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ABSTRACT 20 

 The explosion of microbial genome sequences in public databases allows for large-21 

scale population genomic studies of bacterial species, such as Escherichia coli. In this study, 22 

we examine and classify more than one hundred thousand E. coli and Shigella genomes. 23 

After removing outliers, a semi-automated Mash-based analysis of 10,667 assembled 24 

genomes reveals 14 distinct phylogroups. A representative genome or medoid identified for 25 

each phylogroup serves as a proxy to classify more than 95,000 unassembled genomes. This 26 

analysis shows that most sequenced E. coli genomes belong to 4 phylogroups (A, C, B1 and 27 

E2(O157)). Authenticity of the 14 phylogroups described is supported by pangenomic and 28 

phylogenetic analyses, which show differences in gene preservation between phylogroups. 29 

A phylogenetic tree constructed with 2,613 single copy core genes along with a matrix of 30 

phylogenetic profiles is used to confirm that the 14 phylogroups change at different rates of 31 

gene gain/loss/duplication. The methodology used in this work is able to identify previously 32 

uncharacterized phylogroups in E. coli species. Some of these new phylogroups harbor 33 

clonal strains that have undergone a process of genomic adaptation to the acquisition of 34 

new genomic elements related to virulence or antibiotic resistance. This is, to our 35 

knowledge, the largest E. coli genome dataset analyzed to date and provides valuable 36 

insights into the population structure of the species. 37 

 E. coli is a common inhabitant of the gastrointestinal tract of warm-blooded organisms, 38 

and can also be found in soil and freshwater environments1. The species is comprised of both 39 

commensal and pathogenic strains which can cause disease in a wide variety of hosts. In humans, 40 

pathogenic E. coli strains are a leading cause of diarrhea-associated hospitalizations2. Some of 41 

the reasons why E. coli is intensely studied are: rapid growth rate in the presence of oxygen, easy 42 

adaptation to environmental changes, and the relative ease with which it can be genetically 43 

manipulated3. Genomic diversity of the species, to which the genus Shigella has been proposed 44 

to be included4,5, is reflected by the existence of several phylogenetic groups (phylogroups) that 45 

have been identified using a variety of different methods6–8.  46 

 Historically, four phylogroups have been recognized as detected by triplex PCR: A, B1, 47 

B2, and D6,8 and three more were added later9: phylogroups C (closest relative to B1), F (as a 48 
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sister group of phylogroup B2), and E to which many D members were reassigned. Some studies 49 

have further subdivided these phylogroups with subdivisions of F and D, and separate 50 

phylogroups for Shigella species10. Recently, Clermont et al.11 characterized phylotype G using 51 

multiplex PCR as an intermediate phylogroup between B2 and F. These phylogroups are thought 52 

to be monophyletic8,10 and partially coincide with different ecological niches and lifestyles. 53 

Moreover, phylogroups differ in metabolic characteristics, the presence of virulence genes, and 54 

also in antibiotic resistance profiles8,12–14.  55 

Here we describe a comprehensive analysis of over 100,000 publicly available genome 56 

sequences, consisting of 12,602 assembled genomic sequences from GenBank and over 125,000 57 

unassembled genome sequences from the Sequence Read Archive (SRA). This study combines 58 

whole genome sequences (WGS) and SRA unassembled genomes using high-performance 59 

computing resources to conduct, to our knowledge, the largest analysis to date of the population 60 

structure of E. coli. We have assessed the genomic similarities and differences between 61 

phylogroups to characterize the genetic heterogeneity of these different phylogenetic lineages. 62 

We have also identified 14 ‘medoid’15 genomes that can be considered as the genetic ‘center’ of 63 

each of the phylogroups in our dataset and can be used as a representative sequence for the 64 

associated phylogroup. Furthermore, this study has application to the fields of public health and 65 

medical science as it provides detailed information of the existing diversity of the E. coli species 66 

enabling public health researchers to identify pathogenic strains that belong to the same genetic 67 

lineage appearing in outbreaks at different temporal and geographical locations.  68 

 69 

RESULTS  70 

Mash analysis of E. coli genomic sequences reveals 14 phylogroups.  As illustrated by Fig. 1, 71 

Mash-based clustering methodology differentiated 14 different phylogroups consisting of E. coli: 72 

G, B2-1, B2-2, F, D1, D2, D3, E2(O157), E1, A, C, B1, and Shigella: Shig1 and Shig2 (ordered 73 

as in Fig. 1) by using a cutoff in which the last literature accepted phylogroup became visible. 74 

The phylogroups Shig1 and Shig2 exclusively contained Shigella species, but Shigella sp. 75 

genomes were also found in phylogroups A, B1, B2-2, D2, D3, E1, and F (Supplementary Figure 76 

1). Genomes within each of these phylogroups share a lower intragroup distance (meaning higher 77 
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genetic similarity) than they do to any other genome within the rest of the species. In addition, 78 

the genetic relatedness between any phylogroup and the rest of the species is graphically shown. 79 

For example, phylogroups A, B1, and C are more closely related to each other than any one of 80 

these phylogroups are to B2-1 or B2-2, as illustrated by lower Mash distances between 81 

phylogroups A, B1, and C compared to B2-1 or B2-2. Fig. 1 also illustrates the phylogroup 82 

substructure or intragroup genetic relatedness. E2(O157), Shig1, and Shig2 harbor the most 83 

homogeneous genomes, which can be seen in the limited range of Mash distances within these 84 

phylogroups. On the other hand, B1 and B2-2 are more heterogenous as shown by numerous 85 

smaller dark teal squares that correspond to clusters of genomes that have a lower Mash distance 86 

between them compared to the rest of the genomes in that phylogroup. The relative abundance of 87 

phylogroup sequences with respect to each other can also be observed in Fig. 1. G has the 88 

smallest number of genomes sequenced and B1 has the largest number of sequenced genomes in 89 

the assembled dataset. 90 

Microreact16 was utilized to further explore the results of the Mash-based analysis, as this 91 

provides an easy medium for researchers to determine the closest genetic neighbors to any 92 

genome in this dataset. Additionally, due to the inclusion of some clinically relevant outbreak 93 

strains, such as O157:H7, O104:H4, and O104:H21, basic retroactive genomic surveillance is 94 

possible by identifying strains of known outbreaks and noting their nearest neighbors. This data 95 

is available on Microreact at: https://microreact.org/project/10667ecoli/4098eb8c. 96 

 97 

Currently sequenced E. coli and Shigella species can be represented by 14 medoid genomes.  98 

We were able to determine that 14 representative genomes can serve as the medoid or the 99 

