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7

Abstract A decade after the first successful attempt to decode speech directly from human brain8

signals, accuracy and speed remain far below that of natural speech or typing. Here we show how9

to achieve high accuracy from the electrocorticogram at natural-speech rates, even with few data10

(on the order of half an hour of spoken speech). Taking a cue from recent advances in machine11

translation and automatic speech recognition, we train a recurrent neural network to map neural12

signals directly to word sequences (sentences). In particular, the network first encodes a13

sentence-length sequence of neural activity into an abstract representation, and then decodes this14

representation, word by word, into an English sentence. For each participant, training data consist15

of several spoken repeats of a set of some 30-50 sentences, along with the corresponding neural16

signals at each of about 250 electrodes distributed over peri-Sylvian speech cortices. Average word17

error rates across a validation (held-out) sentence set are as low as 7% for some participants, as18

compared to the previous state of the art of greater than 60%. Finally, we show how to use transfer19

learning to overcome limitations on data availability: Training certain components of the network20

under multiple participants’ data, while keeping other components (e.g., the first hidden layer)21

“proprietary,” can improve decoding performance—despite very different electrode coverage across22

participants.23

24

Introduction25

In the last decade, brain-machine interfaces (BMIs) have transitioned from animal models into hu-26

man subjects, demonstrating that some amount of motor function can be restored to tetraplegics—27

typically, continuous movements with two degrees of freedom (Nuyujukian et al., 2018; Gilja et al.,28

2015; Jarosiewicz et al., 2015). Although this type of control can be used in conjunction with a29

virtual keyboard to produce text, even under ideal cursor control (not currently achievable), the30

word rate would still be limited to that of typing with a single finger. The alternative is direct31

decoding of spoken (or attempted) speech, but heretofore such BMIs have been limited either to32

isolated phonemes or monosyllables (Brumberg et al., 2009, 2011; Pei et al., 2011; Mugler et al.,33

2018; Stavisky et al., 2018) or, in the case of continuous speech on moderately-sized vocabularies34

(about 100 words) (Herff et al., 2015), to decoding correctly less than 40% of words.35

To achieve higher accuracies, we exploit the conceptual similarity of the task of decoding speech36

from neural activity to the task of machine translation, i.e., the algorithmic translation of text from37

one language to another. Conceptually, the goal in both cases is to build a map between two38

different representations of the same underlying unit of analysis. More concretely, in both cases39

the aim is to transform one sequence of arbitrary length into another sequence of arbitrary length—40
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arbitrary because the lengths of the input and output sequences vary and are not deterministically41

related to each other. In this study, we attempt to decode a single sentence at a time, as in most42

modern machine-translation algorithms, so in fact both tasks map to the same kind of output,43

a sequence of words corresponding to one sentence. The inputs of the two tasks, on the other44

hand, are very different: neural signals and text. But modern architectures for machine translation45

learn their features directly from the data with artificial neural networks (Sutskever et al., 2014;46

Cho et al., 2014b), suggesting that end-to-end learning algorithms for machine translation can be47

applied with little alteration to speech decoding.48

To test this hypothesis, we train one such “sequence-to-sequence” architecture on neural signals49

obtained from the electrocorticogram (ECoG) during speech production, and the transcriptions50

of the corresponding spoken sentences. The most important remaining difference between this51

task and machine translation is that, whereas datasets for the latter can contain upwards of a52

million sentences (Germann, 2001), a single participant in the acute ECoG studies that form the53

basis of this investigation typically provide no more than a few thousand. To exploit the benefits of54

end-to-end learning in the context of such comparatively exiguous training data, we use a restricted55

“language” consisting of just 30-50 unique sentences; and, in some cases, transfer learning from56

other participants and other speaking tasks.57

Results58

Participants in the study read aloud sentences from one of two data sets: a set of picture descriptions59

(30 sentences, about 125 unique words), typically administered in a single session; or MOCHA-TIMIT60

(Wrench, 2019) (460 sentences, about 1800 unique words), administered in blocks of 50 (or 6061

for the final block), which we refer to as MOCHA-1, MOCHA-2, etc. Blocks were repeated as time62

allowed. For testing, we considered only those sets of sentences which were repeated at least three63

times (i.e., providing one set for testing and at least two for training), which in practice restricted64

the MOCHA-TIMIT set to MOCHA-1 (50 sentences, about 250 unique words). We consider here the65

four participants with at least this minimum of data coverage.66

The Decoding Pipeline67

We begin with a brief description of the decoding pipeline, illustrated in Fig. 1, and described in68

detail in the Methods. We recorded neural activity with high-density (4-mm pitch) ECoG grids69

from the peri-Sylvian cortices of participants, who were undergoing clinical monitoring for seizures,70

while they read sentences aloud. The envelope of the high-frequency component (70–150 Hz,71

i.e. “high-”) of the ECoG signal at each electrode was extracted with the Hilbert transform at72

about 200 Hz (Dichter et al., 2018), and the resulting sequences—each corresponding to a single73

sentence—passed as input data to an “encoder-decoder”-style artificial neural network (Sutskever74

et al., 2014). The network processes the sequences in three stages:75

1. Temporal convolution: A fully connected, feed-forward network cannot exploit the fact that76

similar features are likely to recur at different points in the sequence of ECoG data. For77

example, the production of a particular phoneme is likely to have a similar signature at a78

particular electrode independently of when it was produced (Bouchard et al., 2013). In order79

to learn efficiently such regularities, the network applies the same temporally brief filter80

(depicted with a rectangle across high- waveforms in Fig. 1) at regular intervals (“strides”)81

along the entire input sequence. Setting the stride greater than one sample effectively82

downsamples the resulting output sequence. Our network learns a set of such filters, yielding83

a set of filtered sequences effectively downsampled to 16 Hz.84

2. Encoder recurrent neural network (RNN): The downsampled sequences are consumed seriatim85

by an RNN. That is, at each time step, the input to the encoder RNN consists of the current86

sample of each of the downsampled sequences, as well as its own previous state. The final87

hidden state (yellow bars in Fig. 1) then provides a single, high-dimensional encoding of the88
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Figure 1. The decoding pipeline. Each participant read sentences from one of two data sets

(MOCHA-TIMIT, picture descriptions) while neural signals were recorded with an ECoG array

(120–250 electrodes) covering peri-Sylvian cortices. The analytic amplitudes of the high- signals
(70–150 Hz) were extracted at about 200 Hz, clipped to the length of the spoken sentences, and

supplied as input to an artificial neural network. The early stages of the network learn temporal

convolutional filters that, additionally, effectively downsample these signals. Each filter maps data

from twelve-sample-wide windows across all electrodes (e.g., the green window shown on the

example high- signals in red) to single samples of a feature sequence (highlighted in the green
square on the blue feature sequences); then slides by twelve input samples to produce the next

sample of the feature sequence; and so on. One hundred feature sequences are produced in this

way, and then passed to the encoder RNN, which learns to summarize them in a single hidden state.
The encoder RNN is also trained to predict the MFCCs of the speech audio signal that temporally

coincide with the ECoG data, although these are not used during testing (see text for details). The

final encoder hidden state initializes the decoder RNN, which learns to predict the next word in the
sequence, given the previous word and its own current state. During testing, the previous predicted
word is used instead.

entire sequence, independent of its length. In order to guide the encoder toward useful89

solutions during training, we also require it to predict, at each time step, a representation90

of the speech audio signal, the sequence of Mel-frequency cepstral coefficients (MFCCs; see91

Methods).92

3. Decoder RNN: Finally, the high-dimensional state must be transformed back into another93

sequence, this time of words. A second RNN is therefore initialized at this state, and then94

trained to emit at each time step either a word or the end-of-sequence token—at which point95

decoding is terminated. At each step in the output sequence, the decoder takes as input, in96

addition to its own previous hidden state, either the preceding word in the actual sentence97

uttered by the participant (during the model-training stage), or its own predicted word at the98

preceding step (during the testing stage). The use of words for targets stands in contrast to99

previous attempts at speech decoding, which target phonemes (Brumberg et al., 2009, 2011;100

