highest quality standards in bioimage 
analysis. A curated instance of BIAFLOWS is available online; it is currently populated with 
34 workflows that can be triggered to process image datasets illustrating 15 common 
bioimage analysis problems organized in 9 major classes. As a complete case study, the 
open benchmarking of 7 nuclei segmentation workflows, including classical and deep 
learning techniques, was performed on this online instance. All the results presented can be 
reproduced online.  
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Introduction 
 
As life scientists collect microscopy datasets of increasing size and complexity [1], 
computational methods to extract quantitative information from these images have become 
inescapable. In turn, modern image analysis methods are becoming so complex (often 
involving a combination of image processing steps and deep learning techniques) that they 
require expert configuration and specific execution environments to run. Unfortunately, the 
software implementations of these methods are commonly shared as poorly reusable and 
scarcely documented source code,  and seldom as user friendly packages for mainstream 
BioImage Analysis (BIA) platforms [2][3][4]. Even worse, test images are not consistently 
provided with the software and it can hence be difficult to identify what is the baseline for 
valid results, or the critical adjustable parameters to optimize the analysis. Altogether, this 
does not only impair the reusability of the methods and impede reproducing published 
results [5][6], but it also makes it difficult to adapt these methods to process similar images. 
To improve this situation, scientific datasets are now increasingly made available through 
public web-based applications [7][8][9] and open data initiatives [10], but existing platforms 
do not systematically offer advanced features such as the ability to view and process 
multidimensional images online, or to let users assess the quality of the analysis against a 
ground-truth reference (a.k.a. benchmarking). Benchmarking is at the core of biomedical 
image analysis challenges and it is a practice known to sustain the continuous improvement 
of BIA (Bio Image Analysis) methods and to promote their wider diffusion [11]. Unfortunately, 
challenges are rather isolated competitions and they suffer from known limitations [12]: Each 
event focuses on a single bioimage analysis problem and it relies on ad-hoc data formats 
and scripts to compute benchmark metrics. Both challenge organizers and participants are 
therefore duplicating efforts from challenge to challenge, whereas participants’ workflows are 
rarely available in a sustainable and reusable fashion. Additionally, the vast majority of 
challenge datasets come from medical imaging, not from biology: for instance, as of January 
2020, only 15 out of 198 Grand-challenges datasets [13] were collected from fluorescence 
microscopy, one of the most common imaging techniques for research in biology. As a 
consequence, efficient BIA techniques are nowadays available but their reproducible 
deployment and benchmarking are still stumbling blocks for open science. In practice, end 
users are hence faced with a plethora of BIA ecosystems and workflows, each with its own 
specifics, and they have a hard time reproducing other experiments, validating their own 
analysis, or ensuring that a given technique is the most appropriate for the problem they 
face. On the other hand, developers cannot systematically validate the performance of their 
workflow on public datasets, or compare their results to previous work without investing time-
consuming and error prone reimplementation efforts. It is also very challenging for them to 
make their contribution available to the whole scientific community in a configuration free 
and safely reproducible manner. 
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BIAFLOWS software architecture for reproducible deployment and benchmarking 
 
Within the Network of European BioImage Analysts (NEUBIAS1), an important body of work 
focuses on channelling the efforts of bioimaging stakeholders (including biologists, bioimage 
analysts and software developers) to ensure a better characterization of existing bioimage 
analysis workflows, and to bring these tools to a larger number of scientists. Together, we 
have envisioned and implemented BIAFLOWS (Fig. 1), a community-driven, open-source 
software web platform to reproducibly deploy and benchmark bioimage analysis workflows 
on annotated multidimensional microscopy data. Whereas some emerging bioinformatics 
web platforms [14][15] simply rely on Dockerized environments and interactive Python 
notebooks to process scientific data accessible from public repositories, BIAFLOWS offers a 
versatile and extensible framework to (i) batch import annotated image datasets and 
organize them into projects (e.g. BIA problems), (ii) encapsulate versioned BIA workflows 
regardless of their target BIA platform, (iii) batch process the images, (iv) remotely visualize 
the images  together with workflow results, and (v) automatically assess the performance of 
the workflows from widely accepted benchmark metrics. All content of a BIAFLOWS 
instance can be browsed, triggered, and interactively explored from the web interface (Fig. 
1). To complement benchmarking results, the output of several workflows can also be 
visualized simultaneously from synchronized image viewers (Fig. 2). 
 
 

 
 
Figure 1. BIAFLOWS web interface. A user selects a problem from the list of BIA problems 
available from a BIAFLOWS instance (1), browses the images illustrating this problem to 
compare them to target images (2), and selects a workflow (3) and parameters (4) to 
process the images. The results of the workflow can then be overlaid on the original images 
from the online image viewer (5), and benchmark metrics can be browsed, sorted and 
filtered both as overall statistics (all images), or per image (6). 