“genomic center” of each phylogroup based on the 10,667 analyzed genomes. Our results show 100 

high correspondence with the recently proposed evolutionary scenario for the E. coli species17 101 

(Fig. 2). The Cytoscape analysis showed that the two B2 phylogroups are the most genetically 102 

distinct from the remainder of the species as they separate earliest from the other phylogroups. 103 

At the final Mash value cutoff of 0.0095, the C and B1 phylogroups become the last two groups 104 

to separate. This last split is indicative of the relatively large shared genomic content between 105 

these two phylogroups. The resultant Cytoscape graphs were collected into a video available as 106 

Supplementary Video 1, and a collection of stills is available on the service figshare via 107 
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http://dx.doi.org/10.6084/m9.figshare.11473308. Between the initial Cytoscape frame and the 108 

final frame, the number of genomes represented decreased by 43% while the edges (connections 109 

between genomes and medoids) decreased by 96%. As the cutoff decreases, some genomes are 110 

no longer represented in the Cytoscape analysis due to having no Mash distance equal to or less 111 

than the applied cutoff. As expected, the overall interconnectivity between the different 112 

phylogroups drops significantly with the cutoff, but intraconnectivity within the phylogroups 113 

does not. Upon visualization and inspection of the data via Cytoscape, we could verify that each 114 

medoid is representative of its entire phylogroup and therefore the 14 medoids are suitable to be 115 

used for decreasing visual complexity without sacrificing accuracy. Information about the 14 116 

found medoids is available in Supplementary Table 2.  117 

Most sequenced E. coli genomes belong to 4 phylogroups. The use of medoid genomes as a 118 

proxy to classify more than 100,000 genomes revealed that most of the currently sequenced E. 119 

coli strains belong to 4 phylogroups. Around two-thirds (67%) of the analyzed SRA reads were 120 

predicted to belong to four phylogroups: A (23%), C (15%), B1 (15%), and E2(O157) (14%). 121 

This large disparity in phylogroup diversity in the SRA dataset most likely reflects the research 122 

interests of the scientific and medical communities. Strains belonging to phylogroups B1, C, and 123 

E2(O157) are often pathogenic and of interest to medical research, while phylogroup A includes 124 

strains frequently used in the laboratory (e.g., strain K-12) or genetically modified strains (such 125 

as strains BL21 and REL606). Similarly, a little over two-thirds (70%) of the 10,667 assembled 126 

genomes also belong to four phylogroups: B1 (28%), A (21%), B2-2 (13%) and Shig2 (8%). 127 

However, in the assembled genomes dataset, phylogroup C is only about 5% and E2(O157) is 128 

about 7%. It is somewhat unexpected that the assembled genomes have a different distribution of 129 

genomes than the unassembled dataset; however, this could be due to how fast and inexpensive 130 

unassembled genomes are to produce and their utility in genomic surveillance of outbreaks. A 131 

breakdown of the results for the SRA analysis including the number of medoid hits below the 132 

cutoff is summarized in Supplementary Table 3. Additionally, a collection of heatmaps with 133 

different membership cut-offs, ranging from one to 14 phylogroups can be found in 134 

Supplementary Figure 2.   135 

 136 
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Members of Mash phylogroups possess different genomic features. Since Mash values provide 137 

a measure of similarity via distance between pairs of genomes, the phylogroups of Fig. 1 are the 138 

consequence of differences/similarities in the genetic content of each genome with respect to the 139 

rest of the genomes included in the analysis. Differences in genome size and percentage of GC 140 

content between phylogenetic groups were observed (Supplementary Figure 3) and statistical 141 

tests were performed by ANOVA and Tukey’s multiple comparison test (see Methods and 142 

Supplementary Table 4). According to these analyses, genomes from phylogroups Shig1, Shig2, 143 

A, B1 and B2-1 are significantly smaller in size than phylogroups E2(O157) and C (P<0.01). 144 

The smaller genome size of the strains from both Shigella phylogroups is indicative of a 145 

reductive evolution of the genomes of these strains as previously described18 by Weinert and 146 

Welch which is mainly driven by their role as intracellular pathogens. Other enteroinvasive E. 147 

coli strains such as serotypes O124, O152, O135 and O112ac were classified inside phylogroups 148 

A (typically engineered, lab, and commensal strains) and B1 (often environmental strains) which 149 

are the most heterogeneous phylogroups due to the diverse nature of their strains in terms of their 150 

environmental niche. This heterogeneity is also reflected in the large ranges of genome size and 151 

GC content of these two phylogroups. However, reduced genome size is not associated with 152 

pathogenicity per se, as the large genomes of E2(O157) and C phylogroups illustrate. Larger 153 

genome sizes associated with virulence may result from the accumulation of virulence genes in 154 

prophages, pathogenicity islands, and plasmids19. Significant genomic differences in GC content, 155 

with respect to other phylogroups were only found for the two Shigella phylogroups (P<0.01), 156 

which also agrees with an ongoing purifying or negative selection occurring in these genomes18. 157 

These characteristics might reflect the different evolutionary strategies and opposite selection 158 

pressures as a consequence of adaptation to diverse niches in which the different phylogroups 159 

have evolved20. 160 

Level of preservation of homologous genes varies between phylogroups. To evaluate the 161 

existence of functional traits associated with each of the phylogroups, we conducted pangenome-162 

approach based analyses using the proteomes of the 10,667 assembled genomes. In addition, 163 

separate pan and core genomes were calculated for the 14 individual phylogroups. This approach 164 

allows us to highlight the unique proteomic cores of each phylogroup, which in turns helps to 165 
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define their distinct biology. The total set of genes of the species (pangenome) is comprised of 166 

135,983 clusters of homologous proteins (Table 1). By testing the cutoffs for core genome 167 

conservation from 90% to 99% of the genomes (Supplementary Fig. 4) we concluded that, while 168 

the traditional cutoff for core genome calculation of 95% of genomes would suffice, a cutoff of 169 

97% can minimize erroneous false positive core genes thus providing a more stringent result. 170 

Therefore, we defined the core genome as homologous genes shared by at least 97% of the 171 

genomes (TOTcore97), which produced a core genome of 2,663 clusters (1.96% of the total 172 

pangenome clusters). The TOTcore97, colored green in Fig. 3a, contains the well-preserved genes 173 

that define the species, and for the shortest sequenced genomes (e.g. Escherichia coli str. K-12 174 

substr. MDS42, phylogroup A), these constitute approximately 74% of their gene content; in 175 

contrast, for the largest genomes (e.g. E. coli Ec138B_L1, phylogroup A) this fraction is only 176 

about 32%.  177 

 By defining phylogroup-specific core genomes (PHYcore97) it becomes apparent that large 178 

differences exist between the levels of gene preservation for each of the phylogroups (Fig. 3a).  179 

