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Summary 
 

Our memories for past experiences can range from vague recognition to full-blown 

recall of associated details. Neuroimaging research has tried to understand the brain 

mechanisms underlying qualitatively different memories for decades (Yonelinas, 2002). On the 

one hand, Electroencephalography (EEG) has shown that recall signals unfold a few hundred 

milliseconds after simple recognition and are hallmarked by sustained voltage deflections over 

left posterior sensors (Herron, 2007; Johansson & Mecklinger, 2003; Mecklinger, Rosburg, & 

Johansson, 2016; Rugg & Curran, 2007). However, sensor-based analyses only provide limited 

insights into the supporting brain networks. On the other hand, functional magnetic resonance 

imaging (fMRI) has revealed a ‘core recollection network’ centred on posterior parietal and 

medial temporal lobe (MTL) regions (Hayama, Vilberg, & Rugg, 2012; Johnson, Suzuki, & Rugg, 

2013; King, de Chastelaine, Elward, Wang, & Rugg, 2015; Rugg, Johnson, & Uncapher, 2015; 

Rugg & Vilberg, 2013; Thakral, Benoit, & Schacter, 2017). However, due to the relatively poor 

time resolution of fMRI, the temporal dynamics of these regions during retrieval remain largely 

unknown. In order to overcome these modality-specific limitations, we here used 

Magnetoencephalography (MEG) in a verbal episodic memory paradigm assessing correct 

rejection (CR) of lures, item recognition (IR) of old words and associative recall (AR) of paired 

target words. We found that power decreases in the alpha frequency band (10-12 Hz) 

systematically track different mnemonic outcomes in both time and space: Over left posterior 

sensors, alpha power decreased in a stepwise fashion from 500 ms onward, first from CR to IR 

and then from IR to AR. When projecting alpha power into source space, the ‘core recollection 

network’ known from fMRI studies emerged, including posterior parietal cortex (PPC) and 

hippocampus. While PPC showed a linear change across conditions, hippocampal effects were 

specific to recall. Critically, the hippocampal recall effect emerged ~200 ms before the PPC 

recall effect, suggesting a bottom-up recall signal from hippocampus to PPC. Our data thus link 

engagement of the core recollection network to the temporal dynamics of episodic memory 

and suggest that alpha rhythms constitute a fundamental oscillatory mechanism revealing 

when, where and how our memories are retrieved. 

  

 

Keywords: associative memory, recollection, episodic memory, retrieval, MEG, 

oscillations, alpha, parietal cortex, hippocampus 
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Highlights 
 

• Alpha rhythms distinguish between different retrieval outcomes 

• Alpha power time courses track item recognition and associative recall 

• Source alpha power decreases track the fMRI core recollection network 

• Hippocampal recall signal precedes parietal signal 

 

Results and Discussion 
 

Episodic memory, our ability to remember past events and experiences, is a key pillar 

of cognition and behaviour. Intriguingly though, some memories remain faint, eliciting a sense 

of familiarity at best, while others are vivid and bring back a wealth of associations (Yonelinas, 

2002). Investigation of the neural mechanisms supporting memory recall has been ignited by 

EEG studies revealing a left posterior ‘old/new’ effect, i.e., a difference in slow event-related 

potentials (ERPs) over left posterior sensors unfolding between 500 and 1000 ms after cue 

onset (Sanquist et al., 1980; for a review see Rugg and Curran, 2007). In parallel, fMRI studies 

have consistently shown a core brain network, featuring parietal and medial temporal regions, 

differentially engaged during successful recollection (Hayama et al., 2012; Rugg & Vilberg, 

2013). However, due to inherent limitations of both methods (relatively poor spatial resolution 

of scalp ERPs, poor temporal resolution of fMRI), it is unclear whether the cue-evoked ERPs 

reflect engagement of the core recollection network and whether engagement of the fMRI 

network is temporally linked to the moment of retrieval, as opposed to pre-

stimulus/preparatory deployment of attention or post-retrieval monitoring (Levy, 2012; 

Sestieri, Shulman, & Corbetta, 2017). Moreover, it is challenging to disentangle the temporal 

dynamics within the recollection network with fMRI, allowing only speculation about whether 

parietal regions drive the hippocampus in a top-down manner during successful recall or 

whether the hippocampus provides a bottom-up signal to parietal regions (Ciaramelli, Grady, 

& Moscovitch, 2008; Vilberg & Rugg, 2008; Wagner, Shannon, Kahn, & Buckner, 2005). Direct 

intracranial recordings would provide the desired temporal and spatial resolution, but 

comprehensive coverage of both parietal and mediotemporal areas is rare and advanced 

retrieval paradigms (probing different types of memory) are challenging to conduct with 

patients (Foster, Rangarajan, Shirer, & Parvizi, 2015; Gonzalez et al., 2015).  

That said, one viable means of integrating the strengths of EEG and fMRI recordings 

might be the examination of oscillatory patterns in the alpha frequency band (8-12 Hz). On the 
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one hand, simultaneous EEG-fMRI recordings have revealed a strong link between blood-

oxygenation-level-dependent (BOLD) signal increases and decreases in alpha power 

(‘desynchronisation’) (Laufs et al., 2003; Meltzer, Negishi, Mayes, & Constable, 2007; 

Moosmann et al., 2003; Scheeringa et al., 2011). On the other hand, modelling and empirical 

work suggests that slow and late ERPs might reflect asymmetric amplitude fluctuations in the 

alpha band, such that e.g. oscillatory peaks become more pronounced than troughs over time 

(Mazaheri & Jensen, 2008). . We thus hypothesised that alpha desynchronization not only 

differentiates between different types of episodic retrieval in the time domain (from ~500 ms 

onward), but that this effect spatially maps onto the core recollection network, thus 

pinpointing its purported role in peri-stimulus retrieval. 

