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N =

3 Abstract:
4  Conservation agencies entrusted with recovery of iconic mammals may
5 exaggerate population trends without adequate scientific evidence. Recently,
6  such populations were termed as ‘political populations’ in the conservation
7  literature. We surmise that political populations emerge when agencies are
8 pressured to report abundances at large spatial scales for species that are
9 difficult to survey. Indian tiger conservation agencies use an experimental
10 approach called double-sampling using index-calibration models. A recent,
11  mathematical, study demonstrated the unreliability of this approach in the
12 context of India’s tigers. Yet, this approach continues to be applied and even
13 promoted by global tiger conservation agencies in other tiger range countries.
14 In this article, we aim to: (1) discuss the ecological oddities emerging from
15 results of India’s national tiger surveys, (2) demystify the mathematics
16  underlying the problems of this survey methodology and (3) confront these
17  findings with results from India’s recent national tiger survey of 2014. Our
18 analyses show that the predictions of tiger abundance using sign-based
19 indices reported in the 2014 survey in fact vary greatly and can be severely
20  misleading and confirming the presence of high sampling-based
21 overdispersion and parameter covariance. We call for species conservation
22 initiatives to implement monitoring methods that are designed to clearly
23 answer, a priori, scientific or management objectives instead of potentially
24 implementing them as reactions to extraneous, social or fund raising
25  pressures.
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27  Main text:

28

29 INTRODUCTION AND BACKGROUND

30 Krebs (1991) recognized that monitoring programs must advance our

31 knowledge of the underlying dynamics of animal populations if they are to

32 improve either science or conservation. Towards this end, Nichols and

33  Williams (2006) recommend a priori designing of animal monitoring programs
34  to answer clearly defined scientific or management questions. And in practice,
35 Williams et al. (2002) identify two major sources of uncertainty (imperfect

36 detection and inappropriate spatial sampling), which must be addressed while
37 implementing monitoring programs to generate strong inferences about

38 animal population dynamics.

39

40  Monitoring programs for some of the world’s most iconic endangered

41  mammals, however, appear to routinely ignore these profound insights

42  leading to claims about population dynamics of such species resting on weak
43  inferences and untested leap of faith arguments. For example, Darimont et al.
44  (2018) explain how population trends reported by agencies for several

45  charismatic carnivores lack adequate scientific support. Using case studies of
46  wolves (Canis lupus) in USA and Sweden and brown bears (Ursus arctos) in
47  Romania and Canada, they demonstrate how population increases claimed
48 by federal agencies are exaggerated. Hypothesizing that these claims serve
49  political interests, they coined the term “political populations” (Darimont et al.
50 2018) to identify such species. Therefore, it is important to assess whether

51 conservation agency claims about population trends of political populations
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52 arise from poorly framed monitoring questions, inadequate sampling designs
53 or from extraneous social considerations such as ‘motivated reasoning’

54 (Kunda 1990). In this essay, we attempt to disentangle these factors based
55 on official reports of monitoring wild tigers (Panthera tigris) in India, also

56 suspected to be a political population by Darimont et al. (2018).

57

58 The tiger is an ideal 'political species' for such an investigation because of the
59 global attention and massive conservation investments it has attracted (PTI
60 2016). In this article, we first contrast official results of Indian tiger surveys

61  with ecological theory and prior scientific knowledge of tiger population

62 dynamics. Thereafter, we examine the underlying statistical factors leading to
63 the scientific inferences from these surveys. Finally, we broaden implications
64  of our results to political populations of other charismatic species.

65

66 INDIA’S CLAIMS OF RISING TIGER NUMBERS

67

68 The Indian country-wide official surveys of 2006, 2010 and 2014 (herein

69 referred as “NTE surveys”) report estimates of tiger population sizes at 1411
70  (1165-1657), 1706 (1507-1896) and 2226 (1945-2491), respectively (Jhala et
71 al. 2011a, Jhala et al. 2011b, Jhala et al. 2015). The numbers in brackets

72  putatively represent the range, without a clear statistical explanation of how
73  these values are derived. Regardless, these numbers with their reported error
74  bounds indicate significant increases in tiger numbers in India.

75
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76  Considering only areas that were actually surveyed (summarized from Jhala
77 et al. 2015), these numbers translate to a 17.2% increase in tiger abundance
78 and a corresponding increase of 34.4% in local tiger density, implying that

79 local tiger density D rose at twice the rate of tiger abundance N (AD/AN = 2)

80 between 2006-2010. Between 2010-2014, an even steeper 30% increase in
81 tiger abundance was reported, but this time there was corresponding
82 decrease in local tiger density down to 19%. These results imply a reversal of

83 the tiger population growth mechanism (from AD/AN = 2 to AD/AN = 0.63)

84  after four years, with the year 2010 as the point of inflexion.

85

86  Furthermore, between 2006-2010, the surveys reported a simultaneous

87  contraction of tiger range by 12.9% (or 11,400 km?). In contrast the results of
88 the next survey interval (2010-2014) claim an abrupt reversal of the earlier
89  pattern, reporting a range expansion of 9.4%, suggesting a tiger re-

90  colonization of 7,250 km? of new habitat (computed from Jhala et al. 2015).
91

92  These tiger population increase mechanisms imply a concave upward

93 relationship between tiger abundance and occupancy (Figure 1) and stand in
94  contrast to the general mechanism of a monotonically increasing, but

95 concaving downward, relationship based on basic scientific literature (see
96 Gaston et al. 2000).

97

98 Furthermore, long-term studies of tiger population dynamics using rigorous
99  photographic capture-recapture surveys even in some better-protected tiger

100 reserves of India (Karanth et al. 2006) and Thailand (Duangchantrasiri et al.
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101 2016) demonstrate far lower annual rates of density increase (~2-4%). If

102 these survey outcomes are considered together the implication is that tiger
103  populations in large, poorly-protected, low-prey density, sink landscapes
104  exhibit higher growth rates than populations in better protected source

105 populations (Karanth et al. 2016). Therefore, the results from the Indian tiger
106  surveys stand in stark contrast to scientific understanding derived from the
107  source-sink theory in population biology (Pulliam 1988), foