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ABSTRACT 

Precise identification of causative variants from whole-genome sequencing data, including both 

coding and non-coding variants, is challenging. The CAGI5 SickKids clinical genome challenge 

provided an opportunity to assess our ability to extract such information. Participants in the 

challenge were required to match each of 24 whole-genome sequences to the correct phenotypic 

profile and to identify the disease class of each genome. These are all rare disease cases that have 

resisted genetic diagnosis in a state-of-the-art pipeline. The patients have a range of eye, 

neurological, and connective-tissue disorders. We used a gene-centric approach to address this 

problem, assigning each gene a multi-phenotype-matching score. Mutations in the top scoring 

genes for each phenotype profile were ranked on a six-point scale of pathogenicity probability, 

resulting in an approximately equal number of top ranked coding and non-coding candidate 

variants overall. We were able to assign the correct disease class for 12 cases and the correct 

genome to a clinical profile for five cases. The challenge assessor found genes in three of these 

five cases as likely appropriate. In the post-submission phase, after careful screening of the genes 

in the correct genome we identified additional potential diagnostic variants, a high proportion of 

which are non-coding.   
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INTRODUCTION 

Identification of the variant(s) causing a patient’s clinical symptoms is one of the key challenges 

in rare disease diagnostics. The problem has assumed increasing urgency, with recent advances 

in sequencing technology and a decrease in the sequencing cost (Schwarze, Buchanan, Taylor, & 

Wordsworth, 2018), leading to vast amounts of data to interpret. While whole-genome 

sequencing data provides more comprehensive coverage than other more restricted sequencing 

technologies (such as gene panel data, exome sequencing data, or chromosomal microarray 

data), identification of potential causative variant(s) out of the approximately four million 

variants found in a genome resonates with finding a needle in a haystack (Cooper & Shendure, 

2011). The variant diagnostic rate (rate of causative, pathogenic or likely pathogenic genotypes 

in known disease genes for children) from whole-genome sequencing data is currently only 

about 40% (Clark et al., 2018) with the implication that there remain substantial deficiencies in 

current methodology. Many factors contribute to this shortfall, but there is a clear need for 

improved methods from the computational biology community. The Critical Assessment of 

Genome Interpretation (CAGI) (https://genomeinterpretation.org) is a platform for community 

experiments in genome interpretation. Typically, the experiments take the form of blinded 

prediction of the phenotypic impacts of genomic variation followed by an objective independent 

assessment of the results (Hoskins et al., 2017). The SickKids5 experiment is one such challenge 

(https://genomeinterpretation.org/SickKids5_clinical_genomes), and follows an earlier CAGI 

SickKids4 one (https://genomeinterpretation.org/content/4-SickKids_clinical_genomes).  Here 

we report our methods and the results obtained for this challenge, and draw conclusions on 

directions for future improvement.  
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Participants were provided with a set of 24 whole genome sequencing data and 24 clinical 

profiles for pediatric patients, and asked to match each genome to the corresponding phenotype 

profile. Two general strategies have been developed: genotype to phenotype and phenotype to 

genotype. In a genotype to phenotype approach, a patient’s clinical profile is not utilized to 

prioritize potential causative genes and variant(s) - rather all deleterious variants in a genome are 

identified from genotype data. Several variant annotation programs (such as VAAST (Hu et al., 

2013), ANNOVAR (Wang, Li, & Hakonarson, 2010), SnpEff (Cingolani, Platts, et al., 2012), 

VAT (Habegger et al., 2012), and VEP (McLaren et al., 2010)) utilize population allele 

frequency data and evolutionary conservation information together with appropriate disease 

inheritance models to prioritize disease relevant genes and variants in a genome, without 

explicitly considering a specific patient phenotypic profile. Conversely, the common theme of a 

phenotype to genotype approach is that a set of patient specific phenotypes, either in the form of 

Human Phenotype Ontology (HPO) (Köhler et al., 2014) terms or other clinical descriptors, is 

used to generate a list of relevant genes and only variants in these genes are considered for 

further analysis. A number of strategies have been developed for incorporation of patient-

specific gene prioritization information. The information may come from various bio-medical 

ontologies, including human-specific ontologies, like HPO (Köhler et al., 2014), DO (Schriml et 

al., 2019), GO (Blake et al., 2015) (such as used in Phevor (Singleton et al., 2014)) and other 

model organism specific ontologies, such as MPO (Smith & Eppig, 2009), ZPO (van Slyke, 

Bradford, Westerfield, & Haendel, 2014) (used in Exomiser (Smedley et al., 2015)). Several 

computational tools leverage gene-disease-phenotype relationships and phenotype information, 

for instance Phenolyzer (H. Yang, Robinson, & Wang, 2015), and PDR (Krämer, Shah, Rebres, 

Tang, & Richards, 2017). Also some tools extract phenotype information using keyword search 
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from text (used in GeneCards (Safran et al., 2010)), or free-text boolean search (used in VarElect 

(Stelzer et al., 2016)). Prioritization of variants in prioritized genes includes evaluation of the 

likely impact on gene function and pruning variants on the basis of population frequency data 

(rare disease implies rare variants). Computational tools use a variety of methodologies to assess 

the likely impact of coding and non-coding variants. Evaluation of coding variants is usually 

divided into Loss of Function (frameshifts, direct splice site impact, and stop gain or loss) and 

missense.  Many methods have been developed to estimate the effect of missense mutations 

based on sequence conservation properties (for example, SIFT (Kumar, Henikoff, & Ng, 2009), 

PolyPhen-2 (Adzhubei et al., 2010), SNPs3D profile (Yue & Moult, 2006), SNAP2 (Hecht, 

Bromberg, & Rost, 2015), and Evolutionary Action (Katsonis & Lichtarge, 2017)) and on 

protein stability, as estimated from protein structure (for example, SNPs3D stability  (Yue, Li, & 

Moult, 2005), Rosetta (Park et al., 2016), and FoldX (Delgado, Radusky, Cianferoni, & Serrano, 

2019; Schymkowitz et al., 2005)). Some methods also include functional information (for 

example, MutPred2 (Pejaver, Mooney, & Radivojac, 2017)).  Non-coding variant analysis 

methods utilize features including regional purifying selection, enrichment with functional 

elements such as transcription factor binding sites and DNase hypersensitivity as well as DNA 

based evolutionary conservation. Example methods are  PhastCons (Siepel et al., 2005), PhyloP 

(Pollard, Hubisz, Rosenbloom, & Siepel, 2010), and Gerp++ (Davydov et al., 2010). Features are 

often combined using machine learning approaches (such as those used  in Genomiser (Smedley 

et al., 2016) and CADD (Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019)). In one analysis 

(Smedley & Robinson, 2015), phenotype-driven approaches were found to have substantially 

better performance than variant driven ones. So far, most of these methodologies have only been 

benchmarked against simulated data, and there has been very limited blind testing.  
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In the Sickkids5 challenge, participants were provided with clinical profiles in the form of a set 

of PhenoTips terms (Girdea et al., 2013) (represented using HPO terms) and whole genome 

sequencing data for the 24 pediatric patients. These are all difficult cases where the standard 

SickKids analysis pipeline failed to find any reportable diagnostic variants (Kasak et al., 2019). 