Pei et al., 2011; Herff et al., 2015;Mugler et al., 2018; Stavisky et al., 2018).101

The entire network is simultaneously trained to make the encoder emit values close to the102

target MFCCs, and the decoder assign high probability to each target word. Note that the MFCC-103

targeting provides an “auxiliary loss,” a form of multi-task learning (Caruana, 1997; Szegedy et al.,104

2015): Its purpose is merely to guide the network toward good solutions to the word-sequence105

decoding problem; during testing, the MFCC predictions are simply discarded, and decoding is106

based entirely on the decoder RNN’s output. All training proceeds by stochastic gradient descent107

via backpropagation (Rumelhart et al., 1986), with dropout (Srivastava et al., 2014) applied to all108

layers. (A more mathematical treatment of the decoder appears in theMethods.)109
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Decoding Performance110

Here and throughout, we quantify peformance with the average (across all tested sentences) word111

error rate (WER), i.e., the minimum number of deletions, insertions, and substitutions required to112

transform the predicted sentence into the true sentence, normalized by the length of the latter.113

Thus the WER for perfect decoding is 0%, and for erroneous decoding is technically unbounded,114

although in fact can be capped at 100% simply by predicting empty sentences. For reference, in115

speech transcription, word error rates of 5% are professional-level (Xiong et al., 2017), and 20-25%116

is the outer bound of acceptable performance (Munteanu et al., 2006). It is also the level at which117

voice-recognition technology was widely adopted, albeit on much larger vocabularies (Schalkwyk118

et al., 2010)119

We begin by considering the performance of the encoder-decoder framework for one example120

participant speaking the 50 sentences of MOCHA-1 (50 sentences, about 250 unique words), Fig. 2A.121

The WER for the participant shown in Fig. 2A is approximately 7%. The previous state-of-the-art WER122

for speech decoding is 60%, and operated with a smaller (100-word) vocabulary (Herff et al., 2015).123

Since all training and testing sentences belong to the same set of 50, it is also possible to124

compare performance against a sentence classifier (as opposed to word-by-word decoder). Here125

we compare against a state-of-the-art phoneme-based classifier for speech production (Moses126

et al., in press). Briefly, each of the 50 MOCHA-1 sentences was assigned its own hidden Markov127

model (HMM), whose emissions are neural activity and whose hidden state can transition only128

through the phonemes of that sentence (including self transitions). Test sequences of ECoG data129

were classified by choosing the HMM—and corresponding MOCHA-1 sentence—whose most-likely130

phoneme sequence (Viterbi path) had the highest probability across all 50 HMMs. See theMethods131

for details. The WER (Fig. 2A, “phoneme-based HMM”) for this model, approximately 37%, is more132

than five times that of the encoder-decoder network.133

What accounts for the superior performance of the encoder-decoder network? To quantify134

the contributions of its various elements, we systematically remove or cripple them, and retrain135

networks from scratch. The second bar shows performance when MFCCs are not targeted during136

training. Thus, where speech audio is not available, as may well be the case for a candidate for137

a speech prosthesis, error rate is more than 100% greater—although again within the usable138

range. The third bar shows performance on data that have been spatially downsampled in order139

to simulate lower-density ECoG grids. Specifically, we simply discarded every other channel along140

both dimensions of the grid, leaving just one quarter of the channels, i.e. nominally 64 instead141

of 256. Performance is similar to the model trained without speech-audio targeting, but notably142

superior to previous attempts at speech decoding and still within the usable range, showing the143

importance of the algorithm in addition to high-density grids. Next, we consider a network whose144

input layer is fully connected, rather than convolutional (fourth bar). Word error rates quadruple.145

Note that the temporal convolution in our model also effectively downsamples the signal by a146

factor of twelve (see The Decoding Pipeline above), bringing the length of the average sequence147

seen by the encoder RNN down from about 450 to about 40 samples. And indeed, our exploratory148

analyses showed that some of the performance lost by using fully connected input layers can be149

recovered simply by downsampling the high- activity before passing it to them. Thus the decrease150

in performance due to removing temporal convolution may be explained in part by the difficulty151

encoder-decoder networks have with long input sequences (Cho et al., 2014a).152

Recall that the endpoints of each ECoG sequence fed to the encoder-decoder were determined153

by the endpoints of the corresponding speech audio signal. Thus it might seem possible for the154

network to have learned merely the (approximate) length of each unique sentence in MOCHA-1,155

and then during testing to be simply classifying them on this basis, the decoder RNN having learned156

to reconstruct individual sentences from an implicit class label. To show that this is not the case, we157

replace each sample of ECoG data with (Gaussian) noise, retrain encoder-decoder networks, and158

re-test. Performance is much worse than that of any of the decoders (WERs of about 86%; “length159
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Figure 2. Word error rates (WERs) of the decoded sentences. (A)WERs for one participant under

the encoder-decoder (first bar), four crippled variants thereof (bars 2-5), and a state-of-the-art

phoneme-based Viterbi decoder (“phoneme-based HMM”). Abbreviations: “no MFCCs”: trained

without requiring the encoder to predict MFCCs; “low density”: trained and tested on simulated

lower-density grid (8-mm rather than 4-mm spacing); “no conv.”: the network’s temporal

convolution layer is replaced with a fully connected layer; “length info. only”: the input ECoG

sequences are replaced with Gaussian noise—but of the correct length. Whiskers indicate standard

errors of the mean WERs across 30 networks trained from scratch and evaluated on randomly

selected held-out blocks (except the Viterbi decoder which did not vary across retrainings and was

therefore simply leave-one-out cross-validated under the ten available blocks). Significance is

indicated by stars (∗= p < 0.05, ∗∗= p < 0.005, ∗∗∗= p < 0.0005). (B) For four different participants,
WER as a function of the number of repeats of the sentence sets used for training, i.e. the number

of training tokens for each sentence type. Results for MOCHA-1 (50 sentence types; see text for

detail) are shown in solid lines (pink, green, brown); for the picture descriptions (“PIC. DSCRP.”; 30

sentence types), in dashed lines (blue, brown). Note that participant D (brown) read from both sets.

The endpoint of the pink curve corresponds to the first bar of (A). Whiskers indicate standard

errors of the mean WERs (vertical) and mean number of repeats (horizontal) across ten networks

trained from scratch and evaluated on randomly selected held-out blocks. (The number of repeats

varies because data were divided on the basis of blocks, which vary slightly in length.)

info. only” bar in Fig. 2A).160

Next we consider how many data are required to achieve high performance. Fig. 2B shows WER161

for all four participants as a function of the number of repeats of the training set (solid lines: MOCHA-162

1/50 sentences; dashed lines: picture descriptions/30 sentences) used as training data for the neural163

networks. We note that for no participant did the total amount of training data exceed 40 minutes164

in total length. When at least 15 repeats were available for training, WERs could be driven below165

20%, the outer bound of acceptable speech transcription, although in the best case (participant166

B/pink) only 5 repeats were required. On two participants (participant B/pink, participant D/brown),167

training on the full training set yielded WERs of about 7%, which is approximately the performance168

of professional transcribers for spoken speech (Xiong et al., 2017).169

Transfer Learning170

In Fig. 2B we included two participants with few training repeats of the MOCHA sentences (par-171

ticipant A/green, participant D/brown) and, consequently, poor decoding performance. Here we172

explore how performance for these participants can be improved with transfer learning (Pratt et al.,173

1991; Caruana, 1997), that is, by training the network on a related task, either in parallel with or174
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Figure 3. Word error rates (WERs) of the decoded MOCHA-1 sentences for encoder-decoder

models trainer with transfer learning. Each subfigure corresponds to a subject (color code as in Fig.
2). The four bars in each subfigure show WER without transfer learning (“encoder-decoder,” as in

the final points in Fig. 2B), with cross-subject transfer learning (“+subject TL”), with training on

sentences outside the test set (“+task TL”), and with both forms of transfer learning (“+dual TL”). (A)

