A novel mass assay to measure phosphatidylinositol-5-phosphate

from cells and tissues

Avishek Ghosh, Sanjeev Sharma, Dhananjay Shinde, Visvanathan Ramya and Padinjat Raghu

National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
*Correspondence: praghu@ncbs.res.in
Tel: +91-80-23666102

Abstract

Phosphatidylinositol-5-phosphate (PI5P) is a low abundance lipid proposed to have functions in cell migration, DNA damage responses, receptor trafficking and insulin signalling in metazoans. However, studies of $\mathrm{PI}_{5} \mathrm{P}$ function are limited by the lack of scalable techniques to quantify its level from cells and tissues in multicellular organisms. Currently, $\mathrm{PI}_{5} \mathrm{P}$ measurement requires the use of radionuclide labelling approaches that are not easily applicable in tissues or in vivo samples. In this study, we describe a simple and reliable, non-radioactive mass assay to measure total $\mathrm{PI}_{5} \mathrm{P}$ levels from cells and tissues of Drosophila, a genetically tractable multicellular model. We use ${ }^{18} \mathrm{O}$-ATP to label $\mathrm{PI}_{5} \mathrm{P}$ from tissue extracts while converting it into $\mathrm{PI}(4,5) \mathrm{P}_{2}$ using an in vitro kinase reaction. The product of this reaction can be selectively detected and quantified with high sensitivity using a liquid chromatography-tandem mass spectrometry platform. Further, using this method, we capture and quantify the unique acyl chain composition of $\mathrm{PI}_{5} \mathrm{P}$ from Drosophila cells and tissues. Finally, we demonstrate the use of this technique to quantify elevations in PI5P levels, from both Drosophila larval tissues and cultured cells depleted of phosphatidylinositol 5 phosphate 4-kinase (PIP4K), that metabolizes $\mathrm{PI}_{5} \mathrm{P}$ into $\mathrm{PI}(4,5) \mathrm{P}_{2}$ thus regulating its levels. Thus, we demonstrate the potential of our method to quantify $\mathrm{PI}_{5} \mathrm{P}$ levels with high sensitivity levels from cells and tissues of multicellular organisms thus accelerating understanding of $\mathrm{PI}_{5} \mathrm{P}$ functions in vivo.

Introduction

Phosphoinositides are a quantitatively minor class of glycerophospholipids, that mediate several cell biological functions that in turn can affect a wide range of physiological process. Phosphoinositides are generated by the selective phosphorylation of positions 3,4 and 5 on the inositol headgroup of phosphatidylinositol [1]. The seven naturally occurring phosphoinositides are present in different amounts in the cell and each carries out distinct and characteristic functions within cells. Of these, the most recent phosphoinositide to be discovered was phosphatidylinositol ${ }_{5}$-phosphate ($\mathrm{PI}_{5} \mathrm{P}$) [2]. Since, its discovery, several studies have indicated that $\mathrm{PI}_{5} \mathrm{P}$ is present at low quantities in cells and its levels change in response to external cues such as UV radiation, oxidative or osmotic stress and growth factor stimulation [3-6] and such $\mathrm{PI}_{5} \mathrm{P}$ mediated signals might regulate cellular and physiological processes in multicellular organisms. Therefore, identifying and studying enzymes that can regulate $\mathrm{PI}_{5} \mathrm{P}$ levels in higher organisms is an active area of research.

Studies with cultured mammalian cells have shown robust changes in $\mathrm{PI}_{5} \mathrm{P}$ levels upon perturbations of two classes of phosphoinositide phosphate kinase (PIP kinase) enzymes; phosphatidylinositol 5 phosphate 4 -kinase (PIP4K) and phosphatidylinositol 3 phosphate 5 -kinase (PIKFYVE). PIP4K enzymes can phosphorylate $\mathrm{PI}_{5} \mathrm{P}$ to generate phosphatidylinositol 4,5 bisphosphate $\mathrm{PI}(4,5) \mathrm{P}_{2}$ and thus reduce $\mathrm{PI}_{5} \mathrm{P}$ levels in cells. On the other hand, PIKFYVE can synthesize $\mathrm{PI}_{5} \mathrm{P}$ directly by phosphorylating PI on the $5^{\text {th }}$ position of the inositol sugar ring [7]. Alternatively, PIKFYVE can phosphorylate $\mathrm{PI}_{3} \mathrm{P}$ to produce $\mathrm{PI}(3,5) \mathrm{P}_{2}$, which can get dephosphorylated by a 3-phosphatase to form $\mathrm{PI}_{5} \mathrm{P}$. However, the in vivo identity of such a 3-phosphatase is still elusive [8]. Therefore, studying changes in $\mathrm{PI}_{5} \mathrm{P}$ levels from multicellular biological models where one or multiple $\mathrm{PI}_{5} \mathrm{P}$ regulating enzymes are manipulated, will develop a mechanistic understanding of $\mathrm{PI}_{5} \mathrm{P}$ under physiological conditions.

The quantification of phosphoinositides is typically done by one of two methods. The first involves the use of genetically encoded fluorescently tagged lipid binding domains [9]. This technique allows measurement of individual lipids that bind specifically to a protein domain at the level of a single cell with subcellular spatial resolution. In the context of $\mathrm{PI}_{5} \mathrm{P}$ quantification, the plant homeo domain (PHD) of the mammalian transcription factor, ING_{2} has been used in many studies [10,11]. However, due to its non-specific affinity toward $\mathrm{PI}_{3} \mathrm{P}$, it is not regarded as an ideal probe for $\mathrm{PI}_{5} \mathrm{P}$ measurements [12].

A second approach is based on the detection and quantification of $\mathrm{PI}_{5} \mathrm{P}$ by radiolabelling cells with radioactive ${ }^{32} \mathrm{P}$ ATP or ${ }^{3} \mathrm{H}$ myo-inositol and then separating the deacylated monophosphoinositide isomers by ion exchange chromatography [13]. While this is a powerful approach in cultured cells, practical considerations restrict its use in animals, thus reducing the scope of its applicability for in vivo analysis. Some studies have used reverse phase HPLC to separate unlabelled deacylated PIP species and detect them by mass spectrometry [14,15]. However, reproducible separation of $\mathrm{PI}_{5} \mathrm{P}$ from the far more abundant and closely migrating $\mathrm{PI}_{4} \mathrm{P}$ is a challenge. More recently, various groups working on $\mathrm{PI}_{5} \mathrm{P}$, have adopted a radioactive mass assay to measure $\mathrm{PI}_{5} \mathrm{P}$ levels [16,17]. The radioactive $\mathrm{PI}_{5} \mathrm{P}$-mass assay involves conversion of $\mathrm{PI}_{5} \mathrm{P}$ to $\mathrm{PI}_{(4,5)} \mathrm{P}_{2}$ by purified $\mathrm{PIP}_{4} \mathrm{~K} \alpha$ using an in vitro reaction that uses ATP with a ${ }^{32} \mathrm{P}$-label on its $\gamma-\mathrm{PO}_{4}{ }^{3}\left[{ }^{32} \mathrm{P}\right.$ ATP]. This enables selective visualisation of the ${ }^{32} \mathrm{P}$ labelled $\mathrm{PI}(4,5) \mathrm{P}_{2}$ on a TLC plate [16]. While this technique is robust and offers good reproducibility, the disadvantage lies in the need to use radioactivity precluding the ability to handle a large number of samples at a given time and requires appropriate radiation safety facilities. A non-radioactive mass spec-based assay system, if available, can provide the advantage of avoiding potentially hazardous radiation and simultaneously offer higher sensitivity. To achieve these specific aims, we evolved the existing mass assay for $\mathrm{PI}_{5} \mathrm{P}$ levels to use a heavy Oxygen labelled ATP $\left({ }^{18} \mathrm{O}-\mathrm{ATP}\right)$ instead of using ${ }^{32} \mathrm{P}$-ATP in the kinase reaction. ${ }^{18} \mathrm{O}$ is a non-radioactive stable heavy isotope of oxygen with 2 Da difference in mass from naturally occurring ${ }^{16} \mathrm{O}$. This difference in mass allowed us to selectively monitor ${ }^{18} \mathrm{O}-\mathrm{PI}(4,5) \mathrm{P}_{2}$ formed from biochemical $\mathrm{PI}_{5} \mathrm{P}$ by $\mathrm{PIP}_{4} \mathrm{~K} \alpha$, from a lipid mixture containing endogenous $\mathrm{PI}(4,5) \mathrm{P}_{2}$ through the use of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) based approach. In this study, we have developed a method based on this strategy to detect and measure changes in $\mathrm{PI}_{5} \mathrm{P}$ levels. Further, using the advantages of triplequadrupole mass spectrometry, we were able to determine the levels of multiple species of $\mathrm{PI}_{5} \mathrm{P}$, each with a unique fatty acyl chain composition.