The challenge was to assign each genome to one of three disease classes (eye disorders, 

neurological disorders, and connective tissue disorders) and to match each genome to the 

appropriate clinical profile. An additional optional part to the challenge was the identification of 

specific diagnostic variants for each patient. The identification of predictive secondary variants 

(related to risk of other serious diseases and with no phenotypes reported in the clinical 

descriptions) was also optional. 

 

Here we report our approach and results for the SickKids5 challenge. We used a phenotype to 

genotype approach, selecting only clinical symptom-specific genes. For this purpose, we 

developed a phenotype-weighted scoring scheme to select the set of genes associated with each 

clinical profile.  Each variant in the selected genes was assigned to one of six impact related 

categories.  Final selection of a genome for each clinical profile included a subjective evaluation 

of the match of each gene’s OMIM description (Hamosh, Scott, Amberger, Bocchini, & 

McKusick, 2005) with the clinical profile. The results were analyzed in a number of ways, 

especially the role of clear clinical documentation in developing the phenotype-weighted scoring 

scheme and types of prioritized variants. 

 

MATERIALS AND METHODS 
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SickKids5 clinical profile data  

The SickKids Genome Clinic at the Hospital for Sick Children in Toronto 

(http://www.sickkids.ca/) provided the clinical profiles for the challenge. The profiles for the 24 

patients included an overall disease class, with six  eye disorder cases, seven neurological  and 

11 connective-tissue disorders cases. Additional profile information for each patient included 

gender, age, indication for referral and clinical symptoms in the form of a set of terms from the 

hierarchical Human Phenotype Ontology (HPO) (Köhler et al., 2014) entered through the 

PhenoTips interface (Girdea et al., 2013). Inheritance information was also provided for some 

patients: Six were described as autosomal recessive cases and pedigree charts were given for 14 

patients (including two of the six autosomal recessive cases). Ethnicity information was also 

provided for 19 out of 24 patients, none of whom were declared as African origin.  We used in-

house software to identify genomes of African origin (described in (Pal, Kundu, Yin, & Moult, 

2017)). In the post-challenge submission phase, using the answer key, we found that one patient 

with declared Philippine ethnicity is genetically of African origin, and this caused a prediction 

error.  

SickKids5 whole genome data: annotation of VCF files and QC filters 

Anonymized whole genome data for all 24 patients were available via the CAGI SickKids5 

challenge website (https://genomeinterpretation.org/SickKids5_clinical_genomes) in the form of 

VCF files produced by the Illumina HiSeq X system. We annotated SNVs and Indels in the VCF 

files using Varant (https://doi.org/10.5060/D2F47M2C), including region of occurrence (intron, 

exon, splice site, or intergenic), observed minor allele frequencies (MAF), mutation type, 

predicted impact on protein function (methods used in this step are listed in ‘Categorization of 

variants’ section under Methods), and associated phenotypes reported in ClinVar (Landrum et 
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al., 2016).  The RefGene (Pruitt et al., 2014) gene definition file was used for gene and transcript 

annotations in Varant. In addition, in-house scripts were used to annotate variants with HGMD 

(Stenson et al., 2014) disease related information  and with dbscSNV (Jian, Boerwinkle, & Liu, 

2014) information on potential splicing effects. We also used Annovar annotations (Wang et al., 

2010) to add Genome Aggregation Database (GnomAD) frequency data (Lek et al., 2016), Eigen 

scores (Ionita-Laza, McCallum, Xu, & Buxbaum, 2016) and GERP++ scores (Davydov et al., 

2010) information for each variant. Chromosome M was annotated and searched for pathogenic 

variants using MSeqDR mv (Shen et al., 2018).  We used only high quality (graded ‘PASS’ in 

the VCF file) variants for further analysis. We used SnpSift (Cingolani, Patel, et al., 2012) to 

calculate Ts/Tv and Het/Hom alternate allele ratios from the VCF file data.  We only considered 

variants for which the highest population frequency  is  <1% in all the referenced databases 

(GnomAD exomes and GnomAD genomes, ExAC database (Lek et al., 2016), and 1000 

genomes (Auton et al., 2015)).  

 

Method rationale  

In order to address the challenge of matching genomes to clinical profiles and identifying the 

disease class of each genome, we used a phenotype to genotype approach, first identifying genes 

compatible with clinical profile information, and then analyzing variants in those genes. If we are 

able to identify an appropriate candidate causal variant (or pair if variants for a recessive trait) 

for a specific profile, that is taken as evidence of a genome and profile match, and will also 

imply the disease class of that genome. The steps in the method are: (1) Collection of disease 

relevant genes for a particular clinical profile from all 24 genomes (details in ‘Candidate gene 

list generation’ section under Methods); (2) Identification of rare variants (less than 1% 
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population frequency) in the relevant  genes (as mentioned earlier in ‘SickKids5 whole genome 

data’ section); (3) Search for impact variants (both coding and non-coding) in the relevant genes 

and assignment of these to one of the six categories of impact confidence (details in 

‘Categorization of variants’ section); (4) Use of a subjective scoring scheme of the clinical 

profile (depending on the presumed disease class to which that particular profile belongs) to 

score each disease relevant gene in a genome for each clinical profile (details in ‘Gene scoring 

scheme’);  (5) selection of the top five scoring genomes for each clinical profile, and within 

those, selection of top five scoring genes;  and (6) manual screening of the variants selected for 

each profile for appropriate inheritance model, ethnicity compatibility, and the full match of the 

OMIM disease description associated with each gene to the clinical profile (details in ‘Prioritized 

causative variants for a genome’ section). The work flow of the method is shown in Figure 1. 