Capitalising on the increased spatial resolution of MEG over EEG (Baillet, 2017; Lopes 

da Silva, 2013), we employed a memory retrieval paradigm (Figure 1) in which participants 

(n=15) indicated whether a given word was (i) new, (ii) old but they could not recall the paired 

associate, or (iii) old and they also recalled the paired associate. In the latter case, a second 

screen appeared in which participants indicated which of three first-and-last-letter 

combinations corresponded to the target paired associate.  

 

Figure 1. Experimental procedure. During the study phase (‘encoding’), participants saw word pairs under 

deep or shallow processing tasks. During the subsequent test phase (‘retrieval’), one word of the previously 

presented pairs was shown, intermixed with unstudied new words (‘lures’). Participants indicated with one button 

press whether they thought the given word was new, the word was old but they did not remember the paired 

associate or the word was old and they recalled the paired associate. In the latter case, a second screen appeared 

to validate recall accuracy, providing three first-last letter combinations of which one corresponded to the target 

association. Analyses focused on correct identification of lures (correct rejection, CR), correct identification of old 

words without recalling the paired associate (item recognition; IR) and correct identification of old words along with 

correctly recalling the paired associate (associative recall; AR). 

 

Focusing on correct memory outcomes, our three conditions of interest were (i) 

correct rejection of new words (CR), (ii) correct identification of old words, without recalling 

the paired associate (item recognition memory, IR) and (iii) correct identification of old words 

along with correct recall of the paired associate (associative recall, AR). In terms of 
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nomenclature, we define an item recognition effect as the difference between IR and CR and 

an associative recall effect as the difference between AR and IR. We used a levels-of-

processing manipulation during encoding (Craik & Lockhart, 1972) to yield balanced numbers 

of both IR and AR alongside CR trials (see STAR Methods and Table 1). The overall rate of HITs 

(collapsing IR and AR) minus false alarms was .59, indicating high levels of recognition memory. 

The proportion of correct forced choices during the validation task was .96 (SEM = .01), 

indicating high levels of paired associate recall after the initial AR response. Reaction times 

(RTs) differed significantly across our conditions of interest: RTs for Hits were significantly 

longer than for CR (t14 = 3.26; p = .005), and for IR compared to AR (t14 = 3.87; p = .001). 

 

 

Table 1. Retrieval accuracy and reaction times. For Correct rejections and Hits, proportion denotes 

proportion of all new (112) and old (224) trials. 

 

Alpha rhythms track time courses of item recognition and associative recall 

Given the RT distribution across trial types (Table 1), we restricted our sensor space 

analysis to the first 2 seconds after cue onsets (longest average RT of 1.92 s). To identify - in 

one step - time points, frequencies and sensors modulated by memory outcome, we first 

conducted a repeated-measures ANOVA with the factor Memory (CR, IR, AR) on time-

frequency representations (TFRs, relative power change) across sensors (planar gradiometers). 

Results showed a significant effect surviving cluster-based correction for multiple comparisons 

(Maris & Oostenveld, 2007) (p < .001). As shown in Figure 2A, the effect was centred at left 

posterior sites, spanning a time window of 0.7-2 s and a frequency range from 8-20 Hz, with a 

distinctive peak from 10-12 Hz (alpha frequency range). To maximise sensitivity, subsequent 

analyses focus on this 10-12 Hz band, but results remain stable when including a wider range 

of frequencies and sensor selections (Figure S1). Likewise, our first time course analyses 

(Figure 2C and 2D) focus on the 10 contiguous left posterior sensors with the maximal F values 

to link results to the previous M/EEG literature, but subsequent source space analyses 

capitalise on the entire sensor array.  First, extracting the corresponding power values for the 

 Proportion Reaction times (s) 

 Mean SEM Mean SEM 

Correct rejections 0.87 0.03 1.49 0.06 

Hits 0.72 0.04 1.76 0.07 

 Associative recall 0.45 0.05 1.53 0.07 

 Item recognition 0.55 0.05 1.92 0.09 
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three memory conditions, post hoc pairwise tests revealed a stepwise decrease in alpha power 

from CR to IR (t14 = -8.41, p < .001) and from IR to AR (t14 = -4.75, p < .001) (Figure 2B). These 

results extend previous findings of left posterior alpha power distinguishing between correctly 

recognised old and new items (Hanslmayr, Staudigl, & Fellner, 2012), now showing that it 

further distinguishes between item recognition and associative recall.  