Materials and methods

Fly strains and stocks

All experiments were performed with Drosophila melanogaster (hereafter referred to as Drosophila). Cultures were reared on standard medium containing corn flour, sugar, yeast powder and agar along with antibacterial and antifungal agents. Genetic crosses were set up with Gal4 background strains and maintained at $25^{\circ} \mathrm{C}$ and 50% relative humidity [18]. There was no internal illumination within the incubator and the larvae of the correct genotype was selected at the $3^{\text {rd }}$ instar wandering stage
using morphological criteria. Drosophila strains used were ROR (wild type strain), dPIP4K ${ }^{29}$ (homozygous null mutant of $\mathrm{dPIP}_{4} \mathrm{~K}$), daGal4.

$S_{2} R+$ cells: culturing and dsRNA treatment

Drosophila $\mathrm{S}_{2} \mathrm{R}+$ cells were cultured and maintained as mentioned in Gupta et. al., 2013 [19]. dsRNA treatment was performed as described in Kumari et al.,2017 [20]. Briefly, 0.5×10^{6} cells were incubated with $3.75 \mu \mathrm{~g}$ of dsRNA for 96 hours as described in Worby et. al., 2003[21].

Western blotting

Five wandering $3^{\text {rd }}$ instar larvae were used for lysate preparation. They were washed in PBS and homogenised using clean plastic pestles in lysis buffer [50 mM Tris/Cl-pH 7.5, 1mM EDTA, 1 mM EGTA, 1% Triton X-100, 50 mM NaF, 0.27 M Sucrose, $0.1 \% \beta$-Mercaptoethanol and freshly added protease and phosphatase inhibitors (Roche)]. Lysates were kept on ice for 15 mins following which the carcass was pelleted at 1000 Xg for 15 mins at $4^{\circ} \mathrm{C}$. About 75% of the lysate was transferred to a fresh tube, 6X Laemelli buffer added and samples heated at $95^{\circ} \mathrm{C}$ for 5 mins. Lysates of $\mathrm{S}_{2} \mathrm{R}+$ cells were prepared by first washing the cells twice in $1 \times$ PBS and lysed in the lysis buffer mentioned previously, Laemelli buffer was added and the sample heated at $95^{\circ} \mathrm{C}$ for 5 mins . Proteins were separated by SDS/PAGE and transferred onto nitrocellulose membrane using wet transfer. Membranes were blocked with 10% Blotto (in 0.1% Tween $20,1 \times$ TBS $\{$ TBST\}) and primary antibody incubations were performed in 5% BSA in 0.1% TBST overnight at $4^{\circ} \mathrm{C}$. Washes were done in TBST. Secondary antibody incubations were performed for 2 hour at room temperature after which, the membranes were visualised using ECL reagent (Biorad). Dilutions of antibodies used: 1:4000 for anti-tubulin (E7-c), (mouse) from DSHB and 1:1000 anti-Actin (Rabbit) A5060 from Sigma and 1:1000 for anti-dPIP4K antibody (Rabbit) used was generated in the lab and described previously [19].

Lipid standards

diC16-PI3P - Echelon P-3016; diC16-PI5P - Echelon P-5016; Avanti 850173| rac-16:0 PI(5)P-d5 (Custom synthesised) ; 17: o 20: 4 PI3P - Avanti LM-1900; 17: 0 20: $4 \mathrm{PI}(4,5) \mathrm{P}_{2}$ - Avanti LM-1904.

Lipid isolation

All the lipid isolation and processing steps were adapted from Jones et. al., 2013 [16] and Clark et. al., 2011 [22]. Larvae: For each sample, five wandering $3{ }^{\text {rd }}$ instar larvae were washed, dried on a tissue paper and transferred to 0.5 ml tubes (Precellys Bertin corp. KTo3961-1-203.05) containing 200 Ll

Phosphoinositide elution buffer [PEB: chloroform/methanol/2.4 M hydrochloric acid in a ratio of 250/500/200 (vol/vol/vol)]. A Bertin homogenizer instrument, Precellys 24 (Pooo669-PR240-A) was used at 6ooorpm for 4 cycles with 30 secs rest time on ice. The homogenate was transferred to $750 \mu \mathrm{l}$ of PEB in a 1.5 ml Eppendorf and sonicated for 2 mins. We added either 10 or 35 ng of 17:0 20:4 $\mathrm{PI}(4,5) \mathrm{P}_{2}$ as internal standard (in methanol) for LC-MS/MS experiments. Further, $250 \mu \mathrm{l}$ chloroform and $250 \mu \mathrm{l}$ MS-grade water was added and vortexed for 2 mins . The contents were then centrifuged for 5 mins at 1000 Xg to obtain clean phase separation. The lower organic phase was washed with equal volume of lower phase wash solution [LPWS: methanol/1 M hydrochloric acid/chloroform in a ratio of $235 / 245 / 15(\mathrm{vol} / \mathrm{vol} / \mathrm{vol})$] and vortexed and phase separated. The organic phase thus obtained was dried in vacuum and stored at $-20^{\circ} \mathrm{C}$ and processed further within 24 hours. $\underline{S_{2} R+c e l l s: ~}$ Cells were dislodged from the dishes, transferred to 1.5 ml Eppendorf tubes and washed twice with 1X Tris-buffered saline (TBS) following which $950 \mu \mathrm{l}$ of PEB was added to the tubes. The mixture was vortexed for 2 mins following which it was sonicated in a bath sonicator for 2 mins. The rest of the procedure was identical to that described for extraction of lipids from larvae (see above).

Neomycin chromatography

Glyceryl glass (controlled pore) beads were purchased from Sigma (cat. no. GG3000-200) and charged with neomycin sulfate as previously published [16] or neomycin beads were purchased from Echelon Biosciences (cat. no. P-B999). Chromatography was performed with 1-2 mg bead equivalent in slurry form on a Rotospin instrument (Tarsons, India) using buffers as described in Jones et. al., 2013

Total Organic Phosphate measurement

$500 \mu \mathrm{l}$ flow-through obtained from the phosphoinositide binding step of neomycin chromatography was used for the assay. The sample was heated till drying in a dry heat bath at $90^{\circ} \mathrm{C}$ in phosphatefree glass tubes (Cat\# 14-962-26F). The rest of the process was followed according to Jones et. al., 2013 [16].