Predictably, the phylogroup with the largest number of PHYcore97 gene clusters is E2(O157). Not 180 

only do its members have large genomes, but this phylogroup is also very homogeneous as it 181 

mostly contains E. coli O157:H7 strains that have a clonal origin21. Relatively large PHYcore97 are 182 

also observed for phylogroups C, harboring strains of clinically relevant non-O157 183 

enterohemorrhagic (EHEC) serotypes such as O111 and O26, and for phylogroup Shig2, whose 184 

members have relatively short genomes as it is mainly composed of S. sonnei strains, suggesting 185 

that these phylogroups are relatively homogeneous which increases the size of the core genome 186 

in turn decreasing the fraction of accessory genes. At the other end of the spectrum, the 187 

phylogroup with the smallest core genome is Shig1 followed by phylogroups B1, E1, and A 188 

(Table 1). The small core genome of Shig1 is related to its small genome size, while more 189 

numerous phylogroups A, E1, and B1 contain more diverse members, resulting in a larger 190 

fraction of accessory genes and a smaller phylogroup-specific core. This observation concurs 191 

with the tendency of other environmental strains that usually present open pangenomes with 192 

higher ratios of accessory and unique genes22,23. Nevertheless, although Shig1 phylogroup has 193 

the smallest number of core genes, this number represents almost 29% of the total clusters found 194 
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in this phylogroup (Table 1), which is the highest ratio of core gene clusters per phylogroup-195 

specific pangenome of the analysis. Phylogroups with fewer members can also produce larger 196 

core genome fractions with respect to their pangenome due to sampling biases. Phylogroup G 197 

was recently described by Clermont et al.11 as a multidrug resistant extra-intestinal pathogenic 198 

phylogroup (ExPEC). G strains are closely related to strains from the B2 complex, and are 199 

commonly isolated from poultry and poultry meat products, which coincides with our analyses 200 

and available metadata. Although phylogroup G has the fewest number of strains in our dataset, 201 

we believe that the high core/pan ratio of this phylogroup is due to the overabundance of the 202 

sequence type ST117 (79% of the strains) which makes this phylogroup quite homogeneous. 203 

Based on these observations we conclude that the relative ratio of PHYcore97 to the total 204 

phylogroup pangenome clusters is a measure of the intragroup diversity.  205 

 To analyze the distribution of the 14 phylogroups in terms of their shared genetic content, 206 

a two-dimensional projection of the presence or absence of all protein families (complete 207 

pangenome) for the 10,667 assembled genomes was represented by a Principal Coordinate 208 

Analysis (PCoA) as shown in Fig. 3b. An initial observation of the PCoA plot is that 209 

phylogroups segregated on the left side of the Y axis (B2-1, B2-2, G, F, D1, D2, D3) comprise 210 

phylogroups that contain large numbers of strains labeled as extra-intestinal E. coli strains 211 

(ExPEC)11,13,24. The observed overlap of B2-1 with the B2-2 phylogroup in Fig. 3b could be due 212 

to their shared evolutionary history. For example, in silico MLST analyses shows that at least 213 

80% of B2-1 strains belong to the sequence type ST131, a multidrug resistant clonal group of 214 

ExPEC that recently emerged from the B2-2 phylogroup25. This explains the high degree of 215 

homogeneity of B2-1 phylogroup. Moreover, strains characterized as ST131 were not found in 216 

other phylogroups in our dataset. It appears that the rapid and differential acquisition of unique 217 

virulence and mobile genetic elements by ST131 strains26 make it possible to discriminate 218 

between B2-1 (mainly ST131 strains) and B2-2 phylogroups using WGS approaches such as the 219 

one used in this work.   220 

 While most of the phylogroups seem to have a relatively horizontal distribution within 221 

the PCoA plot, phylogroups E2(O157) and Shig2 show the most striking differences in regards 222 

to their vertical distribution with respect to the rest of phylogroups. As commented before, Shig2 223 
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and E2(O157) are very homogeneous phylogroups, with large PHYcore97 that contain over 1,000 224 

more protein families than the TOTcore97 of the species. These phylogroup-specific core genes 225 

could contain genetic signatures that are not present in the core genome of other phylogroups, 226 

and therefore would confer to all phylogroup members with intrinsic and distinguishable traits 227 

making them “traceable” in terms of genetic content from the rest of phylogroups. 228 

 To represent the existence of unique phylogroup-specific core genes we made a 229 

comparison only considering the 14 PHYcore97 and re-clustered them using the same parameters 230 

as in the previous pangenome analyses. Fig. 3c is a representation of the sorted resultant clusters, 231 

placing clusters from the TOTcore97 first, followed by the PHYcore97 clusters from the rest of 232 

phylogroups. Sorting the clusters in this way, highlights clusters of core genes that are exclusive 233 

to the PHYcore97 of a given phylotype. As can be observed, phylogroups E2(O157) and Shig2 234 

possess the highest proportion of unique core genes (protein family clusters (columns) colored in 235 

purple that are not present in the other phylogroups), followed by C, B2-1, and Shig1 236 

phylogroups. Well-defined phylogroup unique core genes were also found for phylogroups D3 237 

(uropathogenic multidrug resistant strains, mainly ST405 and ST38) and D1 (uropathogenic 238 

multidrug resistant strains, predominantly ST69). A list of the phylogroup unique core genes 239 

found and represented in Fig. 3c along with their associated functional features can be found in 240 

Supplementary Table 5. Some of these clusters of genes comprise interesting characteristics such 241 

as: a unique set of genes for synthesis of flagella only present in all strains belonging to the C 242 

phylogroup, a complete set of genes for the transport of iron and ribose present in all members of 243 

phylogroup E2(O157), and a set of genes for the synthesis of siderophores in B2-1 phylogroup 244 

(Supplementary Table 5). The presence of unique-core gene clusters belonging to the PHYcore97 245 

of most phylogroups supports the existence of 14 distinguishable phylogroups within the species. 246 

These genetic signatures might also have applications in public health as they could be utilized 247 

for typing purposes. 248 

 However, not all phylogroups harbor phylogroups-specific genes. Phylogroups A and B1 249 

have the weakest unique core signatures observed (along with D2 and E1 phylogroups), which 250 

could be explained by the heterogeneous nature of both phylogroups. Although B1 is comprised 251 

of strains isolated from environmental sources, it also contains enteropathogenic strains (EPEC), 252 