 

Candidate gene list generation 

For each patient, we extracted the Human Phenotype Ontology-based (HPO) terms from the 

PhenoTips annotations provided in the clinical profile. Relevant genes for each profile were 

identified by matching the profile HPO terms to those associated with each gene in the HPO 

database (Build #139) (Köhler et al., 2014) and in the dbNSFP database (version 3.5a) (Liu, Wu, 

Li, & Boerwinkle, 2016). The latter includes genes related to phenotypes observed in humans as 

well as similar phenotypes included in the mouse database (Eppig et al., 2015; Georgi, Voight, & 

Bućan, 2013). We also used the list of 319 genes from the RetNet database (RetNet, 

http://www.sph.uth.tmc.edu/RetNet/) (Daiger, 2004) to search for eye disorder related variants. 

The gene list for secondary variants, containing 59 genes, was taken from the Table 1 in the 2017 

ACMG guidelines (Kalia et al., 2017). 
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Categorization of variants according to their likely pathogenic impact 

As outlined in the rationale, for each genome we identified 24 different sets of possible candidate 

causative variants, one for each of the clinical profiles. Only variants with less than 1% 

population frequency were considered. Each selected variant was assigned to one of six 

categories, based on likelihood of pathogenicity and variant type, as follows:  

Category 1 (C1): Variants with HGMD annotation of either DM (disease-causing mutation) or 

DP (disease-associated polymorphism), and/or reported in ClinVar with pathogenic or likely 

pathogenic clinical significance status. 

Category 2 (C2): Nonsense mutation, frameshift or non-frameshift indel, a mutation disrupting 

either a splice donor or acceptor site, splice altering variants (splicing consensus regions around 

direct splice sites) predicted  by the dbscSNV (Jian et al., 2014), and missense mutations 

predicted as damaging by SNPs3D profile and stability methods (Yue, Li, & Moult, 2005; Yue & 

Moult, 2006), SIFT (Kumar, Henikoff, & Ng, 2009), PolyPhen-2 (Adzhubei et al., 2010), Vest 

(Carter, Douville, Stenson, Cooper, & Karchin, 2013), REVEL (Ioannidis et al., 2016) and 

CADD (Kircher et al., 2014). For inclusion of a missense mutation in Category 2, at least 60% of 

reporting methods were required to return a prediction of deleterious. This threshold is based on 

a calibration against HGMD (Yin, Kundu, Pal, & Moult, 2017).  

Category 3 (C3): Missense mutations predicted as damaging by one or more of the above 

missense impact prediction methods, with the fraction of deleterious predictions < 0.6. 

Category 4 (C4): Benign missense mutations (zero reporting missense methods predicting 

deleterious). 
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Category 5 (C5): Variants annotated as close (within 12 bases) to a splice acceptor or splice 

donor site. 

Category 6 (C6):  Variants annotated as UTR and intronic with  at least one of the following 

conditions satisfied: CADD phred score > 20 (Kircher et al., 2014), Eigen score >=4 (Ionita-Laza 

et al., 2016), or Gerp++ score >=2 (Davydov et al., 2010).   

Variants in all categories were further subdivided on the basis of population frequency data: 

Frequency bin 1: Novel mutations (not seen in any of 1000 genomes, ExAC, gnomAD exomes 

and gnomAD genomes databases). 

Frequency bin 2: Variants with population frequency > 0 and <= 0.001. 

Frequency bin 3: Variants with population frequency > 0.001 and <= 0.005. 

Frequency bin 4: Variants with population frequency > 0.005 and < 0.01.  

Variants were assigned to autosomal dominant, autosomal recessive, compound heterozygous, 

pseudo autosomal recessive, or X-linked recessive models based on the OMIM inheritance 

pattern for the corresponding gene (https://www.ncbi.nlm.nih.gov/omim).  

The subset of selected genes in a genome that contain one or more impact variants are then 

considered in scoring of genome’s match to a clinical profile. 

 

Gene scoring scheme for selection of genomes best matching to a clinical profile  

For each clinical profile, each HPO term (T) was assigned a subjective weight (W) from 0 to 1, 

according to its importance (1 = most important and 0 = least important) in that profile, taking 

into account the presumed disease class. Usually the most important terms were inferred from 

the ‘indication for referral’ description. For example, if a connective tissue disorder (presumed 

disease class of that clinical profile) is the most dominant and definitive term in the profile in the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707687doi: bioRxiv preprint 

https://doi.org/10.1101/707687
http://creativecommons.org/licenses/by-nc/4.0/


‘indication for referral’ description, it was scored the highest. If seizure is also part of that profile 

but with borderline occurrence, then that was assigned a lower value than would be the case if 

the term occurred in a profile where seizure is the most significant phenotype in the ‘indication 

for referral’ field.  

We started with the set of genes containing impact variants identified in each genome. For each 

clinical profile, each selected gene ‘i’ of a genome was assigned a score 𝐺𝑆# based on the 

weights of its associated HPO terms. The score is a sum over the ‘n’ HPO terms associated with 

a gene, and the weight for each term in the sum is that assigned to that HPO term in the clinical 

profile analysis described above.  

𝐺𝑆# = 𝑃ℎ𝑒𝑛𝑜𝑇𝑖𝑝𝑠	𝑡𝑒𝑟𝑚𝑠	(𝑃#) 	× 	𝐺𝑒𝑛𝑑𝑒𝑟	𝑓𝑎𝑐𝑡𝑜𝑟	(𝐺#) 

𝑤ℎ𝑒𝑟𝑒, 𝑃# = ∑ 𝑊=>
?
@AB  , 

𝐴𝑛𝑑,			𝐺# = 1, 𝑖𝑓	𝑔𝑒𝑛𝑑𝑒𝑟	𝑜𝑓	𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐	𝑝𝑟𝑜𝑓𝑖𝑙𝑒	𝑎𝑛𝑑	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐	𝑝𝑟𝑜𝑓𝑖𝑙𝑒	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒, 

𝐺# = 0, 𝑖𝑓	𝑔𝑒𝑛𝑑𝑒𝑟	𝑜𝑓	𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐	𝑝𝑟𝑜𝑓𝑖𝑙𝑒	𝑎𝑛𝑑	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐	𝑝𝑟𝑜𝑓𝑖𝑙𝑒	𝑎𝑟𝑒	𝑁𝑂𝑇	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒. 

For each clinical profile, we ranked the genomes according to the highest 𝐺𝑆#	score of any gene. 

The five top ranked genomes for each clinical profile were used for further analysis. If there are 

multiple genomes with the same score, more than five genomes will be considered for a 

particular clinical profile.  For each of these top ranked genomes, we selected the five top scoring 

genes (i.e. a total of at least 25 genes per profile). There may be multiple genes with similar 

scores in a genome, in which case more than five may be selected. The selected genes were 

further filtered, removing those that do not exhibit the appropriate inheritance pattern or the 

appropriate ethnicity. The set of categorized variants in the remaining genes formed the set of 

candidate causal variants for a patient.  
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Prioritized causative variants for a genome 

Final prioritized causative variants were selected from the candidate set by careful manual 

comparison of the OMIM disease description (Hamosh et al., 2005) for the corresponding gene 

with each clinical profile. Variants in lower frequency bins were prioritized over those with 

higher frequency. For example, a novel variant in a gene will be preferred over a variant in the 

0.01% frequency bin in the same gene. Confidence levels of the categories were C1 > C2 > C3 > 

C4 > C5 > C6. For example, a variant in a gene in Category 2 is preferred over a variant in 

Category 6 in the same gene. If the same gene is matched from two different genomes for a 

particular clinical profile, then we applied frequency and confidence criteria to select one of the 

two genomes. 

 

Probable regulatory effects of prioritized variants 

In order to check for any probable regulatory effects of the prioritized variants, we noted the 

RegulomeDB (Boyle et al., 2012) scores which are less than 4 and so possibly part of a 

regulatory motif. These scores were not used for the initial prioritization of variants. A 

RegulomeDB score of 1a to 1f implies an eQTL. As all of the variants of interest are rare, none 

was found in this category. A score of  2a to 2c implies that variants at that position may directly 

impact a  transcription factor binding site with sub-categories (2a, 2b and 2c) for different types 

of evidence. A score of 3a and 3b implies less strong evidence for impact on a transcription 

factor binding site with and subcategories (3a and 3b) indicating different types of evidence.  

Searching for Predictive Secondary variants 

Here we followed the rules in ACMG (2017) (Kalia et al., 2017) to extract predictive secondary 

variants from 59 genes. We searched only for clinically known pathogenic and loss of function 
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variants in those genes, as defined in Table 1 of (Kalia et al., 2017). 

 

RESULTS 

Demographics, clinical symptoms, and relevant genes 

The SickKids5 challenge data consists of the whole genome sequencing data and clinical profiles 

for 24 pediatric patients, of whom 11 are male and 13 female. The age range was from five to 19 

years with an average age of 10.7 years. The challenge description included the information that 

there are six eye disorder cases, seven neurological disorder cases, and 11 Ehlers-Danlos 

syndrome connective tissue disorder cases.  

Notable points are that some specific HPO terms co-occur in multiple patients,  some terms 

occur in all three classes of disease,  and complex diseases co-occur with rare disease symptoms 

(Figure 2). Some examples: Connective tissue disorder patients exhibit symptoms involving a 

large number of organs such as the gastrointestinal tract including irritable bowel syndrome and 

Crohn’s disease (four cases), cardiovascular/hypertension (four cases), eye defects (four cases), 

developmental/motor delay (five cases), scarring of tissue (three cases), and bruising 

susceptibility (four cases). Similarly, neurological disorder patients often exhibit developmental 

delay or motor delay. Autism is manifested in one patient out of the seven neurological disorder 

cases. One neurological disorder patient is affected with an eye disorder as well as 

musculoskeletal disorders, including scoliosis and osteopenia. Similarly, an eye disorder patient 

is also affected with other musculoskeletal disorders, including hyper-extensibility of the joints 

and ear defects. Altogether, 10 of the 24 cases have symptoms in two or more disease classes.  
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In total, there are 213 unique HPO terms for the 24 cases. These terms were used to compile a 

total 6239 potentially relevant genes from the HPO (Köhler et al., 2014) and dbNSFP (Liu et al., 

2016) databases and the 319 genes in the RetNet eye disorder database (Daiger, 2004). The 

number of genes related to each clinical profile ranges from 350 to 4000, with an average of 

1600. Supp. Figure S1 shows the number of genes for each case, grouped by disease class. Eye 

disorder patients have an average of 770 candidate genes. Neurological clinical profiles are 

usually associated with more genes, with an average of 2300 genes. Connective tissue disorder 

patients have the widest range, from 400 to 2800 genes. 

 

SickKids5 data quality 

Figure 3 shows the SickKids5 challenge data quality in terms of Ts/Tv ratio, Het/Hom alternate 

allele ratio, total SNV counts and rare (less than 1% population frequency) SNV counts. We 

compared these data with that for the corresponding ethnicities in  the 1000 genome set (Auton et 

al., 2015) and the high quality reference Genome in a bottle (GIAB) data (Zook et al., 2016).  

In the previous SickKids challenge (https://genomeinterpretation.org/content/4-

SickKids_clinical_genomes), we observed an excess of rare and novel variants for 25 patients 

with sequencing data provided by Complete Genomics (Pal et al., 2017), relative to 1000 

genome data. Compared to the Complete Genomics data, the CAGI5 Illumina HiSeq X data is of 

better quality - the data have comparable Ts/Tv ratio, Het/Hom alternate allele ratio, and total 

SNV counts to that of 1000 genome data (Figure 3). Rare SNV counts in SickKids5 AFR data is 

comparable to that with 1000 genome AFR data. Non-AFR rare SNV counts in SickKids5 is 

closer to that in GIAB than 1000 genome EUR data. The excess of rare variants in both GIAB 

and SickKids5 data compared to 1000 genome data may be due to the increasing identification of 
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rare variants in recent years as a result of improved sequencing technologies. Nevertheless, there 

is a small excess of rare as well as total variant counts for SickKids5 data compared to GIAB 

data, not unexpected given the very high quality of the GIAB data. To investigate this 

discrepancy in data quality, we checked the alternate allele fraction (alt allele counts/ref allele 

counts) distribution for heterozygous calls in both GIAB and SickKids5 data for all ‘PASS’ 

variants (Supp. Figure S2). This distribution has a broader range even within ‘PASS’ variants for 

SickKids5 data compared to GIAB, indicating a higher noise level in the SickKids5 data. If we 

restrict this alternate allele fraction distribution in SickKids5 data to the range as observed in 

GIAB data, the SNV counts agree. 