GST-PIP4K based ${ }^{18}$ O-ATP mass assay

Either diC16-PI5 P (Echelon) (for radioactivity) or 17:0 $2_{20: 4} \mathrm{PI}_{3} \mathrm{P}$ and $\mathrm{d}_{5}-\mathrm{diC}_{16}-\mathrm{PI}_{5} \mathrm{P}$ (for $\mathrm{LC}-\mathrm{MS}$) were mixed with $20 \mu \mathrm{M}$ Phosphatidylserine (PS) (Sigma P5660) and dried in a centrifugal vacuum concentrator. For biological samples, the PS was added to the organic phase obtained at the end of the neomycin chromatographybefore drying. To this, $50 \mu \mathrm{l} 10 \mathrm{mM}$ Tris- HCl pH 7.4 and $50 \mu \mathrm{l}$ diethyl ether was added and the mixture was sonicated for 2 mins in a bath sonicator to form lipid micelles.

The tubes were centrifuged at 1000 Xg to obtain a diethyl ether phase and vacuum centrifuged for 2 mins to evaporate out the diethyl ether. At this time, the reaction was incubated on ice for ca. 10 mins and 2 X kinase assay buffer (100 mM Tris $\mathrm{pH} 7.4,20 \mathrm{mM} \mathrm{MgCl}_{2}, 140 \mathrm{mM} \mathrm{KCl}$, and 2 mM EGTA and $1 \mu \mathrm{~g}$ equivalent GST-PIP4K enzyme-expressed and purified according to Jones et. al., 2013) was added. For the experiments with radioactivity, the 2 X kinase assay buffer contained 40 $\mu \mathrm{M}$ cold ATP, $5 \mu \mathrm{Ci}\left[\gamma^{-32} \mathrm{P}\right]$ ATP (for synthetic lipids) or $10 ~ \mu \mathrm{Ci}\left[\gamma-{ }^{-32} \mathrm{P}\right]$ ATP for biological lipids. For LC-MS/MS based experiments the kinase assay buffer contained $80 ~ \mu \mathrm{M}{ }^{18} \mathrm{O}$-ATP (OLM-785820, Cambridge Isotope Laboratory).

All the assays were performed at $30^{\circ} \mathrm{C}$; in the case of synthetic lipids, assays were performed for defined periods of time; in the case of biological samples, assays were performed for 16 hours unless otherwise mentioned. Reactions were stopped by adding $125 \mu \mathrm{l} 2.4 \mathrm{~N} \mathrm{HCl}, 250 \mu \mathrm{l}$ methanol and 250 $\mu \mathrm{l}$ chloroform. The mixture was vortexed vigorously and spun down for 5 mins at 1000 Xg to obtain clean phase separation. The lower organic phase was washed with equal volume of LPWS and vortexed and phase separated. The final organic phase obtained was processed further for either TLC or chemical derivatization to analyse the products of the reactions.

Derivatization and LC-MS/MS

The organic phase obtained after lipid extraction was directly subjected to derivatization using 2 M TMS-diazomethane (Acros AC385330050), with all necessary cautions as mentioned in Sharma et al., 2019 [23] . After this, $50 \mu \mathrm{l}$ TMS-diazomethane was added to each tube and vortexed gently for 10 min . The reaction was neutralized using $10 \mu \mathrm{l}$ of glacial acetic acid. This was followed by two post derivatization washes as described in Sharma et al., 2019 [23]. To this final extract, 90% (v/v) methanol was added to this and dried for ~ 2 hours in a centrifugal vacuum concentrator at 300 rpm . Next, $170 \mu \mathrm{l}$ of methanol was added to the dried sample after which it was ready for injection. Samples were run on a hybrid triple quadrupole mass spectrometer (Sciex 6500 Q-Trap) connected to a Waters Acquity UPLC I class system. Separation was performed either on a ACQUITY UPLC Protein BEH C4, $300 \AA, 1.7 \mu \mathrm{~m}, 1 \mathrm{~mm} \mathrm{X} 100 \mathrm{~mm}$ column [Product \#186005590] or a 1 mm X 50 mm column [Product \#186005589], using a 45% to 100% acetonitrile in water (with 0.1% formic acid) gradient over 10 mins or 4 mins. Detailed MS/MS and LC conditions are presented in tabular format in the next section.

LC conditions and Mass Spectrometry parameters

Gradient conditions:

Time (in mins) 1 mm X 100 mm column	Time (in mins) 1 mm X 50 mm column	Flow rate $(\mathrm{ml} / \mathrm{min})$	$\%$ solvent A solvent B	
Initial	Initial	0.100	55	45
5	0.50	0.100	55	45
10	4.50	0.100	0	100
15	7.20	0.100	0	100
16	7.30	0.100	55	45
20	10	0.100	55	45

MRM and NL scans: Dwell time of 65 milliseconds were used for experiments with CAD value of 2, GS1 and GS2 at 20, CUR (Curtain gas) at 37, IS (ESI Voltage) as 5200 and TEM (Source Temperature) as 5200. The following table lists the distinct parameters used for all PIP species and PIP $_{2}$ species.

Parameters	PIP species	PIP $_{2}$ species
DP (Declustering Potential)	140	60
EP (Entrance Potential)	12	11
CE (Collision Energy)	29	37
CXP (Collision cell Exit Potential)	12	15

Thin layer Chromatography

Extracted lipids were resuspended in chloroform and resolved by TLC (preactivated by heating at $90^{\circ} \mathrm{C}$ for 1 hour) with a running solvent (45:35:8:2 chloroform: methanol: water: 25% ammonia). Plates were air dried and imaged on a Typhoon Variable Mode Imager (Amersham Biosciences).

Software and data analysis

Image analysis was performed by Fiji software (Open source). Mass spec data was acquired on Analyst ${ }^{\oplus}$ 1.6.2 software followed by data processing and visualisation using MultiQuant ${ }^{\mathrm{TM}}$ 3.0.1 software and PeakView ${ }^{\infty}$ Version 2.0., respectively. Chemical structures were drawn with ChemDraw ${ }^{\oplus}$ Version 16.o.1.4. Illustrations were created with BioRender.com. All datasets were statistically analysed using MS-Excel (Office 2016).

Results

${ }^{18} \mathrm{O}$-ATP can be used in an in vitro $\mathrm{PIP}_{4} \mathrm{~K}$ assay