Participant A, with pretraining on participant B/pink (second and fourth bars). (B) Participant B,

with pretraining on participant A/green (second and fourth bars). (C) Participant D, with pretraining

on participant B/pink (second and fourth bars). Significance is indicated by stars (∗= p < 0.05,
∗∗= p < 0.005, ∗∗∗= p < 0.0005, n.s.= not significant).

before training on the decoding task at hand, namely the MOCHA-1 sentence set.175

We begin with participant A, who spoke only about four minutes of the MOCHA-1 data set (i.e.,176

two passes through all 50 sentences, not counting the held-out block on which performance was177

evaluated). The first bar of Fig. 3A (“encoder-decoder”) shows WER for encoder-decoder networks178

trained on the two available blocks of MOCHA-1 (corresponding to the final point in the green line179

in Fig. 2B), which is about 48%. Next we consider performance when networks are first pre-trained180

(see Methods for details) on the more plentiful data for participant B (ten repeats of MOCHA-181

1). Indeed, this transfer-learning procedure decreases WER by about 15% (from the first to the182

second bar, “subject TL,” of Fig. 3A; the improvement is significant under a Wilcox signed-rank test,183

Holm-Bonferroni corrected for multiple comparisons, with p < 0.001).184

We have so far excluded blocks of MOCHA-TIMIT beyond the first 50 (MOCHA-1), since we185

were unable to collect a sufficient number of repeats for training and testing. However, the data186

from these excluded blocks may nevertheless provide sub-sentence information that is useful for187

decoding MOCHA-1, in particular word-level labels as well perhaps as information about lower-level188

features in the ECoG data. To test this hypothesis, we extend the training set to include also189

the rest of the MOCHA sentences spoken by participant A—namely, two repeats of MOCHA-2190

through MOCHA-9, which together comprise 410 unique sentences (disjoint from MOCHA-1); train191

from scratch on this complete set of MOCHA-TIMIT; and test again on MOCHA-1. This cross-task192

training decreases WER by 22% over the baseline (from the first to the third bar, “task TL,” of Fig.193

3A; p ≪ 0.001). This result is particularly important because it shows that the encoder-decoder is194

not merely classifying sentences (in the encoder) and then reconstructing them (in the decoder),195

without learning their constituent parts (words), in which case the decoding scheme would not196

generalize well. Instead, the network is evidently learning sub-sentence information.197

Finally, we consider a combined form of transfer learning, in which encoder-decoder networks198

are pre-trained on all MOCHA-TIMIT data for participant B (an additional single set of MOCHA-2199

through MOCHA-9); then trained on all MOCHA-TIMIT data for participant A; and then tested as200

usual on a held-out block of MOCHA-1 for participant A. This “dual transfer learning” decreases WER201

an additional 21% (Fig. 3A, third and fourth bars, p ≪ 0.001), or a full 39% over baseline performance.202
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Although participant B has less room for improvement, we consider whether it is nevertheless203

possible to decrease WER with transfer learning (Fig. 3B). Cross-subject (from participant A) transfer204

learning alone (“subject TL”) does not improve performance, probably because of how few blocks205

it adds to the training set (just three, as opposed to the ten that are added by transfer in the206

reverse direction). The improvement under cross-task transfer learning (“task TL”) is not significant,207

again presumably because it increases the number of training blocks only by a factor of two, as208

opposed to the factor of almost ten for participant A (Fig. 3A). Used together, however, cross-task209

and cross-subject transfer reduce WER by 46% over baseline (first and fourth bars; p = 0.03 after210

correcting for multiple comparisons)—indeed, down to about 3%.211

For the participant with the worst performance on the MOCHA-TIMIT data, participant D (see212

again Fig. 3C, solid brown line), adding the rest of the MOCHA sentences to the training set does not213

improve results, perhaps unsurprisingly (Fig. 3C, “task TL”). However, cross-subject transfer learning214

(from participant B into participant D) again significantly improves decoding (p < 0.001). Finally,215

for the two participants reading picture descriptions, subject transfer learning does not improve216

results.217

Anatomical Contributions218

To determine what areas of the cortex contribute to decoding in the trained models, we compute219

the derivative of the loss function with respect to the electrode activities across time. These values220

measure how the loss function would be changed by small changes to the electrode activities, and221

therefore the relative importance of each electrode. (A similar technique is used to visualize the222

regions of images contributing to object identification by convolutional neural networks (Simonyan223

et al., 2013).) Under the assumption that positive and negative contributions to the gradient are224

equally meaningful, we compute their norm (rather than average) across time and examples,225

yielding a single (positive) number for each electrode. See theMethods for more details.226

Fig. 4 shows, for each of the four participants, the distribution of these contributions to de-227

coding within each anatomical area. (For projections onto the cortical surface, see Fig. S1 in the228

Supplementary Material.) In all subjects with left-hemisphere coverage (B/pink, C/blue, D/brown),229

strong contributions are made by ventral sensorimotor cortex (vSMC), as expected from the cortical230

area most strongly associated with speech production (Conant et al., 2018). However, there is het-231

erogeneity across participants, some of which can perhaps be explained by differing grid coverage.232

For participant D, who had reduced motor coverage due to malfunctioning electrodes (along the233

missing strips seen in Fig. S1), decoding relies heavily on superior temporal areas, presumably234

decoding auditory feedback, either actual or anticipated. In the single patient with right-hemisphere235

coverage (A/green), the inferior frontal gyrus, in particular the pars triangularis, contributed dispro-236

portionately to decoding. (This participant, like the others, was determined to be left-hemisphere237

language-dominant, so these highly contributing electrodes cover the non-dominant homologue238

of Broca’s area.) Somewhat surprisingly, in the patient for whom the best decoding results were239

obtained, B/pink, the supramarginal gyrus of posterior parietal cortex makes a large and consistent240

contribution.241

Discussion242

We have shown that spoken speech can be decoded reliably from ECoG data, with WERs as low as243

3% on data sets with 250-word vocabularies. But there are several provisos. First, the speech to244

be decoded was limited to 30-50 sentences. The decoder learns the structure of the sentences245

and uses it to improve its predictions. This can be seen in the errors the decoder makes, which246

frequently include pieces or even the entirety of other valid sentences from the training set (see247

Table 1). Although we should like the decoder to learn and to exploit the regularities of the language,248

it remains to show how many data would be required to expand from our tiny languages to a more249

general form of English.250
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Figure 4. The contributions of each anatomical area to decoding, as measured by the gradient of

the loss function with respect to the input data (see main text for details). The contributions are

broken down by participant, with the same color scheme as throughout (cf. Fig. 2). Each shaded

area represents a kernel density estimate of the distribution of contributions of electrodes in a

particular anatomical area; black dots indicate the raw contributions. The scale and “zero” of these

contributions were assumed to be incomparable across participants and therefore all data were

rescaled to the same interval for each subject (smallest contribution at left, largest contribution at

right). Missing densities (e.g., temporal areas in the participant C/blue) correspond to areas with no

grid coverage. IFG: inferior frontal gyrus; vSMC: ventral sensorimotor cortex.

