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Abstract 

Motivation:  Drug discovery investigations need to incorporate network pharmacology concepts 

while navigating the complex landscape of drug-target and target-target interactions. This task 

requires solutions that integrate high-quality biomedical data, combined with analytic and 

predictive workflows as well as efficient visualization. SmartGraph is an innovative platform that 

utilizes state-of-the-art technologies such as a Neo4j graph-database, Angular web framework, 

RxJS asynchronous event library  and D3 visualization to accomplish these goals. 

Results: The SmartGraph framework integrates high quality bioactivity data and biological 

pathway information resulting in a knowledge-base comprised of 420,526 unique compound-

target interactions defined between 271,098 unique compounds and 2,018 targets. SmartGraph 

then performs bioactivity predictions based on the 63,783 Bemis-Murcko scaffolds extracted 

from these compounds. Through several use-cases, we illustrate the use of SmartGraph to 

generate hypotheses for elucidating mechanism-of-action, drug-repurposing and off-target 

prediction.  

Availability: https://smartgraph.ncats.io/ 
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Introduction 

 

The path to successful drug discovery frequently demands understanding the complex network-

pharmacology (NP) landscape [1]. Understanding how the action of a drug perturbs the intricate 

regulatory relations among protein targets is pivotal to surmounting this challenge. Thus, it is 

imperative to associate drugs, targets, clinical outcomes and side effects within an integrated 

network [2]. Specifically, for drug-target interactions (DTIs), NP opens the possibility of 

evaluating potential DTIs in the context of their complex biological and chemical setting. 

Adopting and utilizing NP-based workflows in everyday research remains a challenging task, yet 

one that is likely to lead to more fruitful scenarios.  

 

A rational design workflow that integrates NP needs to consider multiple interactions between a 

drug molecule and its intended (target, or “on-target”) and not-intended (“off-target”) interaction 

partners. Here, we consider proteins to be the key DTI partners. Due to the existence of multiple 

pathways between proteins, the effects of a drug molecule might ripple to proteins not in direct 

contact with the drug in question. Such perturbations may also alter gene-expression profiles of 

cells. The complex nature of this interaction-landscape demands novel and integrated target-

chemistry-bioactivity approaches [3] in drug discovery and facilitates the devising of new 

therapeutic strategies, e.g., multitarget therapies. Therefore, it is imperative to develop new 

ways of analyzing such complex relationships. The ever-growing nature of biomedical data 

demands the use of modern technologies such as graph-databases, to facilitate the analysis, 

processing and retrieval of drug-target and target-target relations at scale. A computational NP 

framework addressing these aspects is essential in the quest to translate biomedical information 

into clinically relevant knowledge. Here we present such a framework: “SmartGraph”, which has 

two aims: 
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First, create an easy-to-use graphical user interface (GUI) that can facilitate various steps of the 

drug discovery process without requiring in-depth expertise in bioinformatics and 

cheminformatics. Target deconvolution of phenotypic assays, on- and off- target identification, 

lead and chemical probe discovery as well as drug repurposing are among the major activities 

that SmartGraph can support. Second, SmartGraph facilitates the development of predictive 

and analytic NP workflows. 

 

Other network-analysis inspired tools can facilitate the analysis of DTIs and PPIs, such as the 

CARLSBAD Web Application and Cytoscape plugin [4], the ChemProt database [5], the 

STRING-based STITCH platform [6], [7], the Drug Target Explorer [8], and the PathInsight [9] 

and PathLinker Cytoscape plugins [9], [10]. SmartGraph combines some of the distinctive 

characteristics of these platforms: It integrates the use of common chemical patterns as 

implemented in CARLSBAD and CarlsbadOne [11], the pathway analytic features of STITCH 

and STRING, the ability to define starting and end nodes (PathLinker), the integration of DTIs 

with PPIs (PathInsight) and the ability to predict new drug-target interactions (CarlsbadOne and 

Drug Target Explorer). In addition, SmartGraph is built on Neo4j [12], a state-of-the-art graph 

database, and uses their bolt websocket interface [13] for fast data transfer. Angular is used to 

generate object models and UI templates, and RxJS [14] is used to asynchronously update the 

data retrieved from Neo4j. This data is coupled with a robust D3.js force-directed graph 

visualization to efficiently handle and display this large-scale data, and to support the integration 

of additional layers of biomedical data [15][16]. 
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Computational Methods and Datasets 

Rationale 

 

With compounds and targets as nodes and relationships as edges, we can model DTIs and 

PPIs as a network. An edge linking a compound and a target could represent an experimentally 

determined bioactivity value, whereas an edge between two targets could be a regulatory 

relation between the two. Nodes and edges can have various attributes, such as the IC50 

(bioactivity) value or the specific regulatory mechanism linking two targets. 