Lipid extracts from biological samples are expected to contain a mixture of all the phosphoinositides including $\mathrm{PI}_{5} \mathrm{P}$ and $\mathrm{PI}(4,5) \mathrm{P}_{2}$. As a result, any assay that measures $\mathrm{PI}_{5} \mathrm{P}$ in a mixture by converting it to $\operatorname{PI}(4,5) \mathrm{P}_{2}$ must be capable of producing unique $\mathrm{PI}(4,5) \mathrm{P}_{2}$ species distinguishable from the endogenous $\mathrm{PI}(4,5) \mathrm{P}_{2}$ already present. To this end, we established a simple but innovative modification to the existing radioactive $\mathrm{PI}_{5} \mathrm{P}$ mass assay where we substituted the use ${ }^{32} \mathrm{P}$ ATP to $\gamma-$ $\mathrm{PO}_{4}{ }^{3-18} \mathrm{O}$ labelled ATP [${ }^{[8} \mathrm{O}$ ATP]; a schematic of the reaction is shown in Figure 1A. This allowed us to detect and quantify the product generated in the reaction by liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). We expressed and purified GST-PIP4K α and tested its activity on 600 picomoles of synthetic deuterated $\mathrm{PI}_{5} \mathrm{P}\left(\mathrm{d}_{5}-\mathrm{diC}_{16}-\mathrm{PI}_{5} \mathrm{P}\right)$ custom synthesized by Avanti Polar Lipids. Lipids were extracted at the end of the assay, and the contents derivatized using TMS-diazomethane and injected through an in-line C4 UPLC column connected to a triple quadrupole mass spectrometer. Multiple reaction monitoring (MRM) method was used to selectively follow the elution of individual lipids. This method detects and allows quantification of a signature parent-daughter ion pair for a given molecule with high sensitivity [24]. Fragmentation of any PIP and PIP_{2} parent ions results in a loss of a neutral head group of fixed masses of 382 and 490 Da respectively [25]. When ${ }^{18} \mathrm{O}$-ATP is used in this kinase reaction, both the mass of the parent PIP_{2} product and consequently, the neutral fragment generated due to fragmentation, increases by 6 Da to 496 Da (Figure 1 B indicates the ${ }^{18} \mathrm{O}$ in red). The other major fragment generated is the charged diacylglycerol group whose mass depends on the length and saturation of the fatty acyl chain at sn1 and $s n-2$ position and can be calculated theoretically (Figure 1 B). Thus, the $\mathrm{d}_{5}-\mathrm{PI}_{5} \mathrm{P}$ molecule can be detected as the MRM parent/daughter ion transition of 938.5/556.5 (difference in mass: 382 Da), $\mathrm{d}_{5}-\mathrm{PIP}_{2}$ as $1046.5 / 556.5$ (difference in mass: 490 Da) and $\mathrm{d}_{5}{ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ as $1052.5 / 556.5$ (difference in mass: 496 Da). Using this rationale, we observed two major peaks from the reaction in which GST$\mathrm{PIP}_{4} \mathrm{~K} \alpha$ was incubated with $\mathrm{d}_{5}-\mathrm{PI}_{5} \mathrm{P}$ (Figure ${ }_{1} \mathrm{C}$). The first peak at $\mathrm{R}_{\mathrm{t}}=9.84$ min corresponded to a
methylated $\mathrm{d}_{5}-\mathrm{PI}_{5} \mathrm{P}$ and the second peak at $\mathrm{R}_{\mathrm{t}}=9.92$ min corresponded to a methylated $\mathrm{d}_{5}-{ }^{18} \mathrm{O} \mathrm{PIP}_{2}$ (Figure ${ }_{1} C$). The response ratio, expressed as area under the curve of product $\left(\mathrm{d}_{5}-{ }^{18} \mathrm{O}-\mathrm{PIP}{ }_{2}\right)$ divided by the substrate $\left(\mathrm{PI}_{5} \mathrm{P}\right)$ was around 1.9 showing that there was significant production of $\mathrm{d}_{5}-{ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ in the reaction (Figure 1 D). Interestingly, a very small amount of $\mathrm{d}_{5}-\mathrm{PIP}_{2}$ was obtained (response ratio ~ 0.02) that could arise from the ${ }^{16} \mathrm{O}$-ATP impurity in the commercial ${ }^{18} \mathrm{O}$ ATP (Figure ${ }_{1} \mathrm{C}$ ').

Usually, when working with biological samples, radioactive mass assays have reported a minimum detection limit of 1 picomole of converted $\mathrm{PI}_{5} \mathrm{P}$ [16]. We observe that in our LC-MS/MS method, we could linearly detect the conversion of $\mathrm{PI}_{5} \mathrm{P}$ to ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$, even at a sub-picomole range when these lipids were loaded on column (Figure 1 E). The conversion of such low amounts of $\mathrm{PI}_{5} \mathrm{P}$ was possible only with 16 hours of incubation and not with a 1-hour incubation (data not shown). Based on this observation, we decided to conduct our assays with biological samples, where $\mathrm{PI}_{5} \mathrm{P}$ levels are low, for 16 hours.

GST-PIP4 ${ }_{4} \alpha$ is suitable for assaying $\mathrm{PI}_{5} \mathrm{P}$ by LC-MS/MS method

It is known from previous studies that in addition to $\mathrm{PI}_{5} \mathrm{P}$, as a substrate, $\mathrm{PIP}_{4} \mathrm{~K}$ s have a lower but significant in vitro activity on $\mathrm{PI}_{3} \mathrm{P}$ [26]. The radioactivity based $\mathrm{PI}_{5} \mathrm{P}$ mass assay can distinguish between the products formed from these two substrates because of the difference in migration of labelled $\mathrm{PI}(4,5) \mathrm{P}_{2}$ and $\mathrm{PI}(3,4) \mathrm{P}_{2}$ on a one dimensional TLC (Figure 2 A). However, since there is presently no robust method to distinguish intact PIP_{2} isomers on LC-MS platforms, it was prudent to expect that the total PIP_{2} formed in the $\mathrm{PIP}_{4} \mathrm{~K} \alpha$ kinase assay performed on lipids extracted from biological samples could have some contribution from $\mathrm{PI}(3,4) \mathrm{P}_{2}$ in addition to $\mathrm{PI}(4,5) \mathrm{P}_{2}$. We performed control experiments to estimate the amount of $\mathrm{PI}(3,4) \mathrm{P}_{2}$ that might be formed in our ${ }^{18} \mathrm{O}-$ ATP based kinase assay. To estimate this, we calculated the slopes of product formation when using increasing concentrations of synthetic $\mathrm{PI}_{3} \mathrm{P}$ or $\mathrm{PI}_{5} \mathrm{P}$. At first, using the radioactivity (${ }^{32} \mathrm{P}$ ATP) based kinase assay, we observed that the intensities of PIP_{2} spots produced from $\mathrm{diC}_{16}-\mathrm{PI}_{5} \mathrm{P}$ and diC16$\mathrm{PI}_{3} \mathrm{P}$ substrate were very different over the same range of substrate concentrations (Figure 2A). The slope of $\mathrm{PI}(4,5) \mathrm{P}_{2}$ formation from $\mathrm{PI}_{5} \mathrm{P}$ was 22 times steeper than that of $\mathrm{PI}(3,4) \mathrm{P}_{2}$ formation from $\mathrm{PI}_{3} \mathrm{P}$ over a nanomole concentration range of each substrate (Figure 2 B). Lipid samples prepared from cells for the kinase assay will have a mixture of $\mathrm{PI}_{5} \mathrm{P}$ and $\mathrm{PI}_{3} \mathrm{P}$, wherein the levels of $\mathrm{PI}_{3} \mathrm{P}$ would be equal or higher than that of $\mathrm{PI}_{5} \mathrm{P}$ by about 2-3 times $[13,27]$.

Next we tested the relative amounts of $\mathrm{PI}(3,4) \mathrm{P}_{2}$ vs. $\mathrm{PI}(4,5) \mathrm{P}_{2}$ formed by $\mathrm{PIP}_{4} \mathrm{~K} \alpha$ when presented as a mixture of $\mathrm{PI}_{3} \mathrm{P}$ and $\mathrm{PI}_{5} \mathrm{P}$. We used synthetic 17:0/20:4 odd chain $\mathrm{PI}_{3} \mathrm{P}$ (MRM: 995.5/613.5) and diC16-d5-PI5 (MRM: 938.5/556.5) which have distinctive masses despite being PIP isomers, thus
allowing easy identification and quantification of the respective products formed from a mixture of $\mathrm{PI}_{3} \mathrm{P}$ and $\mathrm{PI}_{5} \mathrm{P}$ on a mass spectrometer. To test the extent of $\mathrm{PI}(3,4) \mathrm{P}_{2}$ and $\mathrm{PI}(4,5) \mathrm{P}_{2}$ formation from these two substrates, we mixed them at a molar ratio of $1: 4, \mathrm{PI}_{5} \mathrm{P}: \mathrm{PI}_{3} \mathrm{P}$, mimicking the relative abundances of these two lipids in cells. We observed that while there was detectable $\operatorname{PI}(3,4) \mathrm{P}_{2}$ formation (MRM: 1109.5/613.5; difference of 496 Da) from the $\mathrm{PI}_{3} \mathrm{P}$ substrate (albeit at higher amounts of starting substrate), the dependence of $\mathrm{PI}(3,4) \mathrm{P}_{2}$ formation on $\mathrm{PI}_{3} \mathrm{P}$ concentration had a lower slope compared to that for $\mathrm{PI}(4,5) \mathrm{P}_{2}$ formation from $\mathrm{PI}_{5} \mathrm{P}$ (Figure ${ }_{2} \mathrm{C}$) and was similar to that observed in the radioactivity based PIP4K α assays. Theoretically, in lipid extracts of genetic mutants of $\mathrm{PI}_{5} \mathrm{P}$ regulating enzymes, there will be a change in the molar ratios of $\mathrm{PI}_{5} \mathrm{P}$ to $\mathrm{PI}_{3} \mathrm{P}$ from the ratio in normal conditions. We observed that the response ratio of products formed from $\mathrm{PI}_{5} \mathrm{P}$ were always greater than compared to $\mathrm{PI}_{3} \mathrm{P}$ across a range of molar ratios of $\mathrm{PI}_{5} \mathrm{P}: \mathrm{PI}_{3} \mathrm{P}$, assayed under the given conditions, indicating that $\mathrm{PIP}_{4} \mathrm{~K} \alpha$ will estimate $\mathrm{PI}_{5} \mathrm{P}$ much better over a broad range (Figure 2D). In summary, these data suggest that in our LC-MS/MS based assay (henceforth to be called the ${ }^{18} \mathrm{O}$-ATP mass assay), recombinant $\mathrm{PIP}_{4} \mathrm{~K} \alpha$ can potentially be used to assay $\mathrm{PI}_{5} \mathrm{P}$ levels from a mixed phosphoinositide pool with limited contribution from $\mathrm{PI}_{3} \mathrm{P}$.