EIEC strains and most of the Shigella strains, such as S. boydii and S. dysenteriae, that were not 253 
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classified by Mash analysis in Shig1 or Shig2 phylogroups (Supplementary Fig. 1 and 254 

Microreact data). These Shigella strains can be observed in the PCoA plot as the B1 small cluster 255 

just on top of the Shig1 cluster. It is interesting to note that, although phylogroups A and B1 are 256 

well-defined and described phylogroups, they are also considered as sister phylogroups with a 257 

shared evolutionary history7,13,27 which is represented by their partial overlap observed in Fig. 3b 258 

and their late segregation observed in the Supplementary Video 1 and Fig. 2b at a Mash distance 259 

of 0.0115. 260 

Phylogroups evolve with different gain/loss rates of protein families. Since the medoids were 261 

shown to be suitable representative entities of the 14 phylogroups and the TOTcore97 genome was 262 

established, a robust phylogeny analysis could now be performed based on the concatenated 263 

independent alignment of 2,613 TOTcore97 gene clusters without paralogs and a maximum 264 

likelihood approach (Fig. 4a). The obtained phylogenetic tree, along with a matrix containing the 265 

number of homolog genes per protein family for each representative genome, were used to 266 

measure family sizes and lineage specific events applying an optimized gain-loss-duplicated 267 

model. Differences in gene content between the medoids lead to the observation that the different 268 

phylogroups have evolved with different gain/loss/duplication rates of protein families (Fig. 4b). 269 

Relatively high ratios of gene expansion were observed for phylogroups Shig1, Shig2, C, and 270 

B2-1. As expected due to their smaller genomes, Shig1 and Shig2 possess the highest ratios of 271 

gene loss, while Shig1, C, and Shig2 have the highest rates of gene duplication. On the other 272 

hand, phylogroups A, B1, D3, and F have the lowest rates of gene gain, indicating these 273 

phylogroups have undergone limited gene expansion. It is also interesting to note is that 274 

phylogroups D2, B1, and G have much lower rates of gene duplication compared to the other 275 

phylogroups. In short, all phylogroups showed differential gain/loss duplication ratios of gene 276 

families, even those that share a presumed ancestral history, such as the D phylogroups. As 277 

stated before, D1 and D3 phylogroups comprise mainly UPEC strains and they are mainly 278 

represented by one or two predominant sequence types. Conversely, D2 strains are typically 279 

isolated from non-human sources with a large variation of sequence types.   280 

 281 

 282 
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Discussion 283 

 Mash-based analysis provides a fast and highly scalable K-mer based approach that can 284 

be used on extremely large sets of genomes. Based on more than one hundred thousand 285 

genomes, the population structure of E. coli species appears to be more diverse than currently 286 

thought. The methodology applied here detected 14 phylogroups with a remarkably unequal 287 

distribution of membership in regards to the number of genomes per phylogroup. The current 288 

bias in sequencing data decreases the probability of finding the genetic signatures that captures 289 

the relative homogeneity of all members of the phylogroups. As a consequence, less numerously 290 

represented phylogroups may actually contain additional, as yet unidentified phylogroups or sub-291 

structures within them and currently conclusions about their open or closed nature cannot be 292 

accurately drawn.  293 

 The presence of multiple phylogroups that share pathogenic characteristics and even 294 

share equivalent environmental niches, such as the D and B2 phylogroups, is indicative of faster 295 

evolutionary forces related to the pathogenic lifestyle of these strains that could be driven by the 296 

acquisition of virulence factors, recombinations, and interactions with the local flora of the host. 297 

While the analysis of gain/loss/duplication rates of the phylogroups does not assess the rate of 298 

mutation, the k-mer based Mash analysis can capture subtle differences in sequence similarity 299 

making these forces traceable. According to our analysis, the emergence of new phylogroups of 300 

E. coli is due to the pathogenic specialization of previously established phylogroups, such as 301 

phylogroups B2-1, D1, D2, and D3. These phylogroups could have acquired new genetic 302 

material causing the rest of the genome to adapt thus producing changes that are detected by 303 

WGS techniques such as Mash but are not detected by more target-restricted methods such as 304 

PCR. We therefore conclude that the use of WGS data with Mash to assess a bacterial species’ 305 

genetic sub-structure is essential to increasing our understanding of bacterial diversity.  306 

 307 

 308 

 309 

 310 

 311 
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METHODS 312 

Data Acquisition and Cleaning. To conduct the analysis, 12,602 genome sequences labeled 313 

either Escherichia or Shigella were downloaded from GenBank on 26 June, 2018 using batch 314 

Entrez and the list of GCAs accession numbers from NCBI Genome database (including plasmid 315 

sequences when applicable). This dataset (Supplementary Table 1) was cleaned to obtain an 316 

informative and diverse set of 10,667 E. coli and Shigella genomes that captures the diversity of 317 

the species as sequenced to date. In addition to the GenBank genomes, a total of 125,771 read 318 

sets labeled as either E. coli or Shigella were downloaded from the SRA database. After cleaning 319 

the dataset, we utilized Mash28, a program that approximates similarity between two genomes in 320 

nucleotide content, and an in-house Python script to create a matrix of distances for all 10,667 321 

genomes. This matrix was then clustered using hierarchical clustering after converting the Mash 322 

distance to a Pearson’s Correlation Coefficient distance to ensure that clustering results were 323 

based on a genome’s overall similarity to the whole species.  324 

To evaluate the quality of the data set, various sequence quality scores were calculated as 325 

described29 by Land et al.. Following the recommended quality score cutoff value of 0.8, the 326 

dataset was filtered to include only genomes with a total quality score of 0.8 or higher. Applying 327 

the same cutoff value to the sequence quality score alone resulted in an extremely restricted 328 

dataset that no longer addressed the goals of this study. Genome size was restricted to greater 329 

than 3 Mb and less than 6.77 Mb to remove questionably sized genomes, which could be due to 330 

contamination or modified genomes that are not representative of the natural E. coli species. 331 

After applying these two steps, 10,855 genomes remained in the assembled genome dataset for 332 

analysis. 333 

To further clean the dataset, we filtered genomes that were outside the statistical distribution of 334 

Mash distances within the dataset. Assuming that Shigella species are all members of E. coli, we 335 

decided to use type strains for the Escherichia and Shigella genera (accession numbers 336 