On the other hand, the network is not merely classifying sentences, since performance is251

improved by augmenting the training set even with sentences not contained in the testing set252

(Fig. 3A). This result is critical: it implies that the network has learned to identify words, not just253

sentences, from ECoG data, and therefore that generalization to decoding of novel sentences is254

possible. Indeed, where data are plentiful, encoder-decoder models have been shown to learn255

very general models of English (Bahdanau et al., 2014). And, as we have seen, the number of data256

required can be reduced by pre-training the network on other participants—even when their ECoG257

arrays are implanted in different hemispheres (Fig. 3, Fig. S1). In principle, transfer learning could258

also be used to acquire a general language model without any neural data at all, by pre-training an259

encoder-decoder network on a task of translation to, or autoencoding of, the target language (e.g.,260

English)—and then discarding the encoder.261

We attribute the success of this decoder to three major factors. First, recurrent neural networks262

with long short-term memory are known to provide state-of-the-art information extraction from263

complex sequences, and the encoder-decoder framework in particular has been shown to work264

well for machine translation, a task analogous to speech decoding. Furthermore, the network is265

trained end-to-end, obviating the need to hand-engineer speech-related neural features about266

which our knowledge is quite limited. This allows the decoder to be agnostic even about which267

cortical regions might contribute to speech decoding.268

Second, the most basic labeled element in our approach is the word, rather than the phoneme269

as in previous approaches. Here the trade-off is between coverage and distinguishability: Far fewer270

phonemes than words are required to cover the space of English speech, but individual phonemes271

are shorter, and therefore less distinguishable from each other, than words. In fact, the production272

of any particular phoneme in continuous speech is strongly influenced by the phonemes preceding273

it (“coarticulation”), which decreases their distinguishability still further (or, equivalently, reduces274

coverage by requiring parsing in terms of biphones, triphones, or even quinphones). At the other275

extreme, English sentences are even more distinguishable than words, but their coverage is much276

worse. Of course, in this study we have limited the language to just a few hundred words, artificially277

reducing the cost of poor coverage. But our results suggest that expanding the amount of data278

beyond 30 minutes will allow for an expansion in vocabulary and flexibility of sentence structure.279

We also note that even a few hundred words would be quite useful to a patient otherwise unable280

to speak at all. Finally, the use of words rather than phonemes may also make possible access to281

semantic and lexical representations in the cortex.282

Third and finally, decoding was improved by modifying the basic encoder-decoder architecture283
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ID Reference Prediction

A those musicians harmonize marvellously ⟨EOS⟩ the spinach was a famous singer ⟨EOS⟩

the museum hires musicians every evening ⟨EOS⟩ the museum hires musicians every expensive morning ⟨EOS⟩

a roll of wire lay near the wall ⟨EOS⟩ a big felt hung to it were broken ⟨EOS⟩

those thieves stole thirty jewels ⟨EOS⟩ which theatre shows mother goose ⟨EOS⟩

B she wore warm fleecy woolen overalls ⟨EOS⟩ the oasis was a mirage ⟨EOS⟩

tina turner is a pop singer ⟨EOS⟩ did turner is a pop singer ⟨EOS⟩

he will allow a rare lie ⟨EOS⟩ where were you while we were away ⟨EOS⟩

a roll of wire lay near the wall will robin wear a yellow lily ⟨EOS⟩

C several adults and kids are in the room ⟨EOS⟩ several adults the kids was eaten by ⟨EOS⟩

part of the cake was eaten by the dog ⟨EOS⟩ part of the cake was the cookie ⟨EOS⟩

how did the man get stuck in the tree ⟨EOS⟩ bushes are outside the window ⟨EOS⟩

the woman is holding a broom ⟨EOS⟩ the little is giggling giggling ⟨EOS⟩

D there is chaos in the kitchen ⟨EOS⟩ there is is helping him steal a cookie ⟨EOS⟩

if only there if only the mother ⟨OOV⟩ pay if only the boy ⟨OOV⟩ pay pay

attention to her children ⟨EOS⟩ attention to her children ⟨EOS⟩

a little bird is watching the commotion ⟨EOS⟩ the little bird is watching watching the commotion ⟨EOS⟩

the ladder was used to rescue the cat and the man ⟨EOS⟩ which ladder will be used to rescue the cat and the man ⟨EOS⟩

Table 1. Example incorrectly decoded sentences (“Prediction,” right) and the actual sentence

spoken (“Reference,” left) for participants A–D. ID = participant ID, ⟨EOS⟩ = the end-of-sequence

token, ⟨OOV⟩ = out-of-vocabulary token

(Sutskever et al., 2014) in two ways: adding an auxiliary penalty to the encoder that obliges the284

middle layer of the RNN to predict the MFCCs of the speech audio; and replacing the fully-connected285

feedforward layers with temporal-convolution layers, which also effectively downsamples the286

incoming ECoG signals by a factor of about ten. In fact, very recent work in machine learning has287

shown that RNNs can sometimes be replaced entirely with temporal-convolution networks, with288

superior results (Bai et al., 2018)—a promising avenue for future improvements to the decoder289

presented here.290

We have emphasized the practical virtue of neural networks learning their own features from291

the data, but it comes at a scientific price: the learned features—in this case, neural activity in292

different brain regions—can be difficult to characterize. This is an open research area in machine293

learning. What we can say (cf. Fig. 4) is that all anatomical areas covered by the ECoG grid appear to294

contribute to decoding, with a generally large contribution from the ventral sensorimotor cortex295

(vSMC) (Conant et al., 2018). Nevertheless, there are important variations by subject, with right296

pars triangularis, the supramarginal gyrus, and the superior temporal gyrus contributing strongly297

in, respectively, participant A/green, participant B/pink, and participant D/brown. We also note that298

the contributions of vSMC are disproportionately from putatively sensor, i.e. postcentral, areas (Fig.299

S1). It is possible that this reflects our choice to clip the high- data used for training at precisely300

the sentence boundaries, rather than padding the onsets: Truncating the speech-onset commands301

may have reduced the salience of motor features relative to their sensory consequences (including302

efference copy and predicted tactile and proprioceptive responses (Tian and Poeppel, 2010)).303

To investigate the kinds of features being used, one can examine the patterns of errors produced.304

However, these are not always indicative of the feature space used by the network, whose errors305

often involve substitution of phrases or even whole sentences from other sentences of the training306

set (a strong bias that presumably improves decoding performance overall by guiding decoded307

output toward “legitimate” sentences of the limited language). Nevertheless, some examples are308

suggestive. There appear to be phonemic errors (e.g., in Table 1, “robin wear” for “roll of wire,”309

“theatre” for “thieves,” “did” for “tina”), as expected, but also semantic errors—for example, the310

remarkable series of errors for “those musicians harmonize marvellously,” by different models311

trained on the data from participant A, in terms of various semantically related but lexically distinct312

sentences (“the spinach was a famous singer,” “tina turner those musicians harmonize singer,“313

“does turner ⟨OOV⟩ increases”). Since the focus of the present work was decoding quality, we do not314

pursue questions of neural features any further here. But these examples nevertheless illustrate315
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the utility of powerful decoders in revealing such features, and we consider a more thorough316

investigation to be the most pressing future work.317

Finally, we consider the use of the encoder-decoder framework in the context of a brain-machine318

interface, in particular as a speech prosthesis. The decoding stage of the network already works319

in close to real time. Furthermore, in a chronically implanted participant, the amount of available320

training data will be orders of magnitude greater than the half hour or so of speech used in321

this study, which suggests that the vocabulary and flexibility of the language might be greatly322

expandable. On the other hand, MFCCs may not be available—the participant may have already lost323

the ability to speak. This will degrade performance, but not insuperably (Fig. 2A). Indeed, without324

MFCCs, the only data required beyond the electrocorticogram and the text of the target sentences is325

their start and end times—a distinct advantage over decoders that rely on phoneme transcription. A326

more difficult issue is likely to be the changes in cortical representation induced by the impairment327

or by post-impairment plasticity. Here again the fact that the algorithm learns its own features—and328

indeed, learns to use brain areas beyond primary motor and superior temporal areas—make it a329

promising candidate.330

Methods331

The participants in this study were undergoing treatment for epilepsy at the UCSF Medical Center.332

Electrocorticograpic (ECoG) arrays were surgically implanted on each patient’s cortical surface in333

order to localize the foci of their seizures. Prior to surgery, the patients gave written informed334

consent to participate in this study, which was executed according to protocol approved by the335

UCSF Committee on Human Research. All four participants of this study were female, right-handed,336

and determined to be left-hemisphere language-dominant.337

Task338

pic. # sentence

1 part of the cake was eaten by the dog

several adults and kids are in the room

the little boy is crying because the dog ate his cake

the mother is angry at her pet dog

under the sofa is a hiding dog

the woman is holding a broom

there is a partially eaten cake on the large table

four candles are lit on the cake

the guests arrived with presents

the child is turning four years old

2 while falling the boy grabs a cookie

the boy is reaching for the cookie jar

there is chaos in the kitchen

water is overflowing from the sink

if only the mother could pay attention to her children

the stool is tipping over

the little girl is giggling

his sister is helping him steal a cookie

bushes are outside the window

i think their water bill will be high

3 the firemen are coming to the rescue

the girl was riding a tricycle

which ladder will be used to rescue the cat and the man

the cat does not want to come off the tree branch

in the tree there is a cat, a man, and a bird

a dog is barking at the man in the tree

a little bird is watching the commotion

worried by the dog the man considers jumping

the cat doesnt seem interested in coming down

how did the men get stuck in the tree

Table 2. The picture descriptions read by participants C

and D. N.B. that patients did not view the pictures.