 

Figure 2. Sensor space results. (A) ANOVA results for the comparison of CR, IR and AR TFRs revealed a 

significant cluster from 0.7-2 s at left posterior sensors with a peak at 10-12 Hz. TFR plot (left) depicts the sum of F-

values across all significant sensors of the cluster. Topoplot (right) shows the sum of F-values across all significant 

time/frequency bins of the cluster. (B) Mean (+/-SEM) alpha power for each memory condition collapsed across left 

posterior sensors from 0.7-2 s in the 10-12 Hz frequency range (red dashed boxes in A), showing a relative power 

decrease (‘desynchronization’) modulated by memory outcome. ***: p < .001, paired samples t test. (C) Alpha 

power (10-12 Hz) time courses, collapsed across left posterior sensors (cf. Figure 2A). (C) Stimulus-locked and (D) 

Response-locked averages across participants (+/-SEM). Dashed vertical lines highlight onsets at which item 

recognition memory effects (IR vs. CR) and associative recall effects (AR vs. IR) effects unfold, and brown and orange 

horizontal lines depict the significant clusters for the respective paired-samples T-tests (all p < .005) 

 

Do IR and AR effects in the alpha band unfold at different latencies, tracking the delay of 

recollection relative to familiarity-based recognition (Yonelinas, 2002) or the gradual 

accumulation of mnemonic evidence (Wagner et al., 2005), respectively? To address this 

question, we examined the time courses of alpha power at left posterior sensors for CR, IR and 

AR. As shown in Figure 2C, an IR effect emerged at 700 ms post cue onset. Next, with a delay 
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of ~150 ms, an AR effect emerged as a significant decrease in alpha power for AR relative to IR. 

To ensure that our effects do not reflect post-retrieval processes (e.g., idling or monitoring, see 

below), we repeated the timecourse analysis with response-locked rather than stimulus-locked 

data, thereby accounting for different response latencies across memory conditions (Table 1). 

Indeed, results confirmed that the differential IR and AR effects unfolded well before the 

behavioural response: The IR effect emerged ~950 ms prior to the response, followed by an AR 

effect onsetting ~650 ms prior to the response (Figure 2D). Finally, to quantify whether alpha 

power decreases peaked at different latencies for CR, IR and AR, we derived participant-

specific time points of maximal alpha power decrease at sensors highligted in Figure 2A 

(dashed red square). Mean peak latencies were 677 ms (SEM = 62 ms) for CR, 877 ms (SEM = 

95 ms) for IR and 1113 ms (SEM = 108 ms) for AR. A repeated measures ANOVA with the factor 

Memory (CR, IR, AR) on these peaks confirmed a significant main effect (F(2,28) = 7.44, p = .002) 

with a significant linear term (F(1,14) = 11.31, p = .005). Post hoc pairwise tests revealed a 

trending effect for CR vs. IR (t14 = -1.81, p = .09) and a significant difference for IR vs. AR (t14 = -

2.5, p = .02).  

 

Alpha rhythms track engagement of the core recollection network 

As shown in Figure 2A, the sensor-level alpha effects were most pronounced over left 

posterior sites. While this topography is well in line with a host of ERP studies revealing a left 

posterior recognition memory effect (Sanquist et al., 1980; for a review see Rugg and Curran, 

2007), more recent fMRI investigations of recognition memory have consistently revealed a 

‘core-recollection’ network, including posterior parietal cortex (PPC) and medial temporal lobe 

regions. We next projected our data into source space and first focused our source level 

analysis on the 0.7 to 2 s post-stimulus time window and 10-12 Hz frequency band to best 

capture the memory effects previously found in the sensor-space analysis (Figure 2) (see STAR 

Methods). Thresholding the statistical F map from an omnibus ANOVA at p < .05 (corrected) 

revealed prominent peaks in medial and lateral PPC (including precuneus, retrosplenial cortex, 

superior and inferior parietal lobule), lateral temporal cortex (LTC), as well as the hippocampus 

(Figure 3A and Figure S2).  
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Figure 3. Source reconstruction. (A) Significant cluster resulting from the ANOVA in the 10-12 Hz alpha 

band from 0.7 to 2 s. (B) Regions scaling with memory strength (CR < IR < AR), revealed via inclusive masking of 

condition comparisons (intersection of IR vs. CR and AR vs. IR) in the 10-12 Hz alpha band and from 1 to 1.5 s. 

Colorbar indicates the mean T values across the IR effect (CR < IR) and the AR effect (IR < AR). (C) Exclusive AR 

effects (recall-specific) map (1 to 1.5 s) indicates areas showing an AR effect (AR > IR, p < .05, corrected) and no IR 

effect (IR > CR, p < .1, uncorrected). Colorbar indicates the T value for the AR effect. Labelling of brain regions is 

based on the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). (D) Post-hoc comparisons 

for independently defined hippocampus (HPC) and PPC regions of interest (AAL atlas). Mean (+/-SEM) IR effect (CR 

vs IR) and AR effect (IR vs AR) from 1-1.5 s in the 10-12 Hz frequency range. ***: p < .001, one-sample t test of 

effects vs. 0. 

 

Within the core recollection network, fMRI studies have consistently revealed 

functional dissociations, such that PPC regions track memory strength in a linear fashion (here: 

CR < IR < AR), whereas the hippocampus selectively supports recall-based memory (CR = IR < 

AR) (Hayama et al., 2012; Vilberg & Rugg, 2014). To test whether alpha power source 

localisation is able to track these qualitative differences, we applied in- and exclusive masking 

analyses on the source reconstructed data from 1-1.5 s, where both the IR effect and the AR 

effect were observable in sensor space (Figure 2C), thus ensuring a fair comparison between 

conditions. First, to reveal regions that show a stepwise increase in alpha power 

desynchronization, we inclusively masked the IR effect (IR > CR) with the AR effect (AR > IR), 

with both effects thresholded at P < .05 (corrected). The conjoint effect revealed medial and 
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lateral PPC (Figure 3B). Next, to highlight regions specifically supporting recall in our paradigm, 

we conducted the contrast of AR > IR (P < .05, corrected) and excluded regions that would also 

show an IR effect (IR > CR), liberally thresholded at P < .1, uncorrected. Note that the more 

liberal the exclusive mask (IR > CR), the more conservative the specificity to the initial contrast 