A significant amount of $\mathrm{PI}(3,4) \mathrm{P}_{2}$ was observed mainly when micromole amount of $\mathrm{PI}_{3} \mathrm{P}$ was used as substrate (Figure 2 B). However, such high amounts of $\mathrm{PI}_{3} \mathrm{P}$ is unlikely to occur in small biological samples. To test this, we extracted total lipids from wandering $3{ }^{\text {rd }}$ instar Drosophila larvae of wild type (WT) and compared it to $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$ mutant, where $\mathrm{PI}_{5} \mathrm{P}$ levels are higher. We noted a single spot of $\mathrm{PI}(4,5) \mathrm{P}_{2}$ for both samples on the TLC as reported earlier [16] (Figure 2E). We did not observe a separate spot on the TLC, corresponding to $\mathrm{PI}(3,4) \mathrm{P}_{2}$ that migrated with a distinct mobility compared to $\mathrm{PI}(4,5) \mathrm{P}_{2}$. This implied that the amount of $\mathrm{PI}_{3} \mathrm{P}$ used by GST-PIP4K α, to generate $\mathrm{PI}(3,4) \mathrm{P}_{2}$ under these assay conditions was negligible (Figure 2E).

${ }^{18} \mathrm{O}$-ATP based mass assay allows detection of multiple $\mathrm{PI}_{5} \mathrm{P}$ species in Drosophila

The strategy of methylating low abundance and poorly ionisable lipids such as PIP_{3} was initially described by Clark et.al [22]. If this approach is applied to the biological lipids extracted at the end of our ${ }^{18} \mathrm{O}$-ATP mass assay, one should be able to detect low abundant methylated ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ products (precursor ion in Figure 1 B). As described earlier, fragmentation of these precursor ions should generate (i) a neutral head group of fixed mass 496 Da and (ii) a charged diacylglycerol fragments whose mass would depend on the length and saturation of the fatty acyl chain at $s n-1$ and $s n-2$ positions (R_{1} and R_{2} in Figure $1 B$). After performing the ${ }^{18} \mathrm{O}$-ATP mass assay with lipid extracts from wild type larvae, we used neutral loss scanning (NLS) to identify all the precursor ions which generate
fragments after loss of neutral mass 496 Da ; this approach allowed us to identify eight such parent masses (Figure 3 Ai) that produced a neutral loss fragment of 496 Da . This result implies the existence of eight molecular species of $\mathrm{PI}_{5} \mathrm{P}$ that were captured during the ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ assay. The acyl chain lengths of these ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ were calculated by subtracting 496 Da from the observed parent masses (Table1). Next, we performed a neutral loss scan for 382 Da corresponding to the neutral head group that could be generated from PIP species using the same lipid extract as above. The masses of ${ }^{18} \mathrm{O}-$ PIP_{2} species detected correlated well with the masses of the corresponding PIP molecules (Figure 3 Aii). Using this information and theoretical calculation, we set up multiple reaction monitoring (MRM) methods with the Q1/Q3 masses mentioned in Table1 and detected the intensities of the various ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ species from wild type Drosophila larval samples (Figure 3 B). Using this MRM method, we detected all eight individual species described above, thus confirming our results from the Neutral loss scans. We observed that the $34: 2$ species was the most abundant followed by $36: 3$, 36:2, 34:3 and 32:1. These data correlate well with the molecular species of PIP $_{3}$ recently reported from Drosophila larval tissues [23]

Loss of Drosophila $\mathrm{dPIP}_{4} \mathrm{~K}$ results in elevated $\mathrm{PI}_{5} \mathrm{P}$, measured as ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ signal

We tested the ability of our method to detect and quantify the increase in $\mathrm{PI}_{5} \mathrm{P}$ levels earlier reported from adult flies of $d P I P_{4} K^{29}$, a protein null allele of Drosophila $\mathrm{PIP}_{4} \mathrm{~K}$ [19]. An immunoblot was performed to confirm that the mutant larvae did not have any $\mathrm{dPIP}_{4} \mathrm{~K}$ protein (Figure 4 A). Figure 4 B describes the workflow used to estimate $\mathrm{PI}_{5} \mathrm{P}$ levels from biological sample. The $3^{\text {rd }}$ instar wandering larval stage of Drosophila is a good model to study changes in growth and development in the organism. Since $d P I P 4 K^{29}$ larvae show defects in growth and cell size, studying the regulation of $\mathrm{PI}_{5} \mathrm{P}$ in such a system will allow us to understand the relevance of this lipid to cellular growth and metabolism. To this end, we compared $\mathrm{PI}_{5} \mathrm{P}$ levels between wild type and $d \mathrm{PIP}_{4} \mathrm{~K}^{29}$ larvae. $\mathrm{PI}_{5} \mathrm{P}$ was measured using ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ levels relative to an internal standard, and normalised for tissue size by a total organic phosphate measurement obtained from the third step of the sample preparation (Figure 4 B and methods). We found increased $\mathrm{PI}_{5} \mathrm{P}$ in $d P I P 4 \mathrm{~K}^{29}$ consistent with previous observations using radioactive mass assay that reported that $\mathrm{PI}_{5} \mathrm{P}$ levels are elevated in $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$ [19]. Figure ${ }_{4} \mathrm{C}$ captures the acyl chain length diversity of larval $\mathrm{PI}_{5} \mathrm{P}$; all of the eight detected species of ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ were elevated in $d_{P I P} 4 K^{29}$ implying that the corresponding species of $\mathrm{PI}_{5} \mathrm{P}$ were elevated in $\mathrm{dPIP}_{4} \mathrm{~K}^{29}$. In Drosophila larval extracts, the major species of $\mathrm{PI}_{5} \mathrm{P}$ are those with acyl chain $34: 2$ and 36:3; both of these were elevated. In addition, six other species of unique acyl chain length that we could detect were also elevated.