 
1 NEUBIAS: Network of European BioImage Analysts, COST (www.cost.eu) Action CA15124 (NEUBIAS) 
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BIAFLOWS is open-source, thoroughly documented (http://biaflows-doc.neubias.org/) and 
extends Cytomine [16], a web platform originally developed for the collaborative annotation 
of high-resolution bright-field bioimages. BIAFLOWS required extensive software 
developments and content integration to enable the benchmarking of bioimage workflows; 
accordingly the web user interface has been completely redesigned to streamline this 
process (Fig. 1). First, a module to upload multidimensional (C, Z, T) microscopy datasets 
and a full-fledge remote image viewer were implemented. Next, the architecture was 
refactored to enable the remote execution of bioimage analysis workflows encapsulated with 
their original software environment in Docker images (workflow images). To abstract out the 
operations performed by workflows, we adopted a rich application description schema [17] 
describing their interface (input, output, parameters) (Supplementary Methods, Section 4). 
The system was also engineered to monitor trusted user spaces hosting a collection of 
workflow images and to automatically pull new or updated workflows (Fig. 3, DockerHub). In 
turn, workflow images are built and versioned in the cloud whenever a new release is 
triggered from their associated source code repositories (Fig. 3, GitHub). To ensure 
reproducibility, we enforced that all versions of the workflow images are permanently 
accessible from the system. Importantly, the workflows can be seamlessly run on any 
computational resource, including high-performance computing and multiple server 
architectures. This is achieved by converting the workflow images to a compatible format 
(Singularity, [18]), and dispatching them to the target computational resources over the 
network (using e.g. SLURM, [19], Fig. 3, additional computing servers). To enable inter-
operability between all components, standard object annotation formats were specified for 9 
important classes of BIA problems (Supplementary Methods, Section 5), and we developed 
a software library required to compute relevant benchmark metrics associated to these 
problem classes (partly adapted from biomedical challenges [13] and scientific publications 
[21]). With this new design, benchmark metrics are automatically computed after each 
workflow run. BIAFLOWS can also be deployed on a local server to manage private images 
and workflows, and to process image locally (Fig. 3 BIAFLOWS Local, Supplementary 
Methods, Section 3). To simplify the coexistence of these different deployment scenarios, 
migration tools were developed (Supplementary Methods, Section 6) to transfer content 
between existing BIAFLOWS instances (including the online instance described hereafter). 
Importantly, provided a user has the corresponding rights, all content from any instance can 
be accessed programmatically through a RESTful interface, which ensures a complete data 
accessibility and interoperability. Finally, for full flexibility, workflows can also be downloaded 
manually from DockerHub to process local images independently of any BIAFLOWS 
instance (Fig. 3, Standalone Local, Supplementary Methods, Section 6). 
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Figure 2. Synchronizing several image viewers displaying the results from several 
workflow runs. Zoomed in region from one of the images available in NUCLEI-
SEGMENTATION problem (accessible from BIAFLOWS online instance). Original image 
(upper left), same image overlaid with results from: custom ImageJ macro (upper right), 
custom CellProfiler pipeline (lower left) and custom Python script (lower right). 
 

 
Figure 3. BIAFLOWS architecture and possible deployment scenarios. Workflows are 
hosted in a trusted source code repository (GitHub). Workflow images (Docker images) 
encapsulate workflows together with their execution environments to ensure reproducibility. 
The workflow images are automatically built by DockerHub (cloud service) whenever a new 
workflow is released or an existing workflow is updated from its trusted GitHub repository. 
BIAFLOWS instances monitor DockerHub and pull new or updated workflow images. 
Workflow images can also be downloaded manually to process local images in a standalone 
fashion. 
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BIAFLOWS online, curated, instance for public benchmarking 
 