(AR > IR). Strikingly, this procedure revealed the hippocampus along with lateral temporal 

cortex and prefrontal cortex (Figure 3C). To complement the masking approach, we 

additionally extracted alpha power from hippocampus and PPC in anatomically defined regions 

of interest (based on the AAL atlas). A Region (Hippocampus, PPC) x Memory (CR, IR, AR) 

repeated-measures ANOVA on 10-12 Hz alpha power from 1-1.5s showed a significant main 

effect of Region (F(1,14) = 17.07, p = .001), a significant main effect of Memory (F(1,14) = 30.45, p < 

.001) and, critically, a significant Region x Memory interaction (F(1,14) = 5.72, p = .017). Follow-

up comparisons of IR and AR effects (Figure 3D) confirmed that PPC showed both an IR and an 

AR effect (both t(14) > 4.20, p < .001), whereas the hippocampus showed an AR effect (t(14)= 

4.10, p < .001) but no IR effect (t(14),= 1.17, p = .10). In fact, the IR effect was significantly 

greater in PPC than in the hippocampus (t(14) = 3.31, p = .005). In sum, our source 

reconstruction analyses revealed a remarkable overlap between the fMRI core recollection 

network and the regional pattern of alpha power decreases. Not only does this elucidate alpha 

desynchronization as an oscillatory mechanism governing the contribution of different brain 

regions to different types of memory retrieval, but it also opens the window for examining the 

temporal dynamics within the recollection network.  

 

Alpha rhythms reveal different temporal profiles within the core recollection network  

Recent fMRI studies have begun to shed some light on the temporal profiles of PPC 

and hippocampal engagement during retrieval. By varying the interval of maintaining a 

recalled episodic detail, Vilberg and Rugg (2014) were able to show that hippocampal 

engagement during successful recall was transient, whereas PPC engagement was sustained 

and covaried in time with the maintenance interval (see Thakral, Benoit, et al., 2017 for similar 

results in an episodic future simulation paradigm). While this pattern is consistent with the 

scenario that PPC mechanisms are deployed to work with mnemonic content provided by the 

hippocampus, temporal precedence of a hippocampal relative to a PPC recall effect would 

provide more stringent evidence for this notion. We thus extracted the alpha power time 

course from PPC and hippocampus in order to examine a possible temporal dissociation in the 

onset of these regions’ AR effect (see STAR Methods). Results indicate that the hippocampal 

AR effect started at 700 ms after stimulus onset, whereas the PPC AR effect set in with a 
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200ms delay, at 900 ms after stimulus onset. These patterns point to a recall-specific signal in 

the hippocampus, which is followed by PPC recruitment, with the latter possibly reflecting the 

additional amount of memory strength/mnemonic detail (Wagner et al., 2005; Rugg & Vilberg, 

2013) and/or attention to memory (Ciaramelli, Grady, Levine, Ween, & Moscovitch, 2010). It 

deserves explicit mention though that latency differences of significant effects are not 

equivalent to significant differences of effect latencies. That is, although the hippocampal AR 

effect is statistically significant at an earlier time point than the PPC AR effect, this does not 

mean that the observed latency difference of the effect across regions (here, 200 ms) is 

statistically significant. 

 

Figure 4. Hippocampus and PPC alpha source power time courses. 10-12 Hz alpha source power for AR 

and IR conditions. Brain maps depict the regions of interest selected for this analysis based on the Automated 

Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Top panel depicts alpha power time courses in the 

hippocampus. Bottom panel includes inferior and superior parietal lobules. Orange horizontal lines represent the 

significant time points of the IR vs AR t-test (cluster corrected).  

 

Alpha desynchronization indicates when, where and how memories are retrieved  

Our results show that alpha power desynchronization unifies the temporal and spatial 

profiles of recall via a single physiological mechanism. Importantly, this allowed us to reveal 

that a hippocampal recall signal precedes the PPC recall signal, pointing to a role of PPC in 

representing/manipulating mnemonic content provided by the hippocampus (see below). 

Despite the long history of M/EEG studies on recognition memory (Sanquist et al., 

1980; for reviews, see Mecklinger, 2000; Rugg and Curran, 2007), only a few have examined 
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oscillatory patterns related to different memory outcomes (Burgess & Gruzelier, 2000; Khader 

& Rösler, 2011; Michelmann, Bowman, & Hanslmayr, 2016; Vogelsang, Gruber, Bergström, 

Ranganath, & Simons, 2018; Waldhauser, Braun, & Hanslmayr, 2016), albeit without explicitly 

distinguishing associative recall from item recognition. Our current paradigm allowed us to 

directly probe the oscillatory mechanisms that support these different memory signals (Figure 

1). As shown in Figure 2, results revealed that left posterior alpha desynchronization not only 

tracked simple old/new recognition memory (IR vs. CR), but further distinguished between 

old/new recognition and associative recall (AR vs. IR). Indeed, time course analyses (Figure 2C 

and D) confirmed the temporal offset between an earlier IR effect (starting at ~700 ms after 

cue onset) followed by a later AR effect (starting at ~900 ms after cue onset) (Rugg & 