From a structure-activity-relations (SAR) standpoint, targets tend to recognize certain 

chemotypes, i.e. common chemical patterns in a series of molecules. Derived from known 

active compounds, chemotypes can be exploited in the prediction of novel DTIs. The Bemis-

Murcko scaffolds [17] are examples of chemotypes, but other algorithms could be used for this 

task, such as Maximal Common Edge Subgraph algorithm [18] , Scaffold Network 

Generator [19] and Hierarchical Scaffolds [20], [21] to name a few. We refer to chemotypes as 

‘patterns’ throughout this text to imply the general nature of these objects. Detailed descriptions 

of object (node) and relation (edge) types are provided in the “Terminology” section of SI 

(Supplementary Information). 

 

 

Preprocessing DTI and PPI Information 

Information for compounds, targets and their interactions were extracted from the ChEMBL 

(version: 24.1, downloaded on: 10/26/2018) [22], [23] and SIGNOR (version: 2.0, Homo 
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Sapiens, downloaded on: 04/23/2017) [24] databases. With the help of a KNIME [25] workflow 

(detailed in SI) bioactivity data related to human targets were aggregated by unique compound-

target-bioactivity type triples, in conjunction with Bemis-Murcko pattern detection (see 

“Bioactivity Data Aggregation” SI section). The aggregated bioactivity values represent the 

median value of all observed bioactivities for a given triple. 

 

Data Integration 
 

Pre-processed DTI and PPI information (compounds, targets, patterns and their relationships) 

was then assembled into a backend Neo4j database, via JDBC-based Java code connecting 

the PostgreSQL [26], [27] (ChEMBL and SIGNOR) and Neo4j [12], [28] databases; the code is 

available publicly at https://github.com/ncats/smartgraph_backend.git upon the acceptance of 

this manuscript. This repository contains an SQL script to create a database and load 

corresponding data. As input, the script uses KNIME-created files [25]. The Java code then 

uses DTI compounds, and DTI and PPI targets, represented by their InChI [29] keys and 

UniProt IDs [30], respectively. For convenience, the non-stereo part of the InChi key (NS-InChi 

key) of compounds are also provided as a compound-attribute, see: “Terminology” (SI). Each 

node and edge in the Neo4j database is assigned a unique UUID identifier [31] for efficient data 

handling and database queries. 

 

Metadata 
 

SmartGraph includes metadata associated with compounds, patterns, targets and their 

relationships as node and edge attributes, respectively. Such attributes include the median 
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activity between a compound and a target (when multiple activities are available), the 

confidence value of a given PPI, its nature (e.g., phosphorylation, ubiquitination, etc.), and the 

overlap of a pattern with the associated compound as the ratio of their heavy atoms. Compound 

and pattern nodes are also annotated with the respective SMILES and structure depictions. 

Target nodes include gene symbols and names as attributes as well. 

Network Perturbation 

 
To interpret phenotypic screening results, one can use SmartGraph to find all shortest paths 

between user-defined start and end nodes. When multiple such shortest paths are found, all 

connecting shortest paths between the selected two nodes are returned. Once merged into sub-

networks, these shortest paths can be used to generate hypotheses for the explanation of 

mechanism-of-action of phenotypic screen hits.  Despite the large amount of information stored 

in the backend database, this operation is performed efficiently by the underlying Neo4j 

database engine using the Cypher query language [12] and bolt websocket interface [13]. 

 

When the activity of a protein is perturbed, downstream proteins within the same pathway are 

affected as well. Given the complex nature of each pathways, such perturbations affect targets 

at increasing distances in a less and less deterministic manner. To account for this 

phenomenon, the parameter (k) introduced into the shortest path detection process limits the 

length of shortest paths in connecting start and end nodes. By default, k = 5. 