Participants read sentences aloud,339

one at a time. Each sentence was340

presented briefly on a computer341

screen for recital, followed by a342

few seconds of rest (blank display).343

Two participants (A and B) read344

from the 460-sentence set known345

as MOCHA-TIMIT (Wrench, 2019).346

These sentences were designed to347

cover essentially all the forms of348

coarticulation (connected speech349

processes) that occur in English,350

but are otherwise unremarkable351

specimens of the language, averag-352

ing 9±2.3 words in length, yielding353

a total vocabulary of about 1800354

unique words. Sentences were pre-355

sented in blocks of 50 (or 60 for the356

ninth set), within which the order357

of presentation was random (with-358

out replacement). The other two359

participants (C and D) read from360

a set of 30 sentences describing361

three (unseen) cartoon drawings,362

running 6.4±2.3 words on average,363

and yielding a total vocabulary of364
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about 125 words; see Table 2. A365

typical block of these “picture de-366

scriptions” consisted of either all 30 sentences or a subset of just 10 (describing one picture).367

The reading of these blocks was distributed across several days. The number of passes through368

the entire set depended on available time and varied by patient. The breakdown is summarized in369

Table 3.370

participant A B C D

data set MT-1 MT-* MT-1 MT-* PD MT-1 MT-* PD

training sentence types 50 460 50 460 30 50 460 30

tokens 100 924 450 860 559 100 909 740

word types 239 1787 240 1787 122 238 1745 123

tokens 610 6897 2740 5890 5453 607 6729 7292

validation sentence types 50 50 50 50 30 50 50 30

tokens 50 50 50 50 60 50 50 82

word types 238 238 239 239 122 230 230 122

tokens 304 304 303 303 592 302 302 809

Table 3. Data sets for training and testing, broken down by participant. MT-1 = MOCHA-TIMIT, first

set of 50 sentences; MT-* = MOCHA-TIMIT, full set of 460 sentences for training, first set of 50 for

testing; PD = picture descriptions. The numbers of tokens are given for a (typical) fold of cross

validation but in practice could vary slightly because the cross-validation procedure partitioned the

data by blocks rather than sentences. The numbers of sentence types are nominal, i.e. were not

increased to reflect (rare) participant misreadings.

Data collection and pre-processing371

Neural Data372

The recording and pre-processing procedures have been described in detail elsewhere (Dichter373

et al., 2018), but we repeat them briefly here. Participants were implanted with 4-mm-pitch ECoG374

arrays in locations chosen for clinical purposes. Three participants (A, B, D) were implanted with375

256-channel grids over peri-Sylvian cortices; the remaining participant was implanted with a 128-376

channel grid located dorsal to the Sylvian fissure, primarily over premotor, motor, and primary377

sensory cortices (see Fig. S1). Grids were implanted over the left hemisphere of all patients except378

participant A. Analog ECoG signals were amplified and then digitized at about 3 kHz. These digital379

signals were then anti-aliased (low-pass filtered at 1.5 kHz), notch filtered to remove line noise,380

and then anti-aliased and downsampled to about 400 Hz. Next, the mean (across channels) signal381

was removed from all channels (“common-average referencing”). Then the analytic amplitudes382

(at each channel) were extracted in each of eight adjacent frequency bands between 70 and 150383

Hz, averaged across bands, and downsampled to about 200 Hz. (Two participants’ data were384

downsampled by an integer divisor to 190 Hz, whereas the other two sets were re-sampled by a385

non-integer divisor to precisely 200 Hz.) Finally, these analytic amplitudes were z-scored on the386

basis of a 30-second sliding window, yielding the “high-” signals dicussed in the main text.387

Speech Transcriptions388

Speech was transcribed at the word level by hand or, where aided by speech-to-text software, with389

manual correction. Participants did not always read the sentences correctly, so the actual spoken390

vocabulary was generally a superset of the nominal vocabularies of the MOCHA-TIMIT or picture-391

description sentence sets, including non-words (false starts, filled pauses, mispronunciations, and392

the like). Nevertheless, the decoder represents words with a “one-hot” encoding, and consequently393

requires a fixed-size vocabulary. In order to allow the decoder to generalize to new participants394

engaged in the same task (viz., producing sentences from either MOCHA-TIMIT or the picture395

descriptions), all words not in the nominal sets (less than 1% of the total) were replaced with a396

single out-of-vocabulary token prior to their use as training data.397
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Sentence onset and offset times were manually extracted and used to clip the neural data into398

sentence-length sequences.399

Speech Audio Signal400

The speech audio of the participants was recorded simultaneously with the neural data at about 24401

kHz with a dedicated microphone channel, and time aligned.402

Mel-frequency cepstral coefficients (MFCCs) are features commonly extracted from speech audio403

for the purpose of rendering linguistic (phonemic) content more perspicuous. Briefly, the coeffi-404

cients at each “frame” characterize (the logarithm of) the local power spectrum in log-spaced bins, a405

spacing that reflects the frequency discrimination of human hearing. Following typical practice, we406

used the leading 13 coefficients (of the discrete cosine transform), replacing the first of these with407

the log of the total frame energy. We extracted MFCCs in Python with the python_speech_features408

package (Lyons, 2018), using 20-ms sliding frames with a slide of 1∕F
sampling

, where F
sampling

is the409

sampling rate of the high- data (about 200 Hz).410

The Network411

High-Level Description412

The encoder-decoder is an artificial neural network—essentially an extremely complicated, parame-413

terized function that is constructed by composition of simple functions, and “trained” by changing414

those parameters so as incrementally to decrease a penalty on its outputs. In our case, the input,415

outputs, and penalties for a single sentence are:416

• input: the sequence of high- vectors (with the length of each vector the number of recording417

electrodes) recorded during production of the sentence;418

• outputs: the sequence of predicted Mel-frequency cepstral coefficients (MFCCs) extracted419

from the speech audio signal, and the sequence of predicted words;420

• penalties: the deviations of the predicted from the observed sequences of MFCCs and words.421

The deviations are quantified in terms of cross entropy. For each word in the sequence, cross422

entropy is (proportional to) the average number of yes/no questions that would be required to423

“guess” correctly the true word, given the output (predicted probabilities) of the decoder. For each424

element (vector) of the MFCC sequence, which is assumed to be normally distributed, the cross425

entropy is just the mean square error between the observed and predicted vectors (plus a constant426

term). At each step of the training procedure, the cross entropies are computed over a randomly427

chosen subset of all sentences, and the parameters (weights) of the network are changed in the428

direction that decreases these penalties. Note that we do not actually use the predicted MFCCs429

during the testing phase: the point of training the network to predict the speech audio signal is430

simply to guide the network toward solutions to the primary goal, predicting the correct sequence431

of words (Caruana, 1997).432

Mathematical Description433

We now describe and justify this procedure more technically. Notational conventions are standard:434

capital letters for random variables, lowercase for their instantiations, boldface italic font for435

vectors, and italic for scalars. We use angle brackets, ⟨⋅⟩, strictly for sample averages (as opposed to436

expectation values). For empirical probability distributions of data generated by “the world,” we437

reserve p, and for distributions under models, q. The set of all parameters of the model is denoted438

Θ.439

Consider the probabilistic graphical model in Fig. 5A. Some true but unknown relationships440