Yonelinas, 2003; Yonelinas, 2002). We note that the onset latency of the IR effect is markedly 

later than the FN400 component (negative signal deflection over frontal sites around 400 ms) 

traditionally linked to familiarity-based recognition (Curran, 2000; Düzel, Yonelinas, Mangun, 

Heinze, & Tulving, 1997; Johansson & Mecklinger, 2003; Rugg & Curran, 2007). Given the 

spatial and temporal extent of the left posterior alpha effect (Figure 2A), less extended/more 

local effects might have been overshadowed by the cluster-based correction method. We thus 

conducted a more targeted analysis, directly contrasting IR vs. CR alpha power in source space 

from 300-500 ms. Indeed, as shown in Figure S3, this revealed a significant familiarity effect in 

prefrontal and anterior MTL cortical regions. We thus suggest that the stepwise change in 

alpha power at left posterior sites, including a stepwise delay in peak latencies (CR < IR < AR), 

reflects the gradual accumulation of memory strength/mnemonic evidence (Wagner et al., 

2005). In any case, considering the potential link between amplitude fluctuations in the alpha 

band and sustained ERP deflections (Mazaheri & Jensen, 2008), our data raise the possibility 

that at least some of the classic ERP recognition effects reflect condition-specific differences in 

alpha power. 

In a separate line of research, fMRI studies on recognition memory have consistently 

shown engagement of a particular set of brain regions in recall-based memory, including 

lateral/medial parietal and temporal regions. The robustness of these regions’ engagement 

across numerous paradigms has given rise to the notion that they represent a core recollection 

network (Rugg & Vilberg, 2013). However, given the relatively poor temporal resolution of 

fMRI, it has been challenging to pinpoint the exact cognitive (sub)processes during recognition 

these regions support. Accordingly, while some accounts posit that this network represents 

informational content during retrieval (Johnson et al., 2013; Rugg & Vilberg, 2013; Thakral et 

al., 2017; Vilberg & Rugg, 2014), others highlight – particularly regarding parietal contributions 

– pre-retrieval (Cabeza, 2008), peri-retrieval (Haramati, Soroker, Dudai, & Levy, 2008; 
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Shimamura, 2011; Wagner et al., 2005) or post-retrieval (Ciaramelli et al., 2010) operations 

(for reviews see Levy, 2012; Sestieri et al., 2017). Projecting our sensor data into source space, 

we found a striking overlap of our alpha power memory effects with the core recollection 

network (Figure 3). The pair-wise comparisons showed that both IR and AR effects map onto 

bilateral (superior/inferior parietal lobule) and medial parietal cortex (precuneus/retrosplenial 

cortex; see also Bergström, Henson, Taylor, & Simons, 2013). Conversely, hippocampus and 

medial prefrontal cortex showed specific engagement for AR (Figure 3C). The topographical 

correspondence of our alpha power decreases with BOLD increases commonly found in fMRI 

studies on recognition memory adds to a number of EEG-fMRI studies showing a tight coupling 

of these two measures (Laufs et al., 2006) and suggests that alpha power can, at least in some 

cases, be used as a time-resolved proxy for BOLD activation.  

The yoking of alpha desynchronization effects with the fMRI recollection network 

opens insights into this network’s temporal profile and informs theories on hippocampal and 

PPC contributions to memory retrieval. First, taking sensor space (Figure 2C) and source space 

temporal dynamics (Figure 4) together, the memory effects clearly emerged after cue onset 

but well before the mnemonic decision (mean RT = 1.76), pointing to peri-retrieval 

engagement of the recollection network rather than pre-stimulus preparatory or post-retrieval 

monitoring/decision making functions. Moreover, across hippocampus and PPC, the source 

power time courses (Figure 4) suggest that recall success is initiated by the hippocampus and 

PPC might govern the ensuing accumulation of mnemonic evidence and/or provide an 

‘episodic buffer’ (Baddeley, 2000; Hayama et al., 2012; Rugg & Vilberg, 2013; Shimamura, 

2011).  

The link between parietal alpha power decreases and the accumulation of mnemonic 

evidence also aligns with a recent model suggesting that low frequency desynchronization 

reflects the amount of information represented by a given region (Hanslmayr et al., 2012; 

Hanslmayr et al., 2016) rather than mere activation (Pfurtscheller & Lopes, 1999) or 

disinhibition (Jensen & Mazaheri, 2010; Klimesch, 1996). In the hippocampus, the alpha power 

decrease for AR vs. IR may again reflect an increase in information, though it deserves explicit 

mention that no differences were observed between IR and CR (Figure 4B and C), consistent 

with a selective role of the hippocampus in associative/relational retrieval operations (Davachi, 

2006; Eichenbaum, Yonelinas, & Ranganath, 2007; Mayes, Montaldi, & Migo, 2007). The MEG 

alpha power decrease in the hippocampus observed here is remarkably similar to that shown 

in a recent iEEG study using direct hippocampal recordings (Staresina et al., 2016), both in the 

frequency range and effect latency. In that study, the alpha power decreases for associative vs. 

non-associative retrieval (similar to AR vs. IR here) was preceded by a gamma power (~50-90 
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Hz) increase at 500 ms. One plausible scenario might be that the gamma power increase at 500 

ms reflects hippocampal pattern completion processes, with the ensuing alpha power 

decrease reflecting an increase in information emerging from this process. Of course caution is 

warranted when interpreting MEG effects in deep anatomical sources such as the 

hippocampus, but besides the convergence of results with direct iEEG recordings, our findings 

add to a growing body of evidence of discernible MEG effects in the hippocampus (for review, 

see Pu et al., 2018).  