 

Start nodes can be defined in two ways: First, a set of small molecules with their associated NS-

InChI keys can be start nodes. In such cases, SmartGraph identifies proteins on which any of 

these small molecules were assayed using the DTIs extracted above. An additional parameter 

(p) can be used to filter DTIs that are of potency lower than p (in negative log units). Hence, 
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proteins associated with DTIs of AC50/IC50 below p will not be considered as start nodes after 

filtering. By default, p = 5. Second, UniProtID IDs for proteins can also be used. SmartGraph 

supports mixed queries, i.e. input sets can contain both small molecules and proteins as start 

nodes. 

 

The shortest path exploration process can be influenced by an additional parameter (c), 

regardless of the start node definition method. The SIGNOR database stores confidence (c) 

values for each PPI. By adjusting the value of c, low confidence PPIs can also be excluded from 

the shortest path discovery process. 

 

It is possible to leave the end nodes undefined, which enables manual exploration of pathway 

perturbations. SmartGraph includes features to expand the node neighbors list on a node-type 

basis. For instance, in the case of a protein node it is possible to expand 

compound/protein/pattern neighbors. It is also possible to selectively hide neighbors based on 

node types. 
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Bioactivity Prediction 

 

Experimental bioactivities are often used to classify compounds as active or inactive. The cut-off 

value for such categorization is often context-dependent, particularly with respect to target type, 

and the wealth of information (e.g., number of compounds with measured bioactivities) available 

at any given time. The active/inactive separation may further depend on SAR, as some 

chemotypes may be considered more active than others.  

In seeking to emulate a medicinal chemist's approach, we decided to classify the top 20% of the 

compounds (ranked in decreasing order of bioactivity) as “potent”, with the remaining 

compounds tested on that same target being labeled as “not potent”. This approach is 

preferable when working with multiple target classes, since the typical enzyme or ion channel 

bioactivity profile may vary by two or three orders of magnitude compared to a nuclear or G-

protein coupled receptor. Thus, the 0.1μM cut-off value (7 on the –log scale) does not always 

appropriately separate actives from inactives across all target classes. The 80/20 principle was 

generally applied to partition compounds, but for certain proteins, an alternative formula was 

required. When a protein had at most five (aggregated) bioactivity values, the cutoff value was 

set to 7 (0.1μM). Cutoff values were lumped across all bioactivity values, regardless of type, e.g. 

AC50, IC50, EC50, etc. 

 

Potent compounds for each target were tagged using bioactivity values from ChEMBL and the 

above criteria. We then examined the relationship between proteins based on their molecular 

recognition ability, estimated by chemical patterns (here: scaffolds) featured in potent 

compounds. These target-compound and compound-pattern associations allow us to infer novel 

associations between targets and patterns. All patterns contained in a potent compound can 

thus be considered potent patterns for that specific target. Associations between a target and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/707869doi: bioRxiv preprint 

https://doi.org/10.1101/707869
http://creativecommons.org/licenses/by/4.0/


potent patterns suggest that certain targets might be specifically perturbed by other (untested) 

compounds featuring the same potent patterns.  

 

Results and Discussion 

Knowledge Base of SmartGraph 

The knowledgebase of the framework was implemented in Neo4j graph-database which 

contains 1,732,553 unique compounds and 4,583 protein targets. With the help of Bemis-

Murcko scaffold analysis, we extracted 523,944 unique scaffolds from compounds. We 

observed that some of these scaffolds are connected to too few or too many compounds. In 

order make the bioactivity prediction efficient, we decided to remove scaffolds deemed too 

general or too specific from the knowledge base, i.e. scaffolds connected at least to 100 or to 

less than 5 compounds, respectively. This process gave rise to 63,783 unique scaffolds, i.e. 

patterns, that participate in 793,085 one-to-many pattern-compound relations. Furthermore, 

271,098 out of all compounds participate in 420,526 DTIs involving 2,018 protein targets. Out of 

these targets, 1,455 are associated with a potent pattern and 901 participate in PPIs, see: 

Figure 1. All information about compounds, targets and scaffolds is stored in the Neo4j graph-

database.  
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Graphical User Interface of SmartGraph  

The network analysis and bioactivity prediction methods of SmartGraph are exposed through a 

web-based GUI available at https://smartgraph.ncats.io/. This GUI was implemented using the 

D3 visualization library to generate a force directed graph interface, and the Angular [32] 

framework to track and update the graph data as it changed. The GUI also uses RXJS, an 

asynchronous event programming library to set up a websocket to communicate with the 

backend server through the Neo4j “bolt” protocol [13], making the queries much faster than if 

they were done through traditional API calls. The GUI itself is organized into three main panels 

(see: Figure 2). 