An online instance of BIAFLOWS is managed by NEUBIAS and available at: 
https://biaflows.neubias.org/ (Fig. 3).   This instance is ready to host community contributions 
and it is already populated with a substantial collection of publicly shared annotated image 
datasets illustrating important BIA problems, and associated versioned workflows targeting 
common BIA platforms (Supplementary Methods, Section 1, Table 1). More precisely, we 
integrated heterogeneous workflows addressing 9 important classes of BIA problems, 
illustrated by 15 image datasets imported from challenges (DIADEM [22], Cell Tracking 
Challenge [23], Particle Tracking Challenge [24], Kaggle Data Science Bowl 2018 [25]), 
created from synthetic data generators [20] (CytoPacq [26], TREES toolbox [27], Vascusynth 
[28], SIMCEP [29]), or contributed by NEUBIAS members [38]. The following problem 
classes are currently represented: object detection/counting, object segmentation, and pixel 
classification (Fig. 4); particle tracking, object tracking, filament network tracing, filament tree 
tracing and landmark detection (Fig. 5). To demonstrate the versatility of the platform, 34 
heterogeneous BIA workflows were integrated, and each target a specific BIA platform, 
language, or library:  ImageJ/FIJI macros and scripts [30], Icy protocols [31], CellProfiler 
pipelines [32], Vaa3D plugins [33], ilastik pipelines [34], Octave scripts [40], Jupyter 
notebooks [15], and Python scripts leveraging Scikit-learn [35] for supervised learning 
algorithms, and Keras/PyTorch [36][37] for deep learning. This list, although already 
extensive, is not limited, as BIAFLOWS core architecture enables to seamlessly integrate 
other software environments as long as the workflows check minimalistic requirements 
(Supplementary Methods, Section 4). So far, the workflows integrated to the platform were 
mostly contributed by scientists from NEUBIAS Workgroup 5, or imported from existing 
challenges by reproducibly encapsulating original author’s code into their specified execution 
environments. In order to demonstrate the potential of BIAFLOWS to perform open 
benchmarking, a complete case study has been performed with (and is available from) 
BIAFLOWS to compare workflows segmenting nuclei in heterogeneous 2D microscopy 
images (Supplementary Methods, Section 2). The content from BIAFLOWS online instance 
(https://biaflows.neubias.org) can be viewed in read only mode from the guest account (user: 
guest | password: guest). Please contact us (biaflows@neubias.org) if you want to get 
workflow execution rights. An extensive user guide and video tutorial are available online 
from the same URL. To enhance the visibility of the workflows hosted in the system, all 
workflows are referenced from NEUBIAS Bioimage Informatics Search Index (http://biii.eu/). 
The online instance is fully extensible and, with minimal efforts, interested developers can 
package their own workflows (Supplementary Methods, Section 4) and make them available 
for benchmarking from BIAFLOWS online instance (see Box 2. How to contribute). Similarly, 
following our guidelines (Supplementary Methods, Section 3), scientists can make their 
images and ground-truth annotations available online through BIAFLOWS online instance or 
a BIAFLOWS instance they would manage locally (see Box 2. How to contribute). All content 
from the online instance can be seamlessly migrated to a local BIAFLOWS instance 
(Supplementary Methods, Section 6) for further development or to process local images. 
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Figure 4 Some sample images from BIAFLOWS online instance illustrating different 
BIA problem classes, and the results from an associated workflow. Original image (left) 
and workflow results (right), from top to bottom: 1. Spot / object detection in synthetic image 
displaying spots (SIMCEP [38]). 2. Nuclei segmentation in images from Data Science Bowl 
2018 [25]. 3. Pixel classification in images from 2015 MICCAI gland segmentation challenge 
[38]. 
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Figure 5 Some sample images from BIAFLOWS online instance illustrating different 
BIA problem classes, and the results from an associated workflow. Original image 
(left) and workflow results (right), from top to bottom: 1. Particle tracking in synthetic time-
lapse displaying non-dividing nuclei (CytoPACQ [25]), single frame + dragon tail tracks. 2. 
Neuron tree tracing in 3D image stacks from DIADEM challenge [21], average intensity 
projection (left), traced skeleton dilated Z-projection (red). 3. Landmark detection in 
Drosophila wing images [37]. 
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To further increase the current content of BIAFLOWS online instance, calls for contribution 
will be launched to the scientific community to gather more microscopy annotated images 
and encourage developers to package their own workflows (see Box 2. How to contribute). 
The support of new problem classes is also planned, e.g. to benchmark the detection of 
blinking events in the context of super-resolution localization microscopy or the detection of 
landmark points for image registration. There is actually no limitation in using BIAFLOWS in 
other fields where image analysis is a critical step to extract scientific results from images, 
for instance material science and biomedical imaging. 
 
 
Case study: Benchmarking nuclei segmentation by classical image processing, 
machine learning, and deep learning methods 
 