(denoted by the probability distribution p) obtain between the sequences of spoken words, {W }J0 ,441

corresponding audio waveforms, {A}M0 , and contemporaneous neural activity, {N }K0 (commands to442

the articulators, neurolinguistic representations, efference copy, auditory feedback, etc.).1 The task443

1 Clearly, the number of words (J ) in a given sentence will not be the same as the number (K) of vectors in a given
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A

WA

N ∼ p(n)

WA

Se Sd

p(a,w|n)

q(a,w, sd (se), se(n)|n; Θ)

B

W 0

Sd0SeM

⟨EOS⟩ W 1

Sd1

⋯

⋯

WJ−1

SdJ−1

W J

SdJ

Figure 5. Graphical model for the decoding process. Circles represent random variables; doubled

circles are deterministic functions of their inputs. (A) The true generative process (above) and the

encoder-decoder model (below). The true relationship between neural activity (N ), the
speech-audio signal (A), and word sequences (W ), denoted p(a,w|n), is unknown (although we
have drawn the graph to suggest thatW and A are independent givenN ). However, we can
observe samples from all three variables, which we use to fit the conditional model,

q(a,w, sd(se), se(n)|n; Θ), which is implemented as a neural network. The model separates the
encoder states, Se

, which directly generate the audio sequences, from the decoder states, Sd
,

which generate the word sequences. During training, model parameters Θ are changed so as to
make the model distribution q over A andW look more like the true distribution p. (B) Detail of the
graphical model for the decoder, unrolled in sequence steps. Each decoder state is computed

deterministically from its predecessor and the previously generated word or (in the case of the

zeroth state) the final encoder state and an initialization token, ⟨EOS⟩.

of the network is to predict (provide probability distribution q over) each MFCC and word sequence,444

given just a neural sequence as input. The training procedure thus aims to bring q closer to p, or445

more precisely to minimize the conditional KL divergences,446

D
KL

{

p({a}M0 |{n}K0 )||||q({a}
M
0 |{n}K0 ; Θ)

}

and447

D
KL

{

p({w}J0 |{n}
K
0 )||||q({w}

J
0 |{n}

K
0 ; Θ)

}

,

averaged under the observed data p({n}K0 ), by improving the parameters Θ. This is the standard448

formulation for fitting probabilistic models to data.449

The minimization can equivalently be written in terms of cross entropies (by dropping the450

entropy terms from the KL divergences, since they do not depend on the parameters), which can451

be further simplified by assuming specific forms for the conditional distributions over MFCCs and452

words. In particular, we assume that at each step m in the sequence, the deviations of the observed453

vector of MFCCs, am, from the model predictions, â(s
e
m,Θ), are normally distributed and conditionally454

independent of all other sequence steps:455

q({a}M0 |{n}K0 ; Θ) =
M
∏

m

1
Z
exp

{

−1
2
(

am − â(sem,Θ)
)T (am − â(sem,Θ)

)

}

.

ECoG sequence, or the number (M) in a given MFCC sequence. But neither will K andM be equal, since MFCCs need to be

downsampled relative to the ECoG sequence, due to the decimating effect of the temporal convolution. We discuss this below.

Also, to lighten notation, we do not mark the fact that these integers are themselves random variables.
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(For simplicity we let the covariance matrix be the identity matrix here, but it does not affect the456

minimization.) The prediction â(sem,Θ)—the vector output of the encoder recurrent neural network457

(RNN) at step m—depends on the entire sequence of neural data only by way of the encoder state458

at step m:459

sem = f ({n}
K
0 ,Θ),

where the function f is given by the encoder RNN. (In the networks discussed in the main text, f is460

a three-layer bidirectional network of LSTM cells; see the discussion of the architecture below.) The461

cross entropy for the MFCC sequences then becomes462

Hp({a}M0 ,{n}K0 )
[

q({a}M0 |{n}K0 ; Θ)
]

= −
⟨

log q({a}M0 |{n}K0 ; Θ)
⟩

p({a}M0 ,{n}K0 )

=

⟨

M
∑

m

13
∑

i

1
2

(

am,i − âm,i(s
e
m,Θ)

)2
⟩

p({a}M0 ,{n}K0 )

+ C,
(1)

where the inner sum is over all 13 coefficients used at each step.463

Similarly, at each step of the word sequence, we intepret the (vector) output of the decoder RNN,464

ŵ, as a set of categorical probabilities over the words of the vocabulary:465

q({w}J0 |{n}
K
0 ; Θ) =

J
∏

j=0
q(wj|{w}

j−1
0 , {n}K0 ; Θ)

=
J
∏

j=0
wj
Tŵ(sdj ,Θ).

The first equality follows from the chain rule of probability, but the second follows only from the466

graph in Fig. 5B, and embodies the hypothesis that the decoder state, sdj , can provide a compact467

summary of the preceding words in the sequence (i.e., up through step j − 1). The second line is468

consistent with the first because the decoder state sdj depends on only preceding words and the469

sequence of neural data, via the recursion470

sdj = f (wj−1, s
d
j−1,Θ), w−1 ∶= ⟨EOS⟩, sd−1 ∶= seM ({n}

K
0 ),

where the function f is given by the decoder RNN (see again Fig. 5). Note that the dependence on471

the neural data enters in only through the final encoder state, seM . This embodies the hypothesis472

that all the information about the word sequence that can be extracted from the neural sequence473

can be summarized in a single, fixed-length vector. In any case, the resulting cross entropy for the474

word sequences is therefore475

Hp({w}J0 ,{n}
K
0 )
[

q({w}J0 |{n}
K
0 ; Θ)

]

= −
⟨

log q({w}J0 |{n}
K
0 ; Θ)

⟩

p({w}J0 ,{n}
K
0 )

= −

⟨

J
∑

j=0
log

{

wj
Tŵ(sdj ,Θ)

}

⟩

p({w}J0 ,{n}
K
0 )

.
(2)

Note that, since the observed words are one-hot, the inner product in the last line simply extracts476

from the vector of predicted probabilities, ŵ, the predicted probability of the observed word (so477

that the predicted probabilities of the other words have no effect on the cost function).478

The relative importance of the cross entropies in Eqs. 1 and 2 is not obvious a priori: ultimately,479

we require only that the model produce (good) word sequences—no MFCCs need be generated—480

but MFCC-targeting nevertheless guides the network toward better solutions (especially early in481

training). In practice, then, we set the loss function equal to a weighted sum of the penalties above482

(dropping the constants), with the weight, �, determined empirically (see below):483

l(Θ) =

⟨

�
M
∑

m

13
∑

i

1
2

(

am,i − âm,i(s
e
m,Θ)

)2
−

J
∑

j=0
log

{

wj
Tŵ(sdj ,Θ)

}

⟩

p({a}M0 ,{w}J0 ,{n}
K
0 )

. (3)
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As usual, we minimize this loss by stochastic gradient descent. That is, we evaluate the gradient484

(with respect to Θ) of the function in brackets not under the total data distribution p, but rather485

under a random subset of these data; take a step in the direction of this gradient; and then repeat486

the process until approximate convergence.487

Implementation: the Data488

A single training datum consists of the triple
(

{a}M0 , {w}
J
0 , {n}

K
0

)

. The neural sequence {n}K0 consists489

of vectors of high- activity from precisely (see Data collection and pre-processing) that period490

of time during which the participant produced the sequences of words and MFCCs. The length491

K of this sequence thus depends on this time but also on the sampling rate (approximately 200492

Hz). Before entering the neural network, this sequence is reversed in time, in order to reduce the493

number of computations separating the initial element of the input sequence from the (presumably494

most correlated) initial element of the output (word) sequence (Sutskever et al., 2014). The length495

of each vector in this sequence is equal to the number of (functioning) ECoG channels.496

Similarly, the length J of the word sequence is simply the number of words in the sentence,497

plus one extra terminating token, ⟨EOS⟩. A single element of this sequence, wj , i.e. a “word,” is498

likewise a vector, being a one-hot encoding, with length equal to the vocabulary size (about 1800 for499