 

The control panel (left side) provides the means to construct and fine-tune subnetworks for 

pathway analyses and is collapsible to allow for a larger view of the generated network. The 

selection of start and end nodes and the values of k, p and c can be set using this panel. The 

main (visualization) panel is used to visualize and interact with the generated subnetworks, 

clicking on a node reveals a floating menu with the following features: Expand/collapse 

compound/pattern/target/all neighbor nodes; and generate bioactivity predictions, respectively. 

The main panel also contains a smaller sub panel, which shows node details on hover, and 

allows the user to search for protein nodes within the displayed graph and isolate the nearest 

neighbors. The third, bottom (information) panel is used to visualize selected node and edge 

metadata in two separate tabs. Information is displayed in this table upon hovering over edges 

or by clicking on nodes. Clicking on a node or edge will persist it in this table, allowing users to 

generate a list of interesting nodes or edges. Some of the information displayed is the depiction 

of chemical structures and patterns, bioactivity in µM unit, and confidence of PPIs, to name a 

few. 
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The information displayed on the nodes can be configured via a collapsed menu accessed by 

clicking on the gear icon on the top-right corner of the visualization panel. The user can set the 

label type on various nodes: protein/gene name, symbol, identifier and compound/pattern 

identifier or structure. This menu also contains a legend denoting the different node types as 

well. The control panel can be collapsed by clicking on the icon with three bars on the top-left 

corner of the visualization panel to provide more visual real estate for the graph visualization. 

Finally, an additional panel overlaid on the network-panel provides means to search for target 

nodes in the network based on their names and to lookup their record in the Pharos 

database [33] via link-out. The same panel also provides the most important information of 

compound and pattern nodes. The source code used to generate the GUI is available publicly at 

https://github.com/ncats/smartgraph_frontend upon the acceptance of this manuscript. 

Use Cases 

To illustrate some of the features and typical use cases of the SmartGraph platform, we 

selected an mTOR signaling pathway assay (PubChem [34], [35] AID: 2660), using the qHTS 

technology [36] in confirmatory mode, i.e., dose-response using 7 concentration points. mTOR 

is linked to a number of diseases, including cancer [37]. The assay identified a downstream 

effect of mTOR activation.  Out of 1,280 compounds, 8 were confirmed actives. Below, we 

describe three typical use-cases for SmartGraph. 

 

Manual Exploration of Biological Relations  
 

When active compounds are identified via a phenotypic screening, one of the next steps is to 

investigate targets associated with these actives and to try to link them to other targets that may 
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play important role in the observed phenotype. Such an exploratory analysis can be initiated by 

providing the NS-InChI key of active compounds in the “Start Nodes” field of the control panel or 

by inputting the UniProt identifier of known targets. Here we use a selected active compound 

(NS-InChI key: DGWXOLHKVGDQLN, PubChem CID: 398148) as a starting point.  The 

identified start node(s) appear in the visualization panel (compound and target nodes shaded 

blue and orange, respectively). Next, when left-clicking on the nodes a floating menu with 

several options appears. Manual exploration of relevant biological relationships can then be 

performed using the “Expand Target” feature, which in this case reveals three targets for which 

the compound at hand was tested: CDK1, CDK2 and ATR (gene symbols). On the information 

panel the bioactivity value of a DTI can be revealed by clicking on the “Link View” tab and 

hovering the mouse over, or clicking on the edge defined between the respective compound 

and the target. The result of further expanding this network on ATR target is shown in Figure 3.  