GCA_000613265.1 and GCA_002949675.1, respectively) to quickly filter the set of 10,855 337 

genomes for erroneous or low-quality genomes that may have slipped through the previous 338 

cleaning steps.  The Mash values of the 10,855 genomes compared to each type strain were 339 
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broken into percentiles ranging from 10% to 99.995%. A cutoff percentile of 98.5% was 340 

determined to provide sufficient cleaning without risking a large loss of data (data not shown) 341 

and was applied to each type strain Mash value set. Genomes that were found in both sets after 342 

filtering were retained to produce the final dataset of 10,667 genomes.     343 

Microreact. Microreact16, was utilized to visualize the resultant clustering of the Mash data as 344 

this provides an easy and fast medium to further explore the results of the analysis. To leverage 345 

the search capabilities of Microreact, we mapped metadata found for our dataset from the 346 

database PATRIC30 (downloaded on 2019/6/20). This allows the exploration of our results using 347 

a number of shared characteristics and queries such as “geographic location” or “serovar” that 348 

although outside the scope of the current study, could be used as a topic for future analyses to 349 

increase our understanding of E. coli species.  350 

Mash and Clustering Analysis. Genetic distances between all 10,667 genomes were calculated 351 

using ‘mash dist’ with a k-mer size of 21 and a sampling size of 10,000. The resulting output was 352 

converted into a distance matrix with assembly accession numbers as columns and rows. To 353 

improve the clustering results and to provide a standard metric that allows comparison of 354 

different analytical methods, we converted the Mash distance value into a similarity measure via 355 

the Pearson correlation coefficient31. This returns values ranging from -1 (total negative linear 356 

correlation) to 1 (total positive linear correlation), where 0 is no linear correlation. Since 357 

clustering-based methods require a distance measure, the values were subtracted from 1 to 358 

convert them into a distance measure. These distance measures were then clustered in R using 359 

‘hclust’ and the ‘ward.D2’ method. A clustered heatmap was generated using the hclust 360 

dendrogram to reorder the rows and columns of the distance matrix within the heatmap, while 361 

values from the raw distance matrix of Mash distances were mapped to color. To determine the 362 

height to cut the hclust dendrogram and to accurately predict phylogroups that optimally 363 

overlapped with existing phylogroups, we compared multiple different cutoff values and 364 

methods to obtain cutoff values. Taking the maximum height present in the hclust dendrogram 365 

and multiplying it by 1.25 x 10-2 was found to provide both accurate predictions and a standard 366 

method that scales with the data supplied. Sufficient accuracy was defined by the cutoff at which 367 
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the last literature accepted phylogroup was visible, in this case representing the C phylogroup 368 

splitting off from B1. Some detailed results of both the cutoff percentile and hclust height testing 369 

are included for 10,667 genomes in Supplementary Table 5.  370 

Medoid selection for species representation. Using the Mash values for the entire species, a 371 

medoid was defined for each phylogroup. The medoid is the “real” center of the phylogroup, as it 372 

has to exist within the dataset, and was chosen as the genome that has the lowest average 373 

distance to all other genomes in its phylogroup. We subsequently tested if one genome from each 374 

of the phylogroups would be enough to accurately classify any given genome sequence claimed 375 

to be E. coli or Shigella. The ‘aggregate’ function of R was used to find the mean across each 376 

phylogroup. Isolating each phylogroup, reclustering, and calculating the medoid did not yield as 377 

accurate results as calculating the medoid per phylogroup with respect to the entire 10,667 378 

genome dataset.  379 

Addition of SRA reads. The keywords “Escherichia coli” and “Shigella” filtered with “DNA” 380 

for biomolecule and “genome” for type was used to retrieve SRA IDs from the NCBI SRA 381 

database on March 22, 2019. For large scale data transfer, these SRA genomes were downloaded 382 

using the high throughput file transfer application Aspera (http://asperasoft.com). To ease 383 

computational and organizational load, the 125,771 read sets obtained from the SRA were 384 

divided into five subsets of different sequencing technologies: 3 Illumina paired read sets, 1 385 

mixed technology with paired reads, and 1 mixed technology with single reads. The 5 sets of 386 

reads were then converted from fastq to fasta format to be processed by Mash using a python 387 

script which removed all non-sequence data from the fastq file. 388 

The SRA sequence reads were sketched using Mash (v2.1) and the same k-mer and sketch 389 

sample size as the 10,667 dataset. This version change was due to the addition of read pooling in 390 

the read mode which automatically joins paired reads, eliminating the need to concatenate or 391 

otherwise process paired read sets.  All read sets were sketched individually so that read sets that 392 

caused an error when sketching were dropped from the analysis before sketching. A total of 393 

23,680 raw reads could not be sketched. The -m setting was set to 2 to decrease noise in the 394 

sketches of the reads. After sketching the reads within the subsets, all sketches were 395 
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concatenated into a sketch for that subset using the paste command of Mash. The concatenated 396 

sketch of each subset was then compared to the 14 medoids using Mash dist. As all five subsets 397 

had the same reference, the distance output from each subset was concatenated to one file. This 398 

single SRA distance output file was then analyzed to evaluate the quality of the SRA dataset. 399 

Due to how distances are calculated, Mash can consistently flag genomes of very low quality 400 

since the major basis of a Mash value is how many hits are present out of sketches sampled. The 401 

top 5 most numerous distances of the SRA read sets corresponded to 0 to 4 hits of the possible 402 

10,000 sketches per genome. This indicates the presence of extremely low-quality samples 403 

within the SRA dataset. A histogram of the SRA Mash distance results was created to analyze 404 

the distribution of Mash distances of the entire 102,091 SRA dataset (results not shown). A final 405 

Mash distance cutoff of 0.04 was chosen based on the maximum Mash value in the 10,667 whole 406 

set that was 0.0393524. Although this low cutoff might potentially eliminate useful information, 407 

it insured quality of the SRA dataset. This retained 95,525 reads that had at least one Mash 408 

distance to a phylogroup medoid within the chosen cutoff.  409 

The distance output was transferred into a matrix with reads as columns and rows containing a 410 

phylogroup medoid. For each read the smallest Mash distance to a medoid was identified, and 411 

the corresponding medoid noted (Supplementary Table 3). We then created a distance matrix 412 

from the Mash distance output of the 95,525 reads that met the above cutoff with reads as rows 413 

and medoids as columns. Due to computational load this distance matrix was loaded into Python 414 

3 instead of R. A clustered heatmap was made using Seaborn, Matplotlib, and Scipy with the 415 

‘clustermap’ function. Instead of clustering both rows and columns, columns (phylogroups) were 416 

ordered the same as Fig. 1 and rows were sorted as follows: number of hits to phylogroups 417 

(ascending = True) and Mash distance (ascending = False). This provided a quick visualization 418 

method for the SRA dataset with a consistent sorting criterion to make comparison between Fig. 419 