We also assayed $\mathrm{PI}_{5} \mathrm{P}$ levels from Drosophila $\mathrm{S}_{2} \mathrm{R}+$ cells that had been depleted of $\mathrm{dPIP}_{4} \mathrm{~K}$ using with two different dsRNAs [recently reported in [23]]. Under our experimental conditions, treatment with either dsRNA resulted in complete depletion and $\mathrm{dPIP}_{4} \mathrm{~K}$ protein could not be detected by western blot analysis (Figure 4 E). The ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ mass assay using lipid extracts from these cells showed elevated levels of $\mathrm{PI}_{5} \mathrm{P}$ with a slight difference in the extent of $\mathrm{PI}_{5} \mathrm{P}$ elevation induced by each dsRNA (Figure 4 F). We also estimated the level of each of the eight molecular species of $\mathrm{PI}_{5} \mathrm{P}$ and found that all of them were elevated on depletion of dPIP4K (Figure 4G). Thus, both in Drosophila larvae and $\mathrm{S}_{2} \mathrm{R}+$ cells, using our ${ }^{18} \mathrm{O}$-ATP mass assay, we found that the major species of $\mathrm{PI}_{5} \mathrm{P}$ were elevated upon depletion of dPIP 4 K demonstrating that measurements done with our new method compare well with those previously reported using the radioactive mass assay.

Discussion

20 years since the discovery of $\mathrm{PI}_{5} \mathrm{P}$, the mechanisms by which its levels are regulated in vivo still remain unclear and is a matter of great interest owing to its proposed roles in various cell biological processes like cell growth, cell migration, autophagic and stress responses and apoptosis [28]. A key challenge in addressing this question has been the lack of a robust method to quantify PI5P. Till date, $\mathrm{PI}_{5} \mathrm{P}$ detection has relied principally on the use of analytical techniques that use radioactive labels [17] that are challenging to use on in vivo models. Here we describe a robust method to measure $\mathrm{PI}_{5} \mathrm{P}$ levels that does not require the use of radiolabelling and hence avoids associated hazards. The availability of our method offers additional advantages over the use of radiolabelling approaches. These include better control over the data variation due to the use of an internal standard for quantification in LC-MS/MS experiments and the ability to separately quantify each species of PIP and PIP_{2} separately. The use of this method in conjunction with genetically tractable metazoan models for in vivo analysis should facilitate the analysis of $\mathrm{PI}_{5} \mathrm{P}$ turnover in vivo. Our method, an adaptation of the conventional radiolabel based conversion of $\mathrm{PI}_{5} \mathrm{P}$ to $\mathrm{PI}(4,5) \mathrm{P}_{2}$ shows superior sensitivity to the conventional method and is able to detect lipid in the sub-picomolar range; this will facilitate analysis even from small sized samples derived from in vivo settings such as animal models, biopsies, micro-dissected specimens and other high value samples whose analysis might inform on PI5P metabolism or signalling. For example, over the years, it has been clear from analysis of the gene PIKFYVE in mammals, that this enzyme can synthesize $\mathrm{PI}_{5} \mathrm{P}$ [6,8,29]. However, due to its activity in vitro on both PI and $\mathrm{PI}_{3} \mathrm{P}$, the route by which it synthesises $\mathrm{PI}_{5} \mathrm{P}$ in vivo is still debatable. The later route requires a 3-phosphatase, members of the myotubularin in mammals, to convert the $\mathrm{PI}(3,5) \mathrm{P}_{2}$ to $\mathrm{PI}_{5} \mathrm{P}$. An analysis of this specific route in mammals has been limited since mammals
have around 14 homologs that can potentially encode myotubularin activity [30]. Drosophila has only 4 predicted orthologs of myotubularin and thus offers a better metazoan model to study the existence of phosphatases that can regulate $\mathrm{PI}_{5} \mathrm{P}_{\mathrm{P}} \mathrm{PI}_{5} \mathrm{P}$ elevations in the nucleus have been reported in the context of stress signals and DNA damaging agents such as radiation implicating this lipid in cell signalling in the setting of cancer biology [[3,31,32] and reviewed in [33]]. The availability of our highly sensitive, non-radioactive mass assay will allow the measurement of $\mathrm{PI}_{5} \mathrm{P}$ levels in microdissected biopsy samples from human tumours where the application of radioactive mass assays will be challenging. Results from such samples using our assay could help decipher signalling mechanisms in human tumours and help inform decision making in clinical oncology. Finally, $\mathrm{PIP}_{4} \mathrm{~K}$ a key enzyme in the regulation of $\mathrm{PI}_{5} \mathrm{P}$ levels has been recently implicated in the control of insulin receptor signalling and Type II diabetes [23,34,35]. The mechanisms by which PIP4K regulates insulin signalling remain unclear but the use of our assay on human samples of small size and high value could help in the study of the role of this enzyme and its control of $\mathrm{PI}_{5} \mathrm{P}$ levels in human type II diabetes settings.

Although our mass assay has been developed for $\mathrm{PI}_{5} \mathrm{P}$ measurement, its use is not limited to the assay of just this lipid. In principle, it could also be used to measure the levels of other phosphoinositides that can also be assayed using an in vitro, enzyme based conversion mass assay [17]. Thus, the method we have described to measure $\mathrm{PI}_{5} \mathrm{P}$ is a safe and scalable technique that will be of great interest to both researchers specifically exploring $\mathrm{PI}_{5} \mathrm{P}$ metabolism and phosphoinositide signalling in general.

Acknowledgements: We thank the NCBS Mass spectrometry facility for support.

Funding Information: This work was funded by the National Centre for Biological SciencesTIFR and a Wellcome-DBT India Alliance Senior Fellowship to PR (IA/S/14/2/501540). VR was supported by a Research Associateship from the Department of Biotechnology, Government of India.

Author contributions: AG, SS and DS conceptualized the project. AG, SS, VR and DS performed experiments. AG and SS analysed data. Writing: AG, SS and PR. Supervision of project: PR. Funding acquisition: PR.

Competing interests: The authors declare that there are no competing interests associated with the manuscript.

References

Balla, T. (2013) Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiol. Rev. 93, 1019-1137.

Lucia E. Rameh*, Kimberley F. Tolias, B. C. D. \& L. C. C. (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192-196.

Jones, D. R., Bultsma, Y., Keune, W. J., Halstead, J. R., Elouarrat, D., Mohammed, S., Heck, A. J., D'Santos, C. S. and Divecha, N. (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol. Cell 23, 685-695.

Jones, D. R., Foulger, R., Keune, W.-J., Bultsma, Y. and Divecha, N. (2013) PtdIns5P is an oxidative stress-induced second messenger that regulates PKB activation. FASEB J. 27, 164456.

Keune, W.-J., Jones, D. R. and Divecha, N. (2013) PtdIns5P and Pinı in oxidative stress signaling. Adv. Biol. Regul. 53, 179-89.

Sbrissa, D., Ikonomov, O. C., Deeb, R. and Shisheva, A. (2002) Phosphatidylinositol 5phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J. Biol. Chem. 277, 47276-84.

Sbrissa, D., Ikonomov, O. C. and Shisheva, A. (1999) PIKfyve, a mammalian ortholog of yeast Fabıp lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin 274, 21589-21597.

Zolov, S. N., Bridges, D., Zhang, Y., Lee, W.-W., Riehle, E., Verma, R., Lenk, G. M., ConversoBaran, K., Weide, T., Albin, R. L., et al. (2012) In vivo, Pikfyve generates $\operatorname{PI}(3,5) \mathrm{P} 2$, which serves as both a signaling lipid and the major precursor for $\mathrm{PI}_{5} \mathrm{P}$. Proc. Natl. Acad. Sci. U. S. A., National Academy of Sciences 109, 17472-7.

Várnai, P., Gulyás, G., Tóth, D. J., Sohn, M., Sengupta, N. and Balla, T. (2017) Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 64, 72-82.

Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., Baird, C. L., Zhu,
H., Field, S. J., Lessnick, S. L., et al. (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor 114, 99-111.