 

Distribution of candidate variants 

As described in Methods, for each clinical profile, we identified the five or more top scoring 

(best HPO term matches) genes in the five (or more) top scoring genomes. Genes in the female 

13 genomes are matched to the female profiles and genes in the 11 male genomes are matched to 

the male profiles. An average of 35 genes per profile were selected, resulting in a total 342 

unique genes for all 24 profiles for further analysis.  There is an average of five variants in each 

of the five genes selected in each genome, with an average total of about 116 candidate variants 

per clinical profile.  For eye disorder clinical profiles, we also included candidate variants in the 

319 RetNet genes. For each profile, the set of candidate variants were ranked using two criteria - 

the impact category for a variant and its frequency bin (lower frequencies rank higher) (details in 

‘Categorization of variants according to their likely pathogenic impact’ section under Methods). 

Figure 4 shows the counts of candidate variants in each category from selected genomes, for 

each profile. For all clinical profiles, the fraction of candidate variants in Category 6 (non-coding 
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variants) is the highest (on average 83%, 5 to10 variants per included genome), followed by the 

variants in C2 (LOF and other high impact coding variants including missense, on average 7%, 0 

to 1 variants per genome) and then in C3 category (possibly high impact missense variants, on 

average 5%, 0 to 1 variants per genome). Where a clinical profile contains very few HPO terms 

(such as eye disorder cases) with less discriminating weights amongst the terms the gene scoring 

scheme is less able to  discriminate between genes in final reporting. This usually results in 

inclusion of more than five genes per genome  with the same score. One such eye disorder case 

included an average 30 C6 candidate variants (Figure 4, last row, third column).  Figure S3 

shows the scores for  candidate variants in the genomes selected for one clinical profile.  

A subset of the candidate variants was prioritized as probably causative, based on manual 

inspection, as described in ‘Gene scoring scheme for selection of genomes best matching to a 

clinical profile’ and ‘Prioritized causative variants for a genome’ sections in Methods, including 

filtering by ethnicity and inheritance pattern. Comparison of the OMIM description for a gene 

with the clinical profile was a powerful filter, such that in most of the cases, the top scoring 

variant was not chosen because of a poor match.  A total of 35 probable causative variants were 

prioritized (Supp. Table S1) for all 24 clinical profiles. Figure 5 shows the distribution of these 

35 prioritized variants by category and frequency bins. 46% (16 out of 35) of the prioritized 

variants are in Category 6 and 44% (7 out of 16) of these are novel - that is not seen in the 

1000genome, ExAc or gnomAD databases. The next highest relative occurrence of novel 

variants (3) and total prioritized variants (8) is in the  C2 category, which includes loss of 

function variants together with predicted high impact non-synonymous variants. There were four 

prioritized variants each in the C1 and C3 categories and three variants in the C4 category.  

Molecular mechanism underlying the prioritized variants 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707687doi: bioRxiv preprint 

https://doi.org/10.1101/707687
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6 shows the distribution of the 35 prioritized causative variants according to the probable 

underlying molecular mechanisms. 46% are missense (including those  occurring in categories 1, 

2, 3, and 4) and 46% are intronic or UTR variants. There are three frameshift insertion/deletion 

variants (9%). The missense variants have a range of impact confidence, from very high in C1 

(based on clinical observation), high in C2, uncertain in C3, to predicted benign in C4. All 

intronic and UTR variants are predicted high impact by the Gerp++ criterion, implying 

conserved features at that position. Two intronic variants and one UTR variant are also predicted 

high impact by CADD. 

Figure 7A and Figure 7B shows how the distribution of variant impact categories changed from 

the initial set to the candidate causative variants set to the final prioritized set. There is a 99% 

reduction in the number of variants going from the initial set (outermost circle in Figure 7A, all 

rare variants present in the genomes) to the candidate causative variants set (middle circle in 

Figure 7A, candidate causative variants in the selected genes). The reduction is in all three 

variant sets (exonic, intronic and UTR) (Figure 7B), and is a result of only a small fraction of 

these variants meeting the impact selection criteria from the selected genes. Exonic variants are 

reduced by about 92%. The lowest range of decrease is for missense variants (from 4.34 to 3.50, 

reduced by 85%) and loss of function variants, for example, non-frameshift indel (from 3.32 to 

2.39 on the Log10 scale), frameshift indel (from 3.21 to 2.04), stop gain/loss (2.75 to 1.72). In the 

prioritized variants set submitted for the challenge, only missense, indels, intronic and UTR 

variants were selected.  

 

We also compared the variant compositions of the SickKids5 and SickKids4 data (Figure 7C). 

The initial compositions are very similar, but for the candidate and prioritized variants set, there 
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is a dramatic shift from a large majority of exonic variants in Sickids4 to a large majority of 

intronic variants in Sickkids5 set. The percent of UTR variants in the intronic and UTR sets also 

increased in SickKids5 set, by about two to three fold. This is due to the introduction of intronic 

and UTR variant impact predictions in the SickKids5 analysis. 

Performance in CAGI5 - matching of disease classes and exact matches 

Table 1 shows the performance of the method in the SickKids5 challenge. Overall, we were able 

to identify the correct disease class of a genome for 12 cases and exactly matched clinical 

profiles to the correct genome for five cases. Disease class matching is the most successful for 

connective tissue disorders (6 cases, 55%), second highest for eye disorders (3 cases, 50%) and 

least successful (3 cases, 43%) for neurological disorders. The five correct profile/genome 

matches are composed of two connective tissue disorder cases, two for eye disorders, and one for 

neurological disorder.  

 

According to the data provider (who was also the challenge assessor), out of the five exact match 

cases, the genes carrying two eye disorder diagnostic variants and one of the genes for 

connective tissue disorder diagnostic variants are possibly correct (Table 1 and Supp. Table S1). 