2c and the Supplemental heatmaps much easier.  420 

Cytoscape visualization. The Mash distance matrix of the 10,667 genomes was filtered to 421 

include only the 14 medoids along the columns. This filtered matrix was transformed into a new 422 

3 column matrix where the first column contains the identifier for a genome to be compared to 423 
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the medoid present in the second column. The third column contains the Mash value for that 424 

pairwise comparison. A sliding cutoff ranging from 0.04 to 0.0095 with increments of 0.005 was 425 

applied to the Mash value column and rows with values above the sliding cutoff for an iteration 426 

were removed. These data tables were imported into Cytoscape (version 3.7.1) with the first 427 

column as the source node and the medoid column as the target node. The Prefuse Force 428 

Directed Weighted layout was then applied to the network with the Mash distance serving as the 429 

weight. Phylogroup membership was mapped with a metadata table and colors were assigned 430 

based on the colors used in Fig. 1. For each cutoff the resultant graph was output as an SVG. All 431 

SVGs were then compiled into a video to ease visualization of the Cytoscape graphs.  432 

Statistical analysis of genome sizes and percent GC content. Genome sizes and percent of GC 433 

content was calculated using the ‘infoseq’ package from EMBOSS suite v6.6.0.0. A dataframe 434 

with sequence ID, percentage of GC content, genome size, and phylogroup ID was made. 435 

Library ‘ggplot2’ from R was used to plot genome sizes and GC content. Library ‘dplyr’ from R 436 

was used to perform analysis of Variance ANOVA test and Tukey HSD tests. The homogeneity 437 

of variances was tested using Levene’s test and the normality assumption of the data was 438 

checked using Shapiro-Wilk test. As some of the groups didn’t meet the criteria of the 439 

assumption of normality, Kruskal-Wallis test was performed as well as non-parametric 440 

alternative to one-way ANOVA. Kruskal-Wallis test rejected both null hypothesis (means of 441 

genome size or percent of GC content are similar between the different phylogroups), with p-442 

value < 2.2e-16 in both cases. Raw results from these tests are available in Supplementary Table 443 

5. 444 

Pangenome analyses and clustering. All 10,667 genomes were reannotated using Prokka32 445 

v1.13, with parameters: --rnammer --kingdom Bacteria --genus Escherichia –species coli --gcode 446 

11. All protein-coding sequences (n=51,400,905) were clustered using UCLUST from 447 

USEARCH33 v.10.0.240 into protein families using cut-off values of 80% of protein sequence 448 

similarity, 80% of query sequence coverage, e-value equal or less than 0.0001 (parameters -449 

evalue 0.0001 -id 0.8 -query_cov 0.8, with maxaccepts 1 and maxrejects 8). For the core genome 450 

various inclusion percentages were compared, since we included draft genomes existing in 451 
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multiple contigs. The optimum was defined that allowed 3% omissions, giving a species core 452 

genome defined as those genes present in 97% of the genome collection. Therefore, protein 453 

families with presence in at least 97% of the total set strains were considered part of the core 454 

genome of E. coli species.  455 

The pan- and core genome for each of the 14 phylogroups were then separately clustered using 456 

the same cut-off parameters as the entire set at species level. 457 

 458 

MLST analysis. The sequence type for all 10,667 assembled genomes was assessed using the 459 

program “mlst” version 2.18.0 from Seemann T, Github: https://github.com/tseemann/mlst, 460 

using both the Achtman and Pasteur MLST schemas for E. coli from PubMLST website 461 

(https://pubmlst.org/) developed34 by Keith Jolley. Results were collected and are accessible in 462 

our microreact database: https://microreact.org/project/10667ecoli/b4431cf8 463 

Core genome matrix creation and visualization. Core genome clusters for the 14 phylogroups 464 

obtained using UCLUST v.10.0.240 in the previous analysis were used again with UCLUST 465 

v.10.0.240 using the same parameters to find the intersection of core genes between the core 466 

clusters of the 14 phylogroups. A binary matrix with cluster ID as column labels, genome IDs as 467 

row names, and the number of genes belonging to that cluster as the cell value was constructed 468 

using the main output from UCLUST. This matrix was then supplied to an “in house” python 469 

script that sorts the pangenome matrix such that the gene clusters found in all phylogroups are 470 

placed first (species’ core genome). Then groups are sorted by abundance per phylogroup to 471 

isolate phylogroup core genes. All leftover gene groups are sorted by phylogroup and abundance 472 

and added to the end of the sorted gene cluster list. The Mash tree obtained earlier for the 10,667 473 

dataset was then loaded and used to sort the order of the organisms within the sorted matrix. 474 

Finally, Matplotlib was used to visualize the sorted matrix.   475 

Phylogenetic analysis of core gene families. The set of core gene clusters of the 14 medoids was 476 

extracted from the core genome clusters of the entire species and from them single copy ortholog 477 

groups were identified to construct a phylogenomic tree. In total a set of 2,613 single gene 478 
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(clusters without paralogs paralogs) ortholog groups were aligned using MAFFT35 v.7.110. The 479 

model of evolution for each of the 2,613 protein clusters was calculated using IQ-TREE36 480 

v.1.6.10 with parameters -m TESTONLY -nt AUTO. Once the best model of evolution was 481 

obtained for each of the core protein families, those clusters that shared model of evolution were 482 

sent together to IQ-TREE for a better estimation of the substitution model parameters using -m 483 

MF+MERGE, -nt AUTO and selecting the final model of evolution with mset parameter. In the 484 

last step, all partitions obtained with their corresponding model of evolution were sent again to 485 

IQ-TREE for final estimation of the phylogenetic tree for the 14 medoids using ultrafast 486 

bootstraping approach (-bb 1000). The resulted core genome tree was re-rooted using the B2-1, 487 

B2-2 and G phylogroups branch, according to the results obtained from the Mash analysis and 488 

the literature17 (Gonzalez-Alba et. Al, 2019). 489 

The pangenome matrix needed as input for Count37 v10.04 for the 14 medoids was constructed 490 

using UCLUST (with same parameters for pangenome calculation as in previous analyses). A 491 

pivot table was built using the main output from UCLUST and pandas library in a python3 script 492 

using the function ‘pivot_table’ with agglomeration function=sum. Count v10.04 program was 493 

used for gene family expansion/contraction analysis, using an optimized gain-loss-duplicated 494 

model38 using Poisson family size distribution, 4 gamma categories for each calculation across 495 

families (Edge length, Loss rate, Gain rate and Duplication rate) and different lineage specific 496 

variation for gain-loss ratio and duplication-loss ratio between lineages. Measurements were 497 

done using 1,000 optimization rounds (reaching convergence before the last iteration) and 0.01 498 

convergence threshold on the likelihood. 499 

Principal Coordinate Analysis. The PCoA plot in Fig. 3b was created using R, the entire 500 

pangenome matrix for the 10,667 assembled genomes, and the libraries ‘ade4’ version 1.7-13 501 

and ‘labdsv’ version 2.0-1. A Jaccard distance matrix of the pangenome matrix was created using 502 

the ‘dist.binary’ function from ‘ade4’. To create the PCoA data, the Jaccard distance matrix was 503 

used in the ‘pco’ function of ‘labdsv’ with k = 10,666 (allowing each genome to be a unique 504 

dimension).  The resultant PCoA data was then graphically rendered using R ‘plot’ and colors 505 

were added by genome classification as shown in Fig. 1.  506 
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Reporting Summary. Further information on research design is available in the Nature Research 507 