Vicinanza, M., Korolchuk, V. I., Ashkenazi, A., Puri, C., Menzies, F. M., Clarke, J. H. and Rubinsztein, D. C. (2015) PI(5)P regulates autophagosome biogenesis. Mol. Cell 57, 219-34.

Wills, R. C., Goulden, B. D. and Hammond, G. R. V. (2018) Genetically encoded lipid biosensors. Mol. Biol. Cell (Kozminski, K. G., ed.) 29, 1526-1532.

Sarkes, D. and Rameh, L. E. (2010) A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem. J. 428, 375-84.

Kiefer, S., Rogger, J., Melone, A., Mertz, A. C., Koryakina, A., Hamburger, M. and K??enzi, P. (2010) Separation and detection of all phosphoinositide isomers by ESI-MS. J. Pharm. Biomed. Anal., Elsevier B.V. 53, 552-558.

Jeschke, A., Zehethofer, N., Lindner, B., Krupp, J., Schwudke, D., Haneburger, I., Jovic, M., Backer, J. M., Balla, T., Hilbi, H., et al. (2015) Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc. Natl. Acad. Sci. 112, 201423456.

Jones, D. R., Ramirez, I. B.-R., Lowe, M. and Divecha, N. (2013) Measurement of phosphoinositides in the zebrafish Danio rerio. Nat. Protoc., Nature Publishing Group 8, 1058-72.

Viaud, J., Chicanne, G., Solinhac, R. and Hnia, K. (2017) Mass Assays to Quantify Bioactive PtdIns3P and PtdIns5P During Autophagic Responses. Mol. Charact. Autophagic Responses Part A 1st ed., Elsevier Inc.

Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes 415, 401-415.

Gupta, A., Toscano, S., Trivedi, D., Jones, D. R., Mathre, S., Clarke, J. H., Divecha, N. and Raghu, P. (2013) Phosphatidylinositol 5 -phosphate 4-kinase (PIP4K) regulates TOR signaling and cell growth during Drosophila development. Proc Natl Acad Sci U S A 110, 5963-5968.

Kamalesh, K., Trivedi, D., Toscano, S., Sharma, S., Kolay, S. and Raghu, P. (2017) Phosphatidylinositol 5-phosphate 4-kinase regulates early endosomal dynamics during clathrin-mediated endocytosis. J. Cell Sci.

Worby, C. A., Simonson-leff, N. and Dixon, J. E. (2001) P ROTOCOL RNA Interference of Gene Expression (RNAi) in Cultured Drosophila Cells MATERIALS EQUIPMENT RECIPES ABSTRACT 1-9.

Clark, J., Anderson, K. E., Juvin, V., Smith, T. S., Karpe, F., Wakelam, M. J. O., Stephens, L. R. and Hawkins, P. T. (2011) Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat. Methods, Nature Publishing Group 8, 267-272.

Sharma, S., Mathre, S., Ramya, V., Shinde, D. and Raghu, P. (2019) Phosphatidylinositol 5 Phosphate 4-Kinase Regulates Plasma-Membrane PIP 3 Turnover and Regulates PlasmaMembrane PIP 3 Turnover and Insulin Signaling. CellReports, ElsevierCompany. 27, 19791990.e7.

Kielkowska, A., Niewczas, I., Anderson, K. E., Durrant, T. N., Clark, J., Stephens, L. R. and Hawkins, P. T. (2014) A new approach to measuring phosphoinositides in cells by mass spectrometry. Adv. Biol. Regul., The Authors 54, 131-141.

Balakrishnan, S. S., Basu, U., Shinde, D., Thakur, R. and Jaiswal, M. (2018) Regulation of PI4P levels by $\mathrm{PI}_{4} \mathrm{KIII} \boxtimes$ during G-protein coupled PLC signaling in Drosophila photoreceptors.

Zhang, X., Loijens, J. C., Boronenkov, I. V, Parker, G. J., Norris, F. A., Chen, J., Thum, O., Prestwich, G. D., Majerus, P. W. and Anderson, R. A. (1997) Phosphatidylinositol-4phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 272, 17756-61.

Shisheva, A., Sbrissa, D. and Ikonomov, O. (2015) Plentiful PtdIns5P from scanty PtdIns $(3,5) \mathrm{P}_{2}$ or from ample PtdIns? PIKfyve-dependent models: Evidence and speculation (response to: DOI 10.1002/bies.201300012). BioEssays 37, 267-277.

McCartney, A. J., Zhang, Y. and Weisman, L. S. (2014) Phosphatidylinositol 3,5bisphosphate: low abundance, high significance. Bioessays 36, 52-64.

Ikonomov, O. C., Sbrissa, D., Delvecchio, K., Xie, Y., Jin, J.-P., Rappolee, D. and Shisheva, A. (2011) The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve-/- embryos but normality of PIKfyve+/- mice. J. Biol. Chem. 286, 13404-13.

Raess, M. A., Friant, S., Cowling, B. S. and Laporte, J. (2017) Advances in Biological Regulation WANTED e Dead or alive: Myotubularins, a large disease- associated protein
family. Adv. Biol. Regul., Elsevier Ltd 63, 49-58.

34 Carricaburu, V., Lamia, K. A., Lo, E., Favereaux, L., Payrastre, B., Cantley, L. C. and Rameh, L. E. (2003) The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc. Natl. Acad. Sci. 100, 9867-9872.

Wang, D. G., Paddock, M. N., Lundquist, M. R., Sun, J. Y., Mashadova, O., Amadiume, S., Bumpus, T. W., Hodakoski, C., Hopkins, B. D., Fine, M., et al. (2019) PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism. Cell Rep. 27, 1991-2001.e5.

Figure Legends

Figure 1: ${ }^{18} \mathrm{O}$-ATP used as a substrate in an in vitro $\mathrm{PIP}_{4} \mathrm{~K}$ assay
(A) A schematic to show the reaction catalysed by GST-PIP4 ${ }_{4} \alpha$ for a kinase reaction on $\mathrm{PI}_{5} \mathrm{P}$ (see methods for details) (B) Diagram representing methylated ${ }^{18} \mathrm{O}-\mathrm{PI}(4,5) \mathrm{P}_{2}$ with +1 charge and the resultant products after fragmentation yielding a neutral head group of mass 496 Da and a charged diacylglycerol (DAG) fragment of mass $=$ Parent mass $(P M)$ - neutral loss (NL) mass. (C) Chromatogram representing the extracted ion chromatogram (XIC) of MRM transitions of substrate ($\mathrm{d}_{5}-\mathrm{PI}_{5} \mathrm{P}$) in blue ($938.5 / 556.5$), the ${ }^{18} \mathrm{O}-\mathrm{d}_{5}-\mathrm{PIP}_{2}$ product in red (1052.5/556.5) and $\mathrm{d}_{5}-\mathrm{PIP}_{2}$ product
in green (1046.5/556.5). C' shows that the $\mathrm{d}_{5}-\mathrm{PIP}_{2}$ product formed in the reaction is negligible (\sim 1\%). (D) Quantification of response ratio of $\mathrm{d}_{5}{ }^{-18} \mathrm{O}-\mathrm{PI}(4,5) \mathrm{P}_{2}$ formed from the earlier chromatogram. Number of individual reactions performed $(n)=3$. Student's unpaired t-test with 95% confidence interval shows significance between the no enzyme (bar 1) and with enzyme (bar 2).
(D) A dose response curve of $\mathrm{d}_{5}-\mathrm{PI}_{5} \mathrm{P}$ ranging from 0.01 picomoles to 0.3 picomoles on column. Y axis depicts intensity of $\mathrm{d}_{5}-{ }^{18} \mathrm{O}-\mathrm{PI}(4,5) \mathrm{P}_{2}$ (in cps) and X -axis represents the amount of $\mathrm{d}_{5}-\mathrm{PI} 5 \mathrm{P}$ loaded on column.