The eye disorder diagnostic variants are: (1) Compound heterozygous coding-intronic variants 

(conserved by Gerp++ scores) in the USH2A gene - annotated for recessive retinitis pigmentosa 

and (2) compound heterozygous variants, one clinical missense variant and a coding-intronic 

variant (conserved by Gerp++ score) in the ABCA4 gene -  annotated for retinitis pigmentosa, 

rod-cone dystrophy and other eye disorders. For the connective tissue disorder case we 

prioritized two heterozygous variants in the FBN1 gene, for an autosomal dominant inheritance 

pattern (information not provided in the clinical profile). One variant is in the 3’ UTR region, 
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conserved by Gerp++ score, and the other is a novel coding-intronic variant, conserved by 

Gerp++ and an impact variant according to CADD. We prioritized both variants as either might 

be the correct diagnostic variant, and we could not distinguish between them. The non-coding 

variants were checked for possible regulatory effects with RegulomeDB .  The FBN1 intronic 

variant has a score of 3a, indicating partial evidence for transcription factor binding (the 

RegulomeDB annotation was not used in the variant selection procedure).  Variants in the other 

two genes (ABCA4 gene and USH2A gene) have RegulomeDB scores greater than 4 (implying 

lack of evidence for the variant disrupting the transcription factor binding site). 

 

Illustrative example of matching a genome to a phenotypic profile  

Clinical profile N is of an 11-year-old female whose indication for referral is ‘Cerebral 

arteriovenous malformation’. The ‘Clinical symptoms and physical findings’ section for this 

patient also note ‘aortic dilation’ and ‘joint hypermobility’, both described as ‘borderline’. In the 

subjective weighting of these HPO terms, we put the highest weight on ‘Cerebral arteriovenous 

malformation’, a lower weight on ‘joint hypermobility’ and related HPO terms and a further 

lower weight on ‘aortic dilation’ related terms. The least weight was set for the neurological 

‘Headache’ symptom. With these weights, we selected the top scoring genomes for profile N. In 

this case, there were many equally scoring genes, resulting in all 13 female genomes being 

selected. Three of these genomes contained the same three highest scoring genes:  ACVRL1, 

ENG, and SMAD4 with matching terms for only ‘Headache’ and ‘Cerebral arteriovenous 

malformation’. The next highest scoring gene was FBN1 with matching terms for ‘joint 

hypermobility’ and ‘aortic dilation’. FBN1 was considered more relevant (according to the 

OMIM disease description for Marfan syndrome which matches the presumed disease class of 
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connective tissue disorder in the profile) than any of the three top scoring genes. So we selected 

all variants in that gene for further analysis. We found FBN1 variants in a total of seven 

genomes.  These are all category 6 variants, falling in the UTR and intronic regions. The 

frequency criteria were used to select the final variant. The variants span all four frequency bins 

(described in ‘Categorization of variants according to their likely pathogenic impact’ section 

under Methods). Two are novel, and so were given priority. One of these, in genome 056, is 

annotated as pathogenic by two methods (GERP++ and CADD) and on that basis we selected 

genome 056 for clinical profile N. This is a case where we successfully matched the clinical 

profile with the correct genome. 

 

Puzzling cases - limitation of phenotype-weighted scoring 

One of the most critical factors in the phenotype-weighted scoring strategy is to correctly rank 

the importance of symptoms in a clinical profile, otherwise the predictions will be erroneous. 

This information, which is usually obvious to physicians, is typically absent from the clinical 

profile documentation. In the SickKids5 challenge, we considered the ‘indication for referral’ 

field to understand the relative importance of clinical symptoms. We failed to identify the proper 

disease class for one neurological disorder patient (J) because the indication for referral was 

‘mitochondrial disorder’ and this patient also has multi-organ failure, including severe eye 

problems, seizures, and connective tissue disorders. For this patient, we found a ClinVar variant 

in chromosome M, with a disease description very similar to that of the patient. Supplementary 

Table S2 documents this and two other puzzling cases where high confidence loss of function 

variants are not causative. In one, for clinical profile ‘I’, we found a non-frameshift-deletion 

variant in the ELN gene for one genome and in the same gene we found a 5’ UTR variant in a 
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different genome. According to our prioritization criteria, we selected the loss of function variant 

(non-frameshift-deletion) as the causative variant. However, the genome with the 5’ UTR variant 

in ELN was the correct match.  

 

Re-evaluation of the genome to clinical profile matches in the post-submission phase 

Availability of the answer key in the post-submission phase allowed us to examine the genes in 

the correct genome more critically for the matched profile, followed by prioritizing suitable 

impact variant(s) as we did for the challenge. Supp. Table S3 lists 44 such prioritized variants in 

26 genes for 24 SickKids5 patients. As these are all cases where the conventional bioinformatics 

pipeline did not identify diagnostic variants (implying no suitable clinical variant or loss of 

function variants or coding variants of unknown significance were found), we expected the task 

to be difficult. Often it seems that there are disparate symptoms that can only be accommodated 

by potential causative variants in two different genes, rather than one. One such example is for 

clinical profile F, where for connective tissue disorder, we identified a rare coding-intronic 

variant in the COL5A2 gene. However, this patient also has very fragile skin and a food 

intolerance problem. We identified another novel 5’ UTR5 variant in the PLEC gene consistent 

with these additional symptoms.  

 

Supp. Figure S4 shows that the fraction of non-coding variants (intronic and UTR) is much 

higher in the post-submission analysis (46% in submitted predictions vs. 77% in post-submission 

predictions) with 38% (13 out of 34 C6 category variants) being novel. Accordingly, the 

missense variant fraction is reduced to 20% compared to 46% in the submitted predictions.  
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Validation of these non-coding variants is difficult. In order to check for any probable regulatory 

effects of these variants, we noted the RegulomeDB scores less than 4 (see  the ‘Probable 

regulatory effects of prioritized variants’ section under Methods) in Supp. Table S3. Out of 44 

prioritized variants, 36 returned a RegulomeDB score less than 4. We found three variants with a 

score of 2 and two variants with a score of 3 out of the 36 variants. These variants are: A 

neurological disorder case with a score of 2a (rare - less than 0.05% allele frequency, intronic 

variant in CHD2, related to myoclonic encephalopathy).  Two connective tissue disorder cases 

with score 2b - one is the novel 5’ UTR variant in the PLEC gene (described above) and another 

one is a rare - less than 0.01% allele frequency - missense variant in the TNXB gene, predicted to 

be deleterious by half of the methods used (so a C3 category variant). We found one neurological 

variant with score 3a (novel coding-intronic variant in ARID1B, related to developmental delay 

with seizures). Another novel connective tissue disorder variant in the FBN1 gene with score 3a 

was already included at the challenge stage (described in the ‘Performance in CAGI5’ section). 