Finally, while our effects were most prominent in the alpha frequency band (Figure 

2A), it is important to note that other low frequency bands, particularly theta (4-8 Hz), have 

also been linked to memory processes. For instance, Osipova et al. (Osipova et al., 2006) found 

theta increases for HITs relative to CRs in an image recognition paradigm. Interestingly, 

though, this effect was localised to occipital cortex and already started 300 ms post cue onset. 

Theta power increases have also been linked to hippocampal retrieval process in iEEG 

recordings (Burke et al., 2014), though that study employed a free recall rather than a 

recognition memory/cued recall paradigm. Another recent study combined MEG recordings 

with continuous theta burst stimulation (cTBS) during an autobiographical memory task 

(Hebscher, Meltzer, & Gilboa, 2019) and found theta power increases and theta-gamma 

coupling in the core recollection network. Together, this raises the possibility that different 

functional networks, recruited by different memory demands, are grouped by different 

frequency bands, and an important challenge for future studies will thus be to delineate the 

roles of theta power increases vs. alpha power decreases in service of episodic retrieval 

(Hanslmayr et al., 2016).  

To conclude, our understanding of recognition memory thus far relied upon separate 

lines of research capitalizing on either temporal or spatial signal properties. Our study now 

suggests that alpha rhythms represent a single oscillatory mechanism tracking where and 

when associative memory unfolds in space and time, linking differential engagement of the 

hippocampus and parietal cortex to episodic retrieval processes with millisecond precision. 

 

STAR methods text 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

MATLAB The Mathworks 
https://www.mathworks.com/products/ 

matlab.html 
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Fieldtrip toolbox 

(Oostenveld, 

Fries, Maris, & 

Schoffelen, 2011) 

http://www.fieldtriptoolbox.org/ 

Psychophysics Toolbox 
(Brainard, 1997; 

Pelli, 1997) 
http://psychtoolbox.org/ 

Maxfilter 2.2 Elekta Neuromag 

https://ecatalog.elekta.com/neuroscience/e

lekta-neuromag(r)-

magnetoencephalography.aspx 

Other 

MEG 306-channel Vectorview 

System 
Elekta Neuromag 

https://ecatalog.elekta.com/neuroscience/e

lekta-neuromag(r)-

magnetoencephalography.aspx 

Magnetically shielded room 
Vacuumschmelze 

GmbH 

https://www.vacuumschmelze.com/en/res

earch-innovation/application-know-

how/magnetic-shielding.html 

3D digitizer 
Fastrack 

Polhemus 

https://polhemus.com/motion-tracking/all-

trackers/fastrak 

 

CONTACT FOR REAGENT AND RESOURCES SHARING 

Further information and request for resources and reagents should be directed to and 

will be fulfilled by the Lead Author Bernhard P. Staresina (b.staresina@bham.ac.uk) 

DATA AND SOFTWARE AVAILABILITY 

For access to data and software, please contact Bernhard P. Staresina 

(b.staresina@bham.ac.uk) 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

We designed a repeated-measures experiment with a sample size of 15 healthy right-

handed participants (9 females; mean age: 24 years, range: 18-37) who gave written informed 

consent. All procedures were approved by University of Cambridge Psychology Research Ethics 

Committee. 

METHODOLOGY DETAILS 

Behavioural analysis 

The experiment was programmed in MATLAB using the Psychophysics Toolbox 

extensions (Brainard, 1997; Pelli, 1997). Behavioural data were processed and analysed using 

custom-written MATLAB code. 
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Experimental paradigm 

The experiment was conducted inside the MEG shielded room with the participant 

seated upright. A schematic diagram of the experimental paradigm is shown in Figure 1. 

Participants completed eight encoding-retrieval runs with 60 seconds before and after each 

encoding phase in which they were asked to look at a central fixation cross. During encoding, 

participants were presented with pairs of English nouns. In order to obtain experimental 

leverage on different memory outcomes (item and associative memory), we used two 

different encoding tasks that varied in the depth of processing: a syllable task in which 

participants indicated how many of the two words contained 2 syllables (0, 1 or 2; shallow 

encoding), and an imagery task in which participants vividly imagined the two objects interact 

and indicated their imagery success (low, medium, high; deep encoding). Each word pair 

remained on the screen for 4 seconds regardless of the participant’s response. Incidental to 

the encoding task, a flickering background, flickering at 8.6 or 12 Hz, was presented on the left 

or right side of the screen which participants were instructed not to pay attention to. The 

flicker manipulation during encoding is beyond the scope of the current manuscript, but 

counterbalancing ensured that deep and shallow encoding trials were equally often presented 

with both flicker rates and at both visual hemifields. Each encoding block contained 28 word 

pairs, with deep and shallow tasks alternating every 7 trials. During the subsequent retrieval 

block, participants were presented with one randomly chosen word from each of the 28 

previously seen pairs as well as 14 novel nouns. First, participants indicated if the word was (i) 

old and they also remembered the paired associate, (ii) old but they could not remember the 

paired associate, or (iii) new. The response was collected with a single button press and the 

word remained in the screen during 4 seconds regardless of the participant’s response. When 

the first option was selected, a validation screen of 2 seconds of duration appeared and the 

participants had to choose which of three first-and-last letter combinations corresponded to 

the remembered paired associate. This two-step structure served as a means of objective 

validation while holding the stimulus display and response options constant for the initial 4 

seconds of the trial. Preceding each trial, a fixation cross was displayed during a jittered 

intertrial interval of 850 to 1150ms. For subsequent analyses, the following three conditions of 

interest were defined: Associative Recall (AR; trials in which participants indicated they 

recognized an old word and recalled the paired associate, followed by a correct response 

during verification); Item Recognition (IR; trials in which participants indicated they recognized 

an old word but did not recall the paired associate) and Correct Rejection (CR; trials in which 

participants correctly identified new items). In order to restrict our analyses to correct memory 
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trials, we excluded Misses (trials in which old items were incorrectly identified as new), False 

Alarms (trials in which new items were incorrectly identified as old) and trials in which 

participants first indicated they recalled the word plus its paired associate but then gave an 

incorrect response during verification.  