Figure 2: LC-MS/MS based assay reveals that GST-PIP4K α is highly specific for $\mathrm{PI}_{5} \mathrm{P}$ and has lower affinity for $\mathrm{PI}_{3} \mathrm{P}$
(A) TLC shows radioactive products formed from increasing concentrations of diC16-PI5 P or diC16-PI3 ${ }_{3}$ (Echelon) upon kinase reaction with GST-PIP4K α (see methods for details). Both assays have a 'no enzyme control' for 12 picomoles of lipid. $\mathrm{PI}(4,5) \mathrm{P}_{2}$ or $\mathrm{PI}(3,4) \mathrm{P}_{2}$ spots migrate with different R_{f} and are labelled on the TLC along with the origin (B) Pixel intensity of the TLC image from (A) has been quantified and plotted for both $\mathrm{PI}_{5} \mathrm{P}$ and $\mathrm{PI}_{3} \mathrm{P}$. Equations for $\mathrm{PI}_{5} \mathrm{P}: \mathrm{y}=250.32 \mathrm{x}$ $+53.897 ; \mathrm{PI}_{3} \mathrm{P}: \mathrm{y}=12.771 \mathrm{x}+9.5691(\mathrm{C})$ Intensity response (cps) of respective products of $\mathrm{PI}_{3} \mathrm{P}$ and $\mathrm{PI}_{5} \mathrm{P}$, using different substrate amounts from a ${ }^{18} \mathrm{O}$ ATP based kinase assay experiment analysed by LC-MS/MS using $\mathrm{d}_{5}-\mathrm{diC}_{16}-\mathrm{PI}_{5} \mathrm{P}$ or $17: 02_{20: 4} \mathrm{PI}_{3} \mathrm{P}$ as indicated in the X -axis. Equations for $\mathrm{PI}_{5} \mathrm{P}: \mathrm{y}$ $=575245 \mathrm{x}-841692 ; \mathrm{PI}_{3} \mathrm{P}: \mathrm{y}=25265 \mathrm{x}-39253(\mathrm{D})$ Response ratio of $\mathrm{PI}_{5} \mathrm{P}$ vs $\mathrm{PI}_{3} \mathrm{P}$ at different molar ratios of $\mathrm{PI}_{5} \mathrm{P}$ to $\mathrm{PI}_{3} \mathrm{P}$. Y-axis represents response ratio of either $\mathrm{d}_{5}{ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ to $\mathrm{d}_{5}-\mathrm{PI}_{5} \mathrm{P}\left(\mathrm{PI}_{5} \mathrm{P}\right)$ or 17:0 20:4 ${ }^{18} \mathrm{O}_{-}-\mathrm{PIP}_{2}$ to 17:0 20:4 $\mathrm{PI}_{3} \mathrm{P}$ and X -axis represents molar ratio of $\mathrm{PI}_{5} \mathrm{P}: \mathrm{PI}_{3} \mathrm{P}$ (E) TLC shows single radioactive spot corresponding to $\mathrm{PI}(4,5) \mathrm{P}_{2}$ from larvae of Wild type (WT) or $d P I P 4 K^{29}$ (mutant of dPIP4K).

Figures 3: Mass spectrometry setup for ${ }^{18} \mathrm{O}$-ATP based mass assay of biological $\mathrm{PI}_{5} \mathrm{P}$ from

Drosophila

(A) (i) Spectrum from + Neutral Loss of 496.0 Da (scanned for $1000-1245 \mathrm{Da}$) in a 20 min run. (ii) Spectrum from + Neutral Loss of 382.0 Da (scanned for $750-1245 \mathrm{Da}$) in a 20 min run. The Y-axis indicates intensity of ions and the X -axis represents Mass/Charge (in Da). The peaks are marked by masses which feature as parent masses of the respective neutral loss mass. Both scans were performed from WT assayed larval samples. The highlighted regions depict parent lipid species with a total of
 species are also tabulated in Table 1 (B) Extracted ion Chromatogram (XIC) of WT larval assayed
samples for the species that were picked up in NL scans. For each of the chromatograms, the Y-axis represents intensity of the MRM corresponding to the species, and the X -axis represents time on the LC. The chromatograms are arranged in decreasing order of ion abundance.

Figure 4: Loss of dPIP4K results in elevated in $\mathrm{PI}_{5} \mathrm{P}$, measured as ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ levels in Drosophila (A) Western blot showing dPIP 4 K protein expression in da/+ and da/+; dPIP4 ${ }_{4}{ }^{29}$ samples prepared from 5 larvae. Tubulin is used as loading control. (B) Schematic summarising the methodology followed to perform the assay from Drosophila. larval or $\mathrm{S} 2 \mathrm{R}+$ cells (C) Total ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ normalised to internal standard (17:0 20:4 $\mathrm{PI}(4,5) \mathrm{P}_{2}$) divided by organic phosphate value from processed Drosophila larval samples of da/+ (pan larval Gal4 control) and da/+; dPIP4K ${ }^{29}$ (dPIP4K mutant). $\mathrm{n}=3$ where each sample has been prepared from five $3^{\text {rd }}$ instar wandering larvae (see methods for details). Error bars represent S.E.M. p value by student's two tailed unpaired t-test is provided on the graph. (D) Different acyl chain length species of ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ of the data plotted in (B). Error bars represent S.E.M. Individual p value by student's two tailed unpaired t-test is provided above each bar on the graph. (E) Western blot showing dPIP4K protein expression in $\mathrm{S}_{2} \mathrm{R}+$ cells treated with dsRNAs against GFP (Control) or dPIP4K dsRNA I or dsRNA II. Actin is used as loading control. (F) Total ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ normalised to internal standard ($17: 020: 4 \mathrm{PI}(4,5) \mathrm{P}_{2}$) divided by organic phosphate value from processed Drosophila samples of GFP, dPIP4K I or dPIP4K II dsRNA treated $\mathrm{S}_{2} \mathrm{R}+$ cells. $\mathrm{n}=3$ where each sample has been prepared from starting cell density of 0.5 million cells. The samples have been pooled across two days and have been normalised to the GFP dsRNA values (see methods for details). The graph has been normalised taking the GFP dsRNA value as 1. Error bars represent S.E.M. (G) Representative graph showing different acyl chain length species of ${ }^{18} \mathrm{O}$ PIP_{2} normalised to internal standard (17:0 20:4 $\mathrm{PI}(4,5) \mathrm{P}_{2}$) divided by organic phosphate value from 2 samples of (F).

Table 1: List of MRMs

The mass of each parent ion detected in Q1 representing ${ }^{18} \mathrm{O}-\mathrm{PIP}_{2}$ is shown in column- Parent ion mass (Q 1). The singly protonated fragment corresponding to a diacylglycerol fragment derived from each such parent ion is shown in column-Daughter ion mass (Q_{3}). The acyl chain composition of this diacylglycerol fragment is shown in column-Computed Acyl chain length.

$$
{ }^{18} \mathrm{O}-\mathrm{PI}(4,5) \mathrm{P}_{2}
$$

Exact Mass: 654.11+ R1 + R2 Precurssorion (Q1)

C

D

hPIP4K α - +

Figure 2

B

Figure 4

Parent ion mass (Q1) $\mathbf{1 8} \mathbf{O - P I P 2}$ mass	Daughter ion mass (Q3) Diacylglycerol mass	Computed acyl chain length
1043.5	547.5	$32: 0$
1045.5	549.5	$32: 1$
1069.5	573.5	$34: 0$
1071.5	575.5	$34: 2$
1073.5	577.5	$34: 1$
1093.5	597.5	$36: 5$
1095.5	599.5	$36: 4$
1097.5	601.5	$36: 3$
1099.5	603.5	$36: 2$
1101.5	605.5	$36: 1$

