Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Cryptic prophage-encoded small protein DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins

Preethi T. Ragunathan, Carin K. Vanderpool
doi: https://doi.org/10.1101/708461
Preethi T. Ragunathan
aDepartment of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carin K. Vanderpool
aDepartment of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cvanderp@illinois.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Bacterial genomes harbor cryptic prophages that have lost genes required for induction, excision from host chromosomes, or production of phage progeny. Escherichia coli K12 strains contain a cryptic prophage Qin that encodes a small RNA, DicF, and small protein, DicB, that have been implicated in control of bacterial metabolism and cell division. Since DicB and DicF are encoded in the Qin immunity region, we tested whether these gene products could protect the E. coli host from bacteriophage infection. Transient expression of the dicBF operon yielded cells that were ~100-fold more resistant to infection by λ phage than control cells, and the phenotype was DicB-dependent. DicB specifically inhibited infection by λ and other phages that use ManYZ membrane proteins for cytoplasmic entry of phage DNA. In addition to blocking ManYZ-dependent phage infection, DicB also inhibited the canonical sugar transport activity of ManYZ. Previous studies demonstrated that DicB interacts with MinC, an FtsZ polymerization inhibitor, causing MinC localization to mid-cell and preventing Z ring formation and cell division. In strains producing mutant MinC proteins that do not interact with DicB, both DicB-dependent phenotypes involving ManYZ were lost. These results suggest that DicB is a pleiotropic regulator of bacterial physiology and cell division, and that these effects are mediated by a key molecular interaction with the cell division protein MinC.

Importance Temperate bacteriophages can integrate their genomes into the bacterial host chromosome and exist as prophages whose gene products play key roles in bacterial fitness and interactions with eukaryotic host organisms. Most bacterial chromosomes contain “cryptic” prophages that have lost genes required for production of phage progeny but retain genes of unknown function that may be important for regulating bacterial host physiology. This study provides such an example – where a cryptic prophage-encoded product can perform multiple roles in the bacterial host and influence processes including metabolism, cell division, and susceptibility to phage infection. Further functional characterization of cryptic prophage-encoded functions will shed new light on host-phage interactions and their cellular physiological implications.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 19, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Cryptic prophage-encoded small protein DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cryptic prophage-encoded small protein DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins
Preethi T. Ragunathan, Carin K. Vanderpool
bioRxiv 708461; doi: https://doi.org/10.1101/708461
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Cryptic prophage-encoded small protein DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins
Preethi T. Ragunathan, Carin K. Vanderpool
bioRxiv 708461; doi: https://doi.org/10.1101/708461

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4229)
  • Biochemistry (9118)
  • Bioengineering (6756)
  • Bioinformatics (23952)
  • Biophysics (12103)
  • Cancer Biology (9502)
  • Cell Biology (13746)
  • Clinical Trials (138)
  • Developmental Biology (7618)
  • Ecology (11667)
  • Epidemiology (2066)
  • Evolutionary Biology (15481)
  • Genetics (10621)
  • Genomics (14298)
  • Immunology (9471)
  • Microbiology (22808)
  • Molecular Biology (9083)
  • Neuroscience (48900)
  • Paleontology (355)
  • Pathology (1479)
  • Pharmacology and Toxicology (2566)
  • Physiology (3829)
  • Plant Biology (8320)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2294)
  • Systems Biology (6172)
  • Zoology (1297)