 

Predictive secondary variants 

Supplementary Table S4 lists the eight predicted secondary variants we submitted, found in six 

SickKids5 patients. There are three novel secondary variants (a clinical missense variant in 

KCNH2 for Long QT syndrome, a non-frameshift-deletion in MSH2 for Lynch syndrome, and a 

non-frameshift-deletion in BRCA2 for hereditary breast cancer) found in one neurological 

disorder patient (of African origin). The other predicted secondary variants are clinical variants 

in the MSH6 and MSH2 genes for Lynch syndrome and in the LMNA gene for hypertrophic 

cardiomyopathy. The same novel MSH2 variant was found in two patients (genome 081 and 091) 

and according to the challenge assessor (Kasak et al., 2019), these might be sequencing errors. 
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The alternate allele fraction (alt allele counts/ref allele counts) of these variants (Supp. Table S4) 

are poor, 0.36 and 0.42 for genomes 081 and 091 respectively, supporting the sequencing error 

hypothesis. 

 

DISCUSSION 

The CAGI SickKids5 challenge provided an opportunity to assess methods for correlating whole 

genome sequencing data to clinical information. Participants were asked to predict the disease 

class (eye, neurological and connective-tissue disorders) of 24 undiagnosed whole genomes and 

to identify which genome matches to each clinical profile. To address this challenge, we 

developed a semi-automated gene-centric method. The method builds on one we had previously 

implemented for identifying causative variants based on clinical information in the CAGI4 

SickKids challenge (Pal et al., 2017). The key CAGI5 innovation is the introduction of a 

phenotype weighting scheme to evaluate the match of gene descriptions and clinical profiles, 

using HPO (Human Phenotype Ontology) (Köhler et al., 2014) terms. Using this approach, we 

were able to identify correct disease classes for 12 of the 24 genomes and to match five genomes 

to the correct clinical profiles. Analysis of the method’s performance and  results have provided 

a number of insights into issues related to the scoring scheme, nature of prioritized variants, 

methodology used, and key factors in extracting clinical information from a whole genome. 

 

Phenotype-weighted scoring scheme for genes 

Success of the phenotype-weighted scoring scheme depends on how effectively the clinical 

documentation portrays patients’ symptoms. SickKids clinical profiles are constrained to terms 

in the Human Phenotype Ontology, and phenotypes associated with specific genes are also 
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available in that form. Thus, HPO based gene by gene matching to a clinical profile provides a 

strategy for the selection of genes that are most likely to harbor causative variants. However, 

simply looking for overlap between gene and profile HPO terms is a not sensitive enough 

matching algorithm. Instead, we assigned a weight to each of the clinical profile terms, 

depending on the prominence of the term in the description (for example, up-weighting referral 

terms), and down-weighting terms that are characterized as less severe and those that do not 

match the disease class. 

 

Although this approach did allow us to match a significant number of genomes to profiles, it has 

issues in some specific circumstances. Generally, too few terms in a clinical profile are not 

informative enough. For example, in one eye disorder case (case W), there were only two 

effective HPO terms in the profile, resulting in low discriminatory power and the selection of a 

large number of genes. As a consequence, there are a very large number of candidate variants 

(Figure 4, last row and third column). Although more terms are usually better, term combinations 

are of varying discriminatory power. For example, in one neurological disorder (case J), the 

patient has HPO terms for all three disease classes. As a result, we failed to identify the correct 

disease class and so did not assign appropriate weights, resulting in an erroneous choice of 

genome for the profile. A limitation of the current scoring method is that it does not penalize for 

missing terms - ones that are not present for a gene but are in a profile or conversely ones that are 

not present in a profile but are there for a gene. For example, there are some genes related to eye 

disorders that are also related to hearing problems, and some that are not. The method as used in 

CAGI5 would select all these genes even if the profile includes hearing HPO terms (for example, 

case X). These limitations will be addressed in future versions of the method.  
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Nature of prioritized variants 

In SickKids4 (Pal et al., 2017) we mostly prioritized coding variants (88% of all types of variant 

in SickKids4 vs. 54% in SickKids5, Figure 7C). The high proportion of non-coding candidate 

variants in SickKids5 is a consequence of introducing two more non-coding variant impact 

analysis methods, GERP++ (Davydov et al., 2010) and Eigen (Ionita-Laza et al., 2016), in 

addition to CADD (Kircher et al., 2014) which was also used in CAGI4. GERP++ turned out to 

select many more variants than CADD, whereas Eigen returned none. While CADD for coding 

missense variants is considered to have a reasonable performance (Anderson & Lassmann, 

2018), CADD scores for non-coding variants have been found to have limited clinical utility in 

one study of rare non-coding variants in a hereditary cancer panel (Mather et al., 2016). There is 

no such benchmarking data for rare non-coding variants available for GERP++ scores. The 

authors of the method report an overall very low (0.86% in (Davydov et al., 2010)) false positive 

rate. A general problem at present is that methods for non-coding variants are less mature than 

those for coding. Nevertheless, non-coding variants do play a critical role in our analysis (four 

out of five exact match cases in our predictions were identified using non-coding variants).  

 

Scope for improvement  

The cases in the Sickkids5 challenge were unresolved by a traditional pipeline. Although we and 

another group did better than random at matching genomes to profiles and the assessors 

considered some prioritized genes promising, most of the cases remain a mystery. And, as noted 

earlier, in general, rare disease pipelines have a success rates below 50% (Clark et al., 2018). 

There are number of possible explanations for the low yield of diagnostic variants, even given 
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whole genome sequencing data. We conclude by considering the most relevant of these, and the 

prospects for progress: 

(A ) New genes related to specific disease phenotypes are continually being discovered 

(Friedman et al., 2019; Guelfi et al., 2019) implying that there are many more still to be found.  