 

Automated Hypothesis Generation for Mechanism-of-Action 
 

While the first use-case can be performed using multiple start nodes, the process can be 

laborious given that some of targets are involved in multiple PPIs.  As described in the “Network 

Perturbation” section, SmartGraph can reveal shortest path(s) between a start node and an end 

node. Such an analysis can be initiated, for example, by entering a space/new-line/comma-

separated list of the NS-InChI keys of the 8 active compounds pasted into “Start Nodes” and the 

UniProt identifier of mTOR (P42345) into “End Nodes”, given that the assay at hand interrogates 

mTOR activation. We recommend clicking the “clear graph” button, followed by re-inserting the 

respective node identifiers when one wants to re-define start or end nodes. After clicking the 

“find shortest path” button, SmartGraph will attempt to find shortest paths between the two sets 

using the default values of parameters. By setting the three filtering parameters to permissive 
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values, i.e. k=5, p=3, c=0.01, the resulting subnetwork includes three compounds with multiple 

shortest paths. This subnetwork and subsequent ones in this section are shown in Figure 4. 

 

It is possible to restrict the network to only strong DTIs, which we can achieve by increasing the 

value of p, e.g. p=5 (or 10µM) which sets a typical upper limit for active compounds. 

Consequently, one of the compounds (PubChem CID: 237) and paths induced by only that 

compound are eliminated from the subnetwork. Sometimes, it may be useful to limit the length 

of the shortest paths in order to eliminate distant (less certain) downstream effects. Accordingly, 

setting the value of k to 2 results in a smaller subnetwork. In this graph, the two compounds are 

more likely to perturb the action of the associated proteins. 

 

Finally, the integration of an annotated and curated PPI database into the knowledge-base of 

SmartGraph (e.g., SIGNOR) allows the user to depict only PPI subnetworks with higher 

confidence. From a subnetwork generated with permissive parameter settings (k=10, p=5), we 

identified the maximal value of c that resulted in a subnetwork: c=0.73. Increasing the value of c 

further eliminates the “weakest link” between AKT1 and mTOR, consequently destroying the 

path between the only remaining compound and mTOR. This use-case might be preferable for 

someone who prioritizes curated data in MoA analysis. SmartGraph additionally provides the 

literature source (extracted from SIGNOR) of individual PPIs in the “Link View” of the 

information panel upon hovering the mouse over, or clicking on target-target edges. 

 

In summary, the above scenarios allow the generation of hypotheses regarding the potential 

MoA of the active molecules. In these workflows, parameters k, p and c provide great versatility 

in prioritizing different aspects of the exploration process. Furthermore, the generated 

subnetwork can assist in analyzing how small molecules might perturb other targets in the 

network besides the end node(s).   
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Bioactivity Prediction via Potent Patterns 
 

The final aspect of SmartGraph is its integrated predictive functionality. As described in 

“Bioactivity Prediction” the investigator can predict potentially novel compounds for a target. In 

the frame of our example, bioactivity predictions can be made for mTOR as follows. By left-

clicking on the mTOR node, then “Get predictions” in the revealed menu, compounds predicted 

to be associated with mTOR are shown. These compounds are clustered around potent 

patterns of mTOR that provided the basis for the prediction (see: Figure 5a). The overlap ratio 

between compounds and patterns can be obtained using “Link View” when mouse-hovering 

over or clicking on the respective compound-pattern edges. Generally, the higher the overlap 

ratio the more likely the predicted compound will be confirmed as a perturbagen of the target at 

hand. If the predicted compound is an approved drug, such a prediction could serve as the 

basis of a drug-repurposing study. When the number of predictions is large, one can perform a 

similarity-network based clustering of the predicted compounds to select a set of diverse 

compounds for further studies [38], [39], [40]. 

 

Off-target interactions can be predicted in a similar fashion, i.e. taking advantage of the concept 

of potent patterns. In this use-case we use one of the active compounds from the above set of 

eight actives as a start node. Referred-to as Compound A (PubChem CID: 5289419, NS-InChI 

key: QNUKRWAIZMBVCU), the expansion results in 11 neighbor nodes (10 targets, one 

pattern) for Compound A (see: Figure 5b). Expanding the protein nodes of the pattern node 

reveals three targets (EGFR, NEK2, ALK) for which this is a potent pattern. Compound A was 

already tested on EGFR, but not on the other two targets. Thus, we hypothesize that Compound 

A is a modulator of NEK2 and ALK. The overlap ratio between the Bemis-Murcko scaffold and 
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Compound A is 0.89, a reasonable probability for compound A being active on these two 

targets. 