MOCHA-TIMIT and 125 for the picture descriptions; see Table 3). This includes an out-of-vocabulary500

token, ⟨OOV⟩, to cover words not in the actual sentence sets but erroneously produced by the501

participants (in practice less than one percent of the data).502

The length M of the MFCC sequences would seem, at first blush, to be perforce identical to503

K , the length of the neural sequences, since the encoder neural network maps each element of504

the input sequence to an output. However, the two layers of temporal convolution that precede505

the encoder RNN effectively decimate the neural sequences by a factor of twelve (see next section506

for details). Since the input sequences are initially sampled at about 200 Hz, data thus enters the507

encoder RNN at about 16 Hz. To achieve the same sampling rate for the audio signal, the MFCC508

sequences were simply decimated by a factor of twelve, starting from the zeroth sequence element.509

In fact, the audio sequences ought to be low-pass filtered first (at about 8 Hz) to prevent aliasing,510

but since the production of high-fidelity MFCCs is not ultimately a desideratum for our network,511

in practice we used the crude appoximation of simply discarding samples. The length of a single512

element of the MFCC sequence is 13, corresponding to the total frame energy (first element) and513

MFCCs 2-13 (see Speech audio signal above).514

The sequences in any given triple
(

{a}M0 , {w}
J
0 , {n}

K
0

)

will not in general have the same lengths as515

the sequences of any other triple, since speaking time and the number of words per sentence vary516

by example. The network was nevertheless trained in mini-batches, simply by zero-padding the data517

out to the longest sequence in each mini-batch, and making sure to read out RNN outputs at each518

sequence’s true, rather than nominal, length (see next section). Clearly, training will be inefficient if519

mini-batches are dominated by padding, which can happen if (e.g.) one input sequence is much520

longer than the others. To alleviate this, one can try to group sentences into mini-batches with521

similar lengths, but we did not attempt such expedients. Instead, we simply enforced a maximum522

sentence length of 6.25 seconds, which in practice truncated less than one percent of examples.523

Mini-batches were then created simply by randomizing, at the beginning of each epoch, the order524

of the sequences, and then dividing the result into consecutive batches of 256 examples.525

Implementation: Architecture.526

The basic architecture of the network, shown in Fig. 6, was modeled after the encoder-decoder527

neural network for machine translation of Sutskever et al. (2014), although there are significant528

modifications.529

Each sequence of ECoG data (orange boxes, bottom left) enters the network through a layer of530

temporal convolution (green boxes). The stride length (i.e., number of samples of temporal shift) of531

the convolutional filters sets the effective decimation factor—in this case, twelve. In this network532
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ENCODER DECODER

⟨MFCCM⟩ ⟨MFCCM−1⟩

...

...

...

...

...

...

...

⟨MFCC2⟩ ⟨MFCC1⟩

⟨EOS⟩

⟨OUT1⟩

⟨OUT1⟩

⟨OUT2⟩

...

...

...

...

...

⟨OUTJ−1⟩

⟨OUTJ ⟩

⟨OUTJ ⟩

⟨EOS⟩

temporal convolution

fully connected layer

layer of LSTM cells

temporally reversed high-

Figure 6. Network architecture. The encoder and decoder are shown unrolled in time—or, more

precisely, sequence elements (columns). Thus all layers (boxes) within the same row of the encoder

or of the decoder have the same incoming and outgoing weights. The arrows in both directions

indicate a bidirectional RNN. Although the figure depicts the temporal convolutions as eight

samples wide (due to space constraints), all results are from networks with twelve-sample-wide

convolutions. The end-of-sequence token is denoted ⟨EOS⟩.

the filter width is also fixed to the stride length. This order-of-magnitude downsampling is crucial to533

good performance: without it, the input sequences are too long even for the LSTM cells to follow.534

Since the analytic amplitude does not have much content beyond about 20 Hz, the procedure535

also throws away little information. The convolutional layer consists of 100 filters (“channels”); no536

max-pooling or other nonlinearity was applied to them.537

Output from the convolutional layer at each time step (i.e., a 100-dimensional vector) passes into538

the encoder RNN (gold rectangles), which consists of three layers of bidirectional RNNs. In particular,539

each “layer” consists of an RNN processing the sequence in the forward direction (receiving input540

m − 1 before receiving input m) and an RNN processing the sequence in the backward direction541

(receiving input m before receiving input m − 1). The outputs of these RNNs are concatenated and542

passed as input to the next layer. Each “unit” in a single RNN layer is a cell of long short-term543

memory (LSTM): a complex of simple units that interact multiplicatively, rather than additively,544

allowing the model to learn to gate the flow of information and therefore preserve (and dump)545

information across long time scales (Hochreiter and Schmidhuber, 1997). We used the LSTM design546

of Gers et al. (2000). Since both the forward and backward RNNs have 400 units, the total RNN547

state is an 800-dimensional vector (the state of the LSTM cells in the two directions, concatenated548

together).549

The outputs of the second (middle) layer of the encoder RNN also pass through a fully connected550

output layer (bluish boxes; 225 linear units followed by rectified-linear functions) and thence through551

a “fat” (13 × 225) matrix, yielding the MFCC predictions.552

The decoder RNN (gold rectangles) is initialized with the final state of the final layer of the encoder553

RNN. (In fact, this state is a concatenation of the final state of the forward encoder RNN with the first554

state of the backward encoder RNN, although both correspond to stepM of the input sequence.555

Thus the dimension of the decoder state is 800 = 400 ⋅ 2.) This RNN receives as input the preceding556

word, encoded one-hot and embedded in a 150-dimensional space with a fully connected layer of557

rectified-linear units (bluish boxes below). The decoder RNN is necessarily unidirectional, since it558

cannot be allowed to access future words. The output of the decoder RNN passes through a single559

matrix (bluish boxes) that projects the state into the space of words, with dimensional equal to the560

vocabulary size. For the picture-description task, with its small vocabulary, this dimension is 125.561

For MOCHA-TIMIT, we let the output dimension be 1800 even when training and testing only with562

MOCHA-1, i.e. the first set of 50 sentences, with its much smaller vocabulary (about 250 words).563
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This facilitated comparisons with cross-task training, as in Fig. 3 in the main text.564

The architecture hyperparameters are summarized in Table 4.565

layer type # units connectivity nonlinearity

encoder embedding [(100 × 12)] temporal conv. none

encoder RNN [400, 400, 400] × 2 bidirectional LSTM (Gers et al., 2000)
encoder projection [225, 13] full [ReLU, none]

decoder embedding [150] full ReLU

decoder RNN [800] unidirectional LSTM (Gers et al., 2000)
decoder projection [1808] or [125] full none

Table 4. Architecture hyperparameters. The filter strides in the temporal convolution were set

equal to the filter widths, viz. 3 and 4 in the first and second layer, resp.

Training, Testing, Hyperparameter Optimization, and Cross-Validation566

Training567

The network described in the previous section was implemented in TensorFlow, an open-source568

machine-learning framework with a Python API (Abadi et al., 2016). Gradient descent was per-569

formed with AdaM optimization (Kingma and Ba, 2014). Dropout (Srivastava et al., 2014) was570

applied to all layers, but the network was not regularized in any other way (e.g. weight decay).571

Dropout in the RNN was applied to the non-recurrent connections only (Zaremba et al., 2014).572

Across-participant transfer learning proceeded as follows. First, the network was initialized573

randomly and then “pre-trained” for 200 epochs on one participant. Then the two input convolu-574

tional layers were reset to random initial values, all other weights in the network were “frozen,”575

and the network was trained on the second (target) participant for 60 epochs. That is, the error576

gradient was backpropagated through the entire network but only the convolutional layers were577

updated. Thus, during this stage of training, the convolutional layers are trained to extract, from578

the second participant’s data, features that work well with an encoder-decoder network fit to the579

first participant’s data. Finally, the weights in the encoder-decoder were unfrozen, and the entire580

network “post-trained” for another 540 epochs (for a total of 800 epochs). This allowed the rest of581

the network to accommodate idiosyncracies in the second participant’s data.582

Testing583

To test the network, data are passed through as during training, with one very important, and one584

minor, difference. During both training and testing, the output of the decoder provides a probability585

distribution over word sequences:586

q
(

{w}J0 |{n}
K
0 ; Θ

)