Reporting Summary linked to this article. 508 

Data availability 509 

The data supporting the findings of the study are available in this article, its Supplementary 510 

Information files, or from the corresponding author upon request.  511 

 512 
Code availability 513 
Code is available on GitHub: https://github.com/kalebabram/100k_E_coli_Project 514 
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Tables 646 

Table 1. Summary of pangenome analysis results. Values obtained from the different pangenome analysis using 647 
the 14 phylogroups separately and the entire set of assembled genomes (10,667 genomes) using UCLUST (Edgar, 648 
2010). Same parameters were used to all the analysis.  649 

Phylogroup Core genome 
(97% strains) Accessory genome  Unique Total (Pan genome) Core/pan 

(%)  
No. of 
strains 

 clusters proteins clusters proteins clusters proteins clusters proteins clusters  
All 2,663 28,566,052 82,821 22,783,754 50,499 51,099 135,983 51,400,905 1.96 10,667 
A 3,184 7,142,893 41,769 3,246,591 24,501 24,828 69,454 10,414,312 4.58 2,232 
B1 3,141 9,365,646 44,019 4,887,086 24,590 24,844 71,750 14,277,576 4.38 2,960 

B2-1 3,708 2,016,812 10,990 619,867 7,048 7,180 21,746 2,643,859 17.05 541 
B2-2 3,425 4,709,983 22,762 1,819,538 12,566 12,763 38,753 6,542,284 8.84 1,367 

C 3,899 2,132,258 10,413 738,879 5,242 5,290 19,554 2,876,427 19.94 540 
D1 3,666 1,006,271 10,012 318,372 7,659 7,770 21,337 1,332,413 17.18 273 
D2 3,524 626,693 11,703 221,033 6,765 7,181 21,992 854,907 16.02 177 
D3 3,754 668,359 7,252 201,292 4,814 4,936 15,820 874,587 23.73 177 
E1 3,151 885,018 14,883 471,354 7,969 8,088 26,003 1,364,460 12.12 279 

E2(O157) 4,060 3,080,073 6,128 743,413 4,442 4,535 14,630 3,828,021 27.75 750 
F 3,486 698,031 9,465 288,420 5,381 5,480 18,332 991,931 19.02 199 
G 3,783 365,756 5,716 98,269 4,016 4,066 13,515 468,091 27.99 96 

Shig1 3,128 564,868 4,903 256,426 2,815 2,883 10,846 824,177 28.84 177 
Shig2 3,732 3,383,814 6,870 719,247 4,751 4,799 15,353 4,107,860 24.31 899 

 650 

Legends of Tables 651 

Table 1. Summary of pangenome analysis results. Values obtained from the different 652 

pangenome analysis using the 14 phylogroups separately and the entire set of assembled 653 

genomes (10,667 genomes) using UCLUST (Edgar, 2010). Same parameters were used to all the 654 

analysis  655 

Legends of Figures 656 

Fig. 1. Heatmap representation of 10,667 genomes using Mash distances. The color bars at 657 

the top of the heatmap identify the phylogroups as predicted from the analysis. The scale to the 658 

left of the dendrogram corresponds to the resultant cluster height of the entire dataset obtained 659 

from hclust function in R. The colors in the heatmap are based on the pairwise Mash distance 660 

between the genomes. Teal colors represent similarity between genomes with the darkest teal 661 
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corresponding to identical genomes reporting a Mash distance of 0. Brown colors represent low 662 

genetic similarity per Mash distance, with the darkest brown indicating a maximum distance of ~ 663 

0.039. Genomes of relative median genetic similarity have the lightest color. 664 

Fig. 2. Summary of phylogroup differentiation and heatmap representation of sequence 665 

reads from the SRA database. a, Evolutionary scenario in the diversification of E. coli adapted 666 

from Gonzalez-Alba et. al, 2019 based on their methodology “SP-mPH”, a combination of 667 

“stratified phylogeny” and “molecular polymorphism hallmark”. Each branch reflects SNPs 668 

accrued by each phylogroup over time. Branch length is not proportional to the observed 669 

evolutionary distance.   b, Summary of the Cytoscape analysis. Phylogroups are colored based on 670 

the same colour scheme as Fig. 1. Phylogroups with more than one member are gray coloured. 671 

The Mash distance that each division occurs at is indicated by numerical value in the gray bar 672 

that runs down the side of this panel. c, Clustered heatmap of 91,261sequnce reads. The heatmap 673 

colors are based on the pairwise Mash distance between the SRA read sets and the 14 medoid 674 

genomes of each phylogroup, which are presented in the same order as in Fig. 1. To be included, 675 

SRA reads sets had to have 3 or more medoid comparisons producing a Mash distance equal to 676 

or less than 0.04. This removed 4,264 SRA read sets from the dataset. The number of SRA reads 677 

mapped to each medoids is given below the heatmap. Supplementary Fig. 2 contains additional 678 

cut-offs ranging from one to 14 phylogroups.  679 

Fig. 3. Pangenome representations of E. coli and Shigella. A. Each bar length of the circular 680 

bar plot represents the total number of proteins of a single genome, grouped by phylogroup. The 681 

proteins belonging to the TOTcore97 genome are shown in green. Additional proteins shared in 682 

each PHYcore97 genome are shown in blue, while purple is reserved for accessory proteins. B. 683 

Principal Coordinate Analysis plot of 135,983 protein families of 10,667 assembled genomes. 684 

Phylogroups are indicated by the same color scheme used in Figs. 1 and 2. C. Core genome 685 

matrix of 6,719 phylogroup core clusters and 10,667 assembled genomes. Clusters are sorted 686 

such that the core for the species is placed first, then the phylogroup core genes are placed sorted 687 

by their overall abundance in the species for each phylogroup in the same order as Fig. 1, finally 688 

the remaining clusters are placed by overall abundance. Phylogroup unique core genes are 689 

indicated by purple blocks which do not appear in other phylogroups.  690 
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Fig. 4. Phylogenetic representations of E. coli species using the core genome of the 14 691 

medoids. A. The tree was built using a set of 2,613 core clusters with no paralogs using IQ-692 