 
 

Conclusions 

In this study we presented SmartGraph, an integrated and predictive web-based platform which 

supports complex cheminformatics and bioinformatics workflows in a simple-to-use manner. 

The knowledge-base of SmartGraph is derived from ChEMBL v24 and the SIGNOR PPI 

databases, and contains 420,526 unique DTIs involving 271,098 unique compounds and 2,018 

unique targets. Utilizing state-of-the-art technologies for backend (Neo4j) and frontend (Angular, 

RXJS, D3) designs, SmartGraph features powerful analysis workflows and data visualization. 

This was showcased through several use-cases that cover hypothesis generation for elucidating 

MoA, drug repurposing and off-target-prediction. 

The design of SmartGraph and the underlying Neo4j graph-database allows for the facile 

integration of additional layers of biomedical data, such as pharmacological action of drugs, 

non-small molecule drugs, disease information and target development categories [41] to name 

a few. We also intend to integrate more cheminformatics and network analysis features into the 

platform in the future. Further, the graphical interface of SmartGraph can be used in many 

scenarios when efficient visualization is required to display, organize and analyze large-scale 

data. Finally, we plan to create a stand-alone API based on the GUI of SmartGraph and release 

it as an open-source code base. 

 

SmartGraph is available at http://smartgraph.ncats.io/ upon the acceptance of this manuscript.  
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Figures 
 

Figure 1 
 

 

Figure 1. Knowledge base of SmartGraph. C2P: pattern-of relations, T2P: potent pattern-of 

relations, DTI: drug-target interactions, PPI: protein-protein interactions. 
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Figure 2 
 

 

 

Figure 2. Web-based Graphical User Interface (GUI) of SmartGraph. Shown is an example 

network that was generated by 8 compounds and one destination target and after adjusting 

parameters k=2, p=1uM and c=0.10 in the control panel. The structures of two compounds are 

oriented on the left-hand  side of the subnetwork. The structures of pattern nodes (BM-

scaffolds) are outlined in blue, and their nodes are embordered by a yellow line. The end node 

is colored by dark red, whereas other targets are colored by orange. These targets constitute 

the shortest paths between the compounds and the destination target. 
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Figure 3 

 

Figure 3. Fisrt use-case. Shown is a subnetwork that can be revealed by tracking the effect of 
a compound by the means of manual exploration. The network was assembled by defining a 
compound as a starting node (PubChem CID: 398148), and subsequently the neighboring 
target nodes of the compounds were expanded. Finally, the neighboring target nodes of ATR 
protein target, as a potential target of interest, were also expanded.   
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D 
 

 
 
 
Figure 4. Second use-case. A. Shown is a Network generated by using the 8 active 
compounds (PubChem AID:  2660) as start nodes and mTOR as end node. Values of 
parameters k=5, p=3, c=0.01 were equal to their default values as they were not adjusted in the 
control panel. B. Showcasing weak interactions: two parameters were adjusted: k=5 and p=5. C. 
The value of k was set to 2 allowing for a maximal length of 2 of shortest paths (k=2, p=5, 
c=0.01). Other parameters were not adjusted. D. Generating subnetwork comprised of 
interactions of higher confidence based on curation. (k=10, p=5, c=0.73) 
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B 

 
 
Figure 5. Third use-case. A. Result of prediction of active compounds for mTOR using the “Get 
Prediction” function of SmartGraph. Yellow nodes: patterns (BM-scaffolds), blue nodes: 
compounds, orange nodes: protein targets. This subnetwork is derived from the subnetwork 
generated by the last use-case of “Automated Hypothesis Generation for Mechanism-of-Action” 
section. B. Predicting polypharmacology for compound Compound A (NS-InChI key: 
QNUKRWAIZMBVCU, PubChem CID: 5289419). Scaffold overlap ratio: 0.89. Predicted targets: 
ALK (p68 kinase, P19525) and NEK2 (NimA-like protein kinase 1, P07949). Compound A was 
already tested in EGFR because it is connected to it. 
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