We integrated 7 nuclei segmentation workflows to BIAFLOWS online instance and used the 
platform for their open benchmarking (Supplementary Methods, Section 2). All content of this 
case study (images, ground-truth annotations, workflow codes and software environment, 
workflow results) are readily accessible from BIAFLOWS online instance (see 
Supplementary Methods, Section 2). The workflows were benchmarked on two different 
image datasets: a synthetic dataset made of 10 images generated for the purpose of this 
case study, and a subset of 65 images coming from an existing nuclei segmentation 
challenge (Science Bowl 2018). In this study, we could identify trends among the different 
techniques implemented by the workflows: (i) optimal image pre-processing can bring an 
edge to object segmentation accuracy, even when classical techniques compete with deep 
learning techniques (ii) workflows relying on deep learning achieve better than classical 
workflows for heterogeneous datasets, and (iii) object de-clumping is a critical post-
processing step for object segmentation accuracy. It was also evidenced that, for meaningful 
comparison, a set of benchmarking metrics is to be favoured to a single metric (e.g. DICE 
coefficient), and that visual inspection of the workflow results is often required to understand 
the actual shortcomings highlighted by poorer metric scores. All these features are enabled 
by BIAFLOWS, and the same methodology applied in this case study can be easily 
translated to other benchmarking studies.  
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Box 1. How to get started with BIAFLOWS 
 
• Watch BIAFLOWS video tutorial (https://biaflows.neubias.org) 
• Visit BIAFLOWS documentation portal (http://biaflows-doc.neubias.org), including a 
 detailed user guide and instructions for developers and data contributors. 
• Access BIAFLOWS online instance (https://biaflows.neubias.org) in read-only mode 
 from the guest account (username: guest password: guest). The platform is 
 maintained by NEUBIAS (http://neubias.org) and backed by bioimage analysts and 
 software developers across the world. 
• Install your own BIAFLOWS instance on a desktop computer or a server to manage 
 your images locally or process them with existing BIAFLOWS workflows. Follow 
 Installing and populating BIAFLOWS locally from the documentation portal. 
• Use an existing workflow to process your own images locally. Follow Executing a 
 BIAFLOWS workflow BIAFLOWS server from the documentation portal.  
• Share your thoughts or get help on the image.sc forum (https://forum.image.sc), or 
 write directly to our developer team biaflows@neubias.org. 

 
 

Box 2. How to contribute to BIAFLOWS 
 

It is possible to contribute to BIAFLOWS in many ways: 
 
• Scientists can contribute annotated images representative of a specific experiment 
 to BIAFLOWS online instance (send a request to biaflows@neubias.org), or setup 
 their own BIAFLOWS instance to share these images. See Problem classes, ground 
 truth annotations and reported metrics from the documentation portal for guidelines 
 on how to format the ground truth annotations of your images. 
• Workflow developers can encapsulate their code following our developer guidelines, 
 test them on a local BIAFLOWS instance on public images migrated to their local 
 server (using our migration tool), or publish their source code on GitHub to showcase 
 their workflows in BIAFLOWS online instance. Follow Creating a BIA workflow and 
 adding it to a BIAFLOWS instance from the documentation portal and submit 
 contributions to biaflows@neubias.org. 
• Feature requests or bug reports can be posted to BIAFLOWS GitHub 
 (https://github.com/neubias-wg5). 
• Share your experience with us and others, help other researchers on the image.sc 
 forum (https://forum.image.sc). 
• Contribute to the documentation by submitting a pull request to our documentation 
 repository (https://github.com/Neubias-WG5/neubias-wg5.github.io). 
• Cite and link BIAFLOWS content to share data and results accompanying your 
 scientific publications. Follow Access BIAFLOWS from a Jupyter notebook from the 
 documentation portal, or directly link the webpages of your BIAFLOWS instance. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2020. ; https://doi.org/10.1101/707489doi: bioRxiv preprint 

https://doi.org/10.1101/707489


 

11 

Conclusion and future developments 
 
BIAFLOWS addresses a number of critical requirements to foster open image analysis for 
Life Sciences: (i) sharing and visualizing annotated images illustrating commonly faced BIA 
problems, (ii) sharing versioned, reproducible, BIA workflows, (iii) exposing important 
workflow parameters and their sensible default values, (iv) computing relevant performance 
metrics to compare the workflows, and (v) providing a standard way to store, visualize, and 
share the results of the workflows. As such, BIAFLOWS is a critical asset for biologists and 
bioimage analysts to leverage state of the art bioimage techniques and efficiently reuse them 
to process their own data. It is also a tool of choice for algorithm developers and challenge 
organizers to benchmark bioimage analysis workflows and identify trends among different 
analysis strategies. For challenges, some BIAFLOWS projects would be made public to 
readily provide training datasets to competitors, while others would remain private and would 
be the ones used to benchmark the competing workflows. Finally, BIAFLOWS can help 
authors willing to share online supporting data, methods and results associated to their 
published scientific results. More generally, the platform could be adopted as a central and 
federated platform to make scientific images available to the community and publish them 
together with the workflows that were used to extract annotations from these images. This is 
a milestone of open science not reached yet by any image sharing platform and it should 
help accelerating scientific progress and surpassing individualist practices where image 
datasets, algorithms, quantification results, and associated knowledge are often stored 
locally or with restricted access. 
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