TREE (Nguyen et al., 2015). B. Summary representation of Count output. The phylogenetic tree 693 

presents the different gain/loss/duplication ratios obtained per each phylogroup as output of 694 

Count v.10.04 software (Csűrös, 2010). Dots in branches represent “informative ellipsis” where 695 

the length of the undotted section of the branch multiplied by the inverse ratio of undotted 696 

section is equal to the true rate of the branch. For example, assuming the displayed branch length 697 

is 1 and 1/10th of the branch is solid then the true rate of the branch would be 10. 698 

Gain/loss/duplication rates for each branch are shown in the table. 699 

Supplementary Information 700 

Supplementary Table 1. 10,667 WGS annotation numbers and strain names used in this study, 701 
their metadata and quality scores. This file also includes some of the percent cutoffs and cluster 702 
cutoffs tested in this study. 703 

Supplementary Table 2. Medoid metadata 704 

Supplementary Table 3. SRA metadata including read name, the predicted phylogroup, the 705 
number of hits a read has to phylogroup medoids that is above a cutoff of 0.04.   706 

Supplementary Table 4. Results of the ANOVA and Tukey’s test for the analysis of the means 707 
of genome sizes and GC content per phylogroup. 708 

Supplementary Table 5. Functional annotation using KO terms per each of the clusters found as 709 
phylogroup unique core genes 710 

 711 

Supplementary Figures 712 

Supplementary Figure 1. Distribution of Shigella genomes over phylogroups. 713 

Supplementary Figure 2. Heatmaps of all SRA reads that had a Mash score of at least 0.04 to 714 
one medoid. Each heatmap has a set of genomes with at least the indicated number of hits to a 715 
medoid of at least 0.04.  716 

Supplementary Figure 3. Violin-plots of the distribution of genome size (A) and genomic GC 717 

content (B) by phylogroup. Bar-plots inside the violins represent values for mean and mean plus 718 

one standard deviation per phylogroup. Phylogroups that have values significantly different to all 719 
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other phylogroups (according to F statistics test) are marked with a red asterisk. 720 

Supplementary Figure 4. Cut-offs for core genome calculation. Core genomes established at a 721 

cutoff of 90% to 100% per phylogroup. Last section represents the rate of cluster drop-off 722 

between percentages (90% to 99%) 723 

 724 
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 725 

Fig. 1. Heatmap representation of 10,667 genomes using Mash distances. The color bars at 726 

the top of the heatmap identify the phylogroups as predicted from the analysis. The scale to the 727 

left of the dendrogram corresponds to the resultant cluster height of the entire dataset obtained 728 

from hclust function in R. The colors in the heatmap are based on the pairwise Mash distance 729 

between the genomes. Teal colors represent similarity between genomes with the darkest teal 730 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2020. ; https://doi.org/10.1101/708131doi: bioRxiv preprint 

https://doi.org/10.1101/708131
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

corresponding to identical genomes reporting a Mash distance of 0. Brown colors represent low 731 

genetic similarity per Mash distance, with the darkest brown indicating a maximum distance of ~ 732 

0.039. Genomes of relative median genetic similarity have the lightest color. 733 

 734 
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 750 

Fig. 2. Summary of phylogroup differentiation and heatmap representation of sequence 751 

reads from the SRA database. a, Evolutionary scenario in the diversification of E. coli adapted 752 

from Gonzalez-Alba et. al, 2019 based on their methodology “SP-mPH”, a combination of 753 

“stratified phylogeny” and “molecular polymorphism hallmark”. Each branch reflects SNPs 754 

accrued by each phylogroup over time. Branch length is not proportional to the observed 755 

evolutionary distance.   b, Summary of the Cytoscape analysis. Phylogroups are colored based on 756 

the same colour scheme as Fig. 1. Phylogroups with more than one member are gray coloured. 757 

The Mash distance that each division occurs at is indicated by numerical value in the gray bar 758 

that runs down the side of this panel. c, Clustered heatmap of 91,261sequnce reads. The heatmap 759 

colors are based on the pairwise Mash distance between the SRA read sets and the 14 medoid 760 

genomes of each phylogroup, which are presented in the same order as in Fig. 1. To be included, 761 

SRA reads sets had to have 3 or more medoid comparisons producing a Mash distance equal to 762 

or less than 0.04. This removed 4,264 SRA read sets from the dataset. The number of SRA reads 763 
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mapped to each medoids is given below the heatmap. Supplementary Fig. 2 contains additional 764 

cut-offs ranging from one to 14 phylogroups.  765 
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 783 

Fig. 3. Pangenome representations of E. coli and Shigella. A. Each bar length of the circular 784 

bar plot represents the total number of proteins of a single genome, grouped by phylogroup. The 785 

proteins belonging to the TOTcore97 genome are shown in green. Additional proteins shared in 786 

each PHYcore97 genome are shown in blue, while purple is reserved for accessory proteins. B. 787 
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Principal Coordinate Analysis plot of 135,983 protein families of 10,667 assembled genomes. 788 

Phylogroups are indicated by the same color scheme used in Figs. 1 and 2. C. Core genome 789 

matrix of 6,719 phylogroup core clusters and 10,667 assembled genomes. Clusters are sorted 790 

such that the core for the species is placed first, then the phylogroup core genes are placed sorted 791 

by their overall abundance in the species for each phylogroup in the same order as Fig. 1, finally 792 

the remaining clusters are placed by overall abundance. Phylogroup unique core genes are 793 

indicated by purple blocks which do not appear in other phylogroups.  794 
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 809 

Fig. 4. Phylogenetic representations of E. coli species using the core genome of the 14 810 

medoids. A. The tree was built using a set of 2,613 core clusters with no paralogs using IQ-811 

TREE (Nguyen et al., 2015). B. Summary representation of Count output. The phylogenetic tree 812 

presents the different gain/loss/duplication ratios obtained per each phylogroup as output of 813 

Count v.10.04 software (Csűrös, 2010). Dots in branches represent “informative ellipsis” where 814 

the length of the undotted section of the branch multiplied by the inverse ratio of undotted 815 

section is equal to the true rate of the branch. For example, assuming the displayed branch length 816 

is 1 and 1/10th of the branch is solid then the true rate of the branch would be 10. 817 
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Gain/loss/duplication rates for each branch are shown in the table. 818 

 819 
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