MEG Recordings 

Data were recorded in a magnetically shielded room using a 306-channel VectorView 

MEG system (Elekta Neuromag, Helsinki). Data were sampled at 1 kHz with a highpass filter of 

0.03 Hz. Only the 204 planar gradiometers were used in the analysis. Head position inside the 

MEG helmet was continuously monitored by means of five head position indicator (HPI) coils. 

A 3D digitizer (Fastrack Polhemus Inc., Colchester, VA, USA) was used to record the location of 

the HPI coils and the general head shape relative to three anatomical fiducials (nasion, left and 

right preauricular points). To track eye movements and blinks, bipolar electrodes were 

attached to obtain horizontal and vertical electrooculograms (HEOG and VEOG).  

MEG preprocessing 

MEG data were cleaned of external noise using the Maxfilter 2.0 software (Elekta 

Neuromag), applying the Signal-Space Separation (SSS) method with movement compensation 

(Taulu & Simola, 2006), correlation limit of 0.9 and time window of 10 seconds. Next, data 

were preprocessed and subsequently analysed with the FieldTrip toolbox (Oostenveld et al., 

2011) running in MATLAB. Data were segmented into trial epochs from -2 to 7 s time locked to 

stimulus onset and then downsampled to 200 Hz. After discarding trials with muscle and jump 

artifacts by trialwise inspection, an Independent Component Analysis was computed. 

Independent components reflecting eye movements and heartbeat were identified by visual 

inspection of component scalp topographies, time courses and its comparison with EOG/ECG 

raw time-series. Noise components were removed and clean trials were visually inspected 

again in order to identify and remove any remaining artifact. Across participants, an average of 

15% (range: 1–60 %) of all trials were discarded. The AR condition contained an average of 55 

trials (range: 10-151), the IR condition contained and average of 74 trials (range: 14-135) and 

the CR condition contained an average of 79 trials (range: 30-109). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Sensor space time-frequency analysis and statistics 

Frequency decomposition was obtained for each trial using Fast Fourier Transform 

(FFT) based sliding window analysis, progressing in 50 ms steps. The window length was 
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optimised for each frequency from 1 to 80 Hz, with a minimum of 200 ms and 5 cycles (for 

instance, using 500 ms/5 cycles for 10 Hz, and 200 ms/6 cycles for 30 Hz). The data in each 

time window were multiplied with a Hanning taper before Fourier analysis. The power values 

were obtained for the vertical and horizontal component of the estimated planar gradient and 

then combined. Finally, the resulting power maps were corrected using a baseline time 

window from -0.5 to 0 s, so the resulting power maps were expressed as the power relative 

change to this baseline period ((activity – baseline) / baseline). 

To assess, in one step, which time- and frequency bins differentiate between the three 

memory conditions across channels, we conducted a one-way repeated measures ANOVA 

from -0.5 to 2s and from 1-80 Hz, using the factor Memory (CR, IR, AR). To correct for multiple 

comparisons across time, frequency and channels, we used a non-parametric cluster-based 

permutation test (Maris & Oostenveld, 2007), setting the cluster alpha at p = .05. The 10-12 Hz 

power time courses in Figure 2C and 2D were derived by averaging across the 10 left parietal 

sensors showing the maximal effect (sum of F values) within the significant cluster (Figure 2A, 

dashed red square). We used paired-samples T-test to statistically test the IR and the AR 

effects. To correct for multiple comparisons across time points, we used a non-parametric 

cluster based permutation test with an alpha = .05 (Maris & Oostenveld, 2007). This procedure 

was repeated again to check the robustness of the effects including a wider range of 

frequencies (8-20 Hz) (Figure S1A) and two different sensor selections: five (Figure S1B) and 

twenty (Figure S1C). Sensors were always selected by their maximal F value within the 

significant cluster.  

 

Source reconstruction 

To estimate the underlying brain activity for the alpha band (10-12 Hz) effects found at 

the sensor level, we performed source reconstruction from -.5 to 2 s. First, a regular grid of 

1825 points with 10 mm spacing was created in the Colin27 MRI template (Collins et al., 1998) 

using Fieldtrip’s brain segmentation tools. Then, this set of points was transformed into each 

participant’s space using the individual headshapes derived from the 3D head digitalization. 

The forward model was solved with a single-shell method and the source reconstruction was 

performed using the linearly constrained minimum variance (lcmv) beamforming approach 

implemented in Fieldtrip. We constructed a common filter to ensure reliable comparison 

between conditions: the spatial filter’s coefficients were obtained from the average covariance 

matrix from all CR, IR and AR trials and then this filter was multiplied with each condition 

separately. To maximise the informational content of the signal (Van Veen, van Drongelen, 

Yuchtman, & Suzuki, 1997) while remaining within the functional definition of the alpha band, 
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artifact-free data were initially filtered from 8 to 12 Hz with a Butterworth IIR filter as 

implemented in Fieldtrip. The final output consisted of a time series estimate per source 

location, condition and subject.  