A strategy that might help address this problem is to consider all putative impact variants in all 

genes, and see if any of these genes have phenotype descriptions that offer some clue to a 

possible match (a genotype to phenotype approach (Hu et al., 2013; Wang et al., 2010)). As more 

rare disease genome data accumulate, it will be possible to look for enrichment of impact 

variants in particular genes in the presence of particular phenotypes, and this is likely to prove a 

powerful approach providing a long-term solution. In the meantime, for analysis of a  single 

genome, and even more so for the Sickkids5 challenge with 24 genomes, the large number of 

putative impact variants makes the strategy very difficult. If we consider only C2 variants - not 

clinically recognized but confidently predicted high impact, there are an average of about one in 

every 8 genes, so that in a single full genome there will be about 3000 variants to screen. When 

considering 24 genomes, there will be about 70,000 such variants. Nevertheless, it may be 

possible to develop a tuned version of the phenotype scoring scheme we used in the challenge to 

filter the variants. Consideration of knockout or knock in data in model organisms (Smedley et 

al., 2015) together with such clues may be partially effective.  

(B ) In some complicated clinical profiles (such as for connective-tissue disorders or 

neurological disorders), contributions from more than one gene may be present. Indeed, one 

study estimates that this occurs in 5% of rare disease cases (Y. Yang et al., 2014) and this likely 

is a considerable underestimate. We see evidence for involvement of multiple genes in three 

cases  (Supp. Table S3). For example,  for clinical profile F, a connective tissue disorder, we 
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originally predicted a novel missense variant in EP300 as causative, with an OMIM disease 

description of Rubinstein-Taybi syndrome. According to the assessor, even though we selected 

the correct genome, this disease description is not an adequate match to the patient’s symptoms. 

On further inspection of the genome, knowing it is a correct match, we found an intronic variant 

in COL5A2, which is related to the classic Ehlers-Danlos syndrome (a partial match of patient’s 

symptoms). We also found two other novel impact UTR variants in PLEC (the gene has an 

autosomal recessive inheritance pattern in OMIM), with an OMIM disease description of 

epidermolysis bullosa with pyloric atresia, related to the patient’s fragile skin and food 

intolerance symptoms.  

 (C) As discussed above,  present methods for identifying non-coding impact variants are not 

mature. Recent strong CAGI results for predicting which variants affect expression are 

encouraging in this regard (Shigaki et al., 2019), and it would be interesting to see how some of 

the more successful methods used there perform on the SickKids data.   

(D) Non-standard descriptions in clinical reports: An advantage of the Sickkids data is the use of 

HPO terms to describe patients’ symptoms (Girdea et al., 2013). That greatly facilitated 

identification of candidate genes, and its broader adoption by other analysis centers will improve 

performance. In addition,  some kind of weighting scale would also help - it may be obvious to a 

physician that a particular HPO is not central to a patient’s phenotype, but at present that 

information is often not available in the record. 

(E) The role of variants affecting so far poorly understood function, particularly those that may 

affect chromatin structure. Examples of these have already been found in cancer (Fudenberg & 

Pollard, 2019; Makova & Hardison, 2015). It is not clear how well general non-coding impact 

methods will work on such variants, and they may be very far from genes, requiring a much 
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larger total number of variants to be considered, with an accompanying rise in false positives. 

Advances in resolving three-dimensional chromatin structure and how it varies (Kishi & Gotoh, 

2018; Marti-Renom et al., 2018; Qi & Zhang, 2019) hold long term hope for progress here.  
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FIGURE LEGENDS  
 
Figure 1: Workflow of the method for identification of probable causative variants. 
 
Figure 2: Disease classes and selected PhenoTips terms for the 24 cases.  Each row shows the 
data for one patient and the total number of  PhenoTips terms for each patient is given in the last 
column, shaded grey. Most patients have multiple symptoms and some symptoms occur in 
multiple patients. Further, some symptoms occur in all three classes of disease. Complex disease 
symptoms are also noted. 
 
Figure 3: SickKids5 data quality analysis in terms of Ts/Tv ratio, Het/Hom alternate allele ratio, 
total SNV count and Rare (less than 1% population frequency) SNV counts in whole genomes. 
Only variants with ‘Pass’ status are included. 1000 genome EUR and AFR data and GIAB data 
provide controls. Abbreviations used: GIAB - Genome in a bottle data, KG_EUR - 1000 genome 
Caucasian (EUR) data, KG_AFR - 1000 genome African (AFR) data, SickKids5_AFR - 
SickKids5 African (AFR) data and SickKids5_other -  all other SickKids5 data excluding 
Africans. Although there are some differences to the GIAB data controls, generally the Sickkids 
data appear to be of high quality. 
 
Figure 4: Impact distribution of selected variants for each of the 24 clinical profiles. For each 
profile, the number of variants falling into each of the six impact categories is shown. Variants 
are colored by genome of origin. The large majority of selected variants are in the C6 category: 
impact variants in UTRs and introns. 
 
Figure 5: Stacked bar plot of the impact categories and frequency ranges of the 35 prioritized 
probable causative variants. Almost half are in the Category 6 of UTR and intronic variants. 
 
Figure 6: Distribution of prioritized variants by probable molecular mechanism. 
 
Figure 7: (A) Post analysis of the distribution of variant types (Log10 scale) in the total set of 
6239 genes selected for the 24 SickKids5 patients. The outer most circle shows the distribution 
of all rare (allele frequency < 1%) variants present in the genomes. The middle circle shows the 
distribution of candidate causative variants in the selected genes for each clinical profile for its 
matching genome. The inner most circle shows the distribution of final prioritized causative 
variants, submitted for the challenge. Abbreviations: NS: Missense, SN: Synonymous, TGL: 
Start Gain/Loss, PGL: Stop Gain/Loss, UTR: UTR variants, CI: Coding Intronic, NFS: Non-
frameshift indel, FS: Frameshift indel, SD: Splice donor, SA: Splice Acceptor, CSD: Close to 
Splice donor, CSA: Close to Splice acceptor, NCE: Non-coding exonic, NCI: Non-coding 
intronic. (B) The upper table shows the changes in variant composition at different stages of the 
selection process. (C) The lower table shows the comparison of variant composition (in %) 
between the SickKids4 and SickKids5 data at different stages of the selection process. The heat 
map highlights the differences in composition between the datasets. 
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Table 1: Performance of the method in CAGI SickKids5 challenge 
 
 

Broad disease 
class 

Total 
number 
of cases 

Number of 
cases with 

correct disease 
class 

assignment 

Number of cases 
with exact match 
between clinical 

profile and 
genome 

Number of cases 
with proposed 

diagnostic genes 
considered 

probable by the 
assessor 

Connective 
tissue disorder 

11 6 2 1 

Eye disorder 
 

6 3 2 2 

Neurological 
disorder 

7 3 1 0 
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