=
J
∏

j=0
wj
Tŵ(sdj (wj−1, s

d
j−1),Θ). (4)

During training, it is necessary to evaluate this distribution only under each observed word sequence,587

{w}J0 . That is, at each step in the sequence, the output of the network is evaluated only at the588

current observed word (wj in the right-hand side of Eq. 4); and likewise the input to the network589

is set equal to a one-hot vector encoding the previous observed word (wj−1 in the right-hand side590

of Eq. 4). During testing, however, one would like to compute the probability distribution over all591

sequences, or at least to find the most probable sequence under this distribution. Evaluating all592

sequences is, however, intractable, because the number of sequences grows exponentially in the593

sequence length. Instead, we employ the usual heuristic to find the most probable sequence: At594

each step, we simply pick the most likely word, and use it as input at the next step (Sutskever et al.,595

2014). This is not guaranteed to find the most probable sequence under the model distribution596

because (e.g.) the first word in this most probable sequence need not be the most probable first597

word. To alleviate this difficulty, it is possible to maintain a “beam” (as opposed to point) of the N598
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most probable sequences, where the widthN of the beam controls the trade-off between optimality599

and tractability—but in our experiments using a beam search did not notably improve performance,600

so we did not use it.601

The minor difference between testing and training is in the set of parameters used. We evaluate602

the network not under the final parameter values, ΘT , but rather under an exponential moving603

average of these parameters, Θ̄T , across update steps t:604

Θ̄t = �Θ̄t−1 + (1 − �)Θt, for t ∈ [0,… , T ],

where the decay rate � is a hyperparameter. This smooths out shocks in the weight changes.605

parameter value

learning rate 0.0005

feed-forward dropout 0.1

RNN dropout 0.5

MFCC-penalty weight, � 1.0

examples/mini-batch 256

EMA decay, � 0.99

# training epochs 800

TL: # pre-training epochs 200

TL: # training epochs 60

TL: # post-training epochs 540

Table 5. Training hyperparameters. RNN =

recurrent neural network, MFCC =

Mel-frequency cepstral coefficients, EMA =

exponential moving average (see text); TL =

transfer learning.

Training and testing hyperparameters and606

their values are listed in Table 5.607

Hyperparameter Optimization and Cross-608

Validation609

All hyperparameters were chosen based on per-610

formance of a single participant (B, pink in the611

main-text figures) on a single validation block. Ini-612

tial choices were made ad hoc by trial and error,613

and then a grid search was performed for the614

dropout fractions, the MFCC-penalty weight (�),615

and the layer sizes. This validation block was not,616

in fact, excluded from the final tests, since it was617

but one tenth of the total test size and therefore618

unlikely to “leak” information from the training619

into the results.620

Results (word error rates) were cross vali-621

dated. For each evaluation, N randomly chosen622

blocks were held out for testing, and a network was trained from scratch on the remaining blocks,623

where N was chosen so as to hold out approximately 10% of the data. Numerical breakdowns are624

given in Table 3.625

Significance Testing626

Recall that each bar in Fig. 2A and Fig. 3 shows the average (and its standard error) word error rate627

(WER) across 30 models trained from scratch and tested on randomly held-out validation blocks.628

This randomization was performed separately for each model, so no two models (bars in the plot)629

to be compared are guaranteed to have precisely the same set of validation blocks. Nevertheless,630

the identity of the validation block does influence the results, so a paired test is expected to reduce631

the variance of differences in WERs. Therefore, in order to employ a paired test, we simply restricted632

our comparison to the subsets (one from each model) of maximal size with matching validation633

blocks. To the WER differences from these validation-block-matched pairs, we applied a (one-sided)634

Wilcoxon signed-rank test, asking whether a particular model or form of transfer learning were635

not superior to its rivals. The resulting p-values were then Holm-Bonferroni corrected for multiple636

comparisons. For example, the encoder-decoder network was compared with five other decoders637

(four variants, plus the phoneme-based HMM), so the p-values reported for Fig. 2A were corrected638

for five comparisons. The transfer-learning results were corrected for fourteen comparisons: the639

twelve comparisons annotated in Fig. 3, plus the two comparisons of WER with and without transfer640

learning for the picture-description data (not shown in the figure but discussed in the main text).641

The Relative Contributions of Electrodes to Decoding642

The contribution of an individual electrode, and therefore local anatomical area, might be estimated643

in multiple ways. Perhaps the most straightforward is simply to train a network with that electrode644
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left out, and measure the increase in word error rate (WER). Unfortunately, that increase will gener-645

ally be small compared to the variation in WER across retrainings due simply to the randomness646

of stochastic gradient descent with random initialization, and therefore hard to detect without647

repeated retrainings—each of which takes upwards of 45 minutes of wall time. Multiplying these 45648

minutes by the number of electrodes (about 250) and again by the number of repeats required to649

detect the WER signal in the noise of retrainings (about 10) yields a prohibitively large amount of650

computation time.651

Alternatively, this electrode-omission procedure could be modified for groups of electrodes,652

each perhaps corresponing to a gross anatomical area. But even setting aside the loss of spatial653

resolution, second-order effects—i.e., interactions between (groups of) electrodes—would be654

ignored. E.g., the electrode-omission procedure would underestimate the contribution of those655

electrodes that contribute significantly to decoding when present, but for which the network can to656

some extent compenstate, when absent, by leaning on other channels.657

Instead, then, we examine the gradient of the loss function, Eq. 3, with respect to the inputs, i.e.,658

the sequences of high- activity. This measures how much small deviations from an input sequence659

at each electrode affect the loss, and is the same quantity proposed by (Simonyan et al., 2013) to660

determine which regions of an image are most useful to its classification by a convolutional neural661

network. In the present case, we should like to know the relative usefulness of electrodes, not for a662

particular sequence of ECoG data, nor for a particular time in the sequences, but for all sequences663

at all moments in time. To remove this “nuisance” variation, we take the norm of the derivatives664

across example sequences and time steps within those sequences. (We use a norm rather than an665

average because it is the magnitudes of the derivatives that matter: it doesn’t matter whether an666

increase or a decrease in the high- activity is required to decrease the loss.) The gradient itself is667

computed via backpropagation through the trained model, all the way into the testing (as opposed668

to training) data.669

Since we are interested only in relative electrode contributions within, rather than across,670

subjects, for display in Fig. 4 we rescaled all data into the same range of arbitrary units.671

Phoneme-Based Sentence Classifier672

The Viterbi decoders against which the encoder-decoder models were compared (e.g., Fig. 2A)673

were trained and tested as follows (see also (Moses et al., in press)). First, phonetic transcriptions674

were obtained for each sentence, aligned with the neural data. Next, small time windows of675

high- activity around each time point were projected onto their first few principal components,676

yielding low-dimensional neural features. Finally, a (fully observed) hidden Markov model with677

Gaussian emissions was trained to map phoneme identities to these neural features. However,678

rather than learn the hidden-state transition probabilities from the data, and infer phoneme679

sequences from test data under the resulting model, inferences were made with 50 different680

transition-probability models, one for each sentence in the MOCHA-1 set. Each model allowed only681

those transitions consistent with the corresponding sentence (transition to the next phoneme in682

the sequence, or a self transition). For each of these 50 transition-probability models, the most683

probable (Viterbi) hidden path and its corresponding probability were computed; and then the684

sentence corresponding to the most probable path over all models was selected. This process of685

training and testing was performed ten times with a leave-one-block-out cross-validation scheme686

to obtain the results shown in Fig. 2A.687
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Figure S1. Electrode coverage and contributions. (A–D): Anatomical reconstructions of the four

participants (colored frames indicating subject identity according to the color scheme used

throughout), with the location of the ECoG electrodes indicated with colored discs. For each disc,

the area indicates the electrode’s contribution to decoding (see Methods), and the color indicates
the anatomical region (see legend).
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