Source space time-frequency and statistics 

Spectral analysis was performed on the reconstructed signal in the same way as in 

sensor space but restricted to the alpha frequency band (8-12 Hz). There are several ways to 

avoid a beamforming bias towards the centre of the head: although any noise bias would be 

the same for all conditions, we additionally baseline-corrected each condition before 

performing contrasts. Specifically, we computed the relative change of the power estimates 

using a baseline time window from -0.5 to 0 s. 

To statistically test the sensor-space ANOVA effect (CR, IR, AR) in source space, we 

averaged source time series from 10-12 Hz and from 0.7 to 2 s (Figure 2A) and conducted a 

repeated-measures ANOVA (Figure 3A). To correct for multiple comparisons across source 

locations, we used a non-parametric cluster based permutation test with an alpha = .05. 

To extract the Intersection and the Exclusive maps shown in Figure 3C and 3D 

respectively, we used the same source reconstructed signal (8-12 Hz) and averaged from 10-12 

Hz and from 1-1.5 s. The time window choice was based on the sensor space power time 

courses (Figure 2C), ensuring that both the IR effect and the AR effect were present in order to 

avoid any bias. We then statistically tested the IR effect (IR vs CR) and the AR effect (IR vs. AR) 

using a paired-samples T-test. To correct for multiple comparisons across source locations, we 

used a non-parametric cluster based permutation test with an alpha = .05. The significant 

clusters obtained from these contrasts were then used to build the Intersection map and only 

the regions shared by both contrast (clusters) were included in the map. For visualisation 

purposes, the colorbar in Figure 3B shows the mean T-value of the included region (average of 

CR vs. IR and IR vs. AR).  

For the Exclusive AR map we adopted a conservative approach. We set the alpha for 

the IR effect to .1 (uncorrected) and cluster corrected for the AR effect. In this way, any region 

showing an IR trend (even non-significant) was excluded from the AR map. 

To statistically test earlier/familiarity-based IR effects (CR vs IR) in source space, we 

averaged source time series from 10-12 Hz and from 300 to 500 ms and conducted a paired-

samples T-test (Figure S3). To correct for multiple comparisons across source locations, we 

used a non-parametric cluster based permutation test alpha set to .05. 

To further test the IR and AR effects (Figure 3D) from 1 to 1.5s we averaged the alpha 

power (10-12Hz) in the regions of interest (Hippocampus and PPC) and performed a 2x3 
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repeated measures ANOVA with the factors Region (Hippocampus, PPC) and Memory 

(AR,IR,CR). 

The ROI selection to extract the 10-12 Hz source power differences presented in Figure 

3D and time courses presented in Figure 4 was based on the Automated Anatomical Labelling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002) implemented in Fieldtrip. In both analyses, we 

averaged the sources for left and right hippocampus and PPC (including left and right inferior 

and superior parietal lobule) from 10 to 12 Hz. Finally, we used a paired-samples T-test to 

statistically test the difference between IR and AR time courses (Figure 4). To correct for 

multiple comparisons across time points, we used a non-parametric cluster based permutation 

test with an alpha = .05. 
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Supplementary material 

 

 

Supplementary Figure 1. Robustness of the sensor-space results. (A) Mean (+/-SEM) power from 0.7-2 s 

(left) and stimulus-locked time courses across participants (right) for each memory condition in the 10-12 Hz 

frequency range (top) and 8-20 Hz (bottom), collapsed across the 10 sensors showing maximal F values in the main 

ANOVA (c.f. Figure 2A). (B) Mean (+/-SEM) alpha power from 0.7-2 s (left) and stimulus-locked time courses across 

participants (right) for each memory condition in the 10-12 Hz frequency range, collapsed across the 5 sensors 

showing maximal F values in the ANOVA. (C) Mean (+/-SEM) alpha power from 0.7-2 s (left) and stimulus-locked 

time courses across participants (right) for each memory condition in the 10-12 Hz frequency range, collapsed 

across the 20 sensors showing maximal F values in the ANOVA. ***: p < .001 and **: p < .01, paired samples t test. 

Brown and orange horizontal lines depict the significant clusters for item recognition memory effects (IR vs. CR) and 

associative recall effects (AR vs. IR), respectively (paired-samples T-tests, all p < .005). 
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Supplementary Figure 2. Complete view of the source reconstruction results. (A) Significant cluster 

resulting from the ANOVA in the 10-12 Hz alpha band from 0.5 to 2 s. (B) Regions scaling with memory strength (CR 

< IR < AR), revealed via inclusive masking of condition comparisons (intersection of IR vs. CR and AR vs. IR) in the 10-

12 Hz alpha band and from 1 to 1.5 s. Colorbar indicates the mean T values across the IR effect (CR < IR) and the AR 

effect (IR < AR). (C) Exclusive AR effects (recall-specific) (1 to 1.5 s) indicates areas showing an AR effect (AR > IR, p < 

.05, corrected) and no IR effect (IR > CR, p < .1, uncorrected). Colorbar indicates the T value for the AR effect.  
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Supplementary Figure 3. Source reconstruction of the IR effect. Significant cluster resulting from the T-

test (CR vs IR) in the 10-12 Hz alpha band from 300 to 500 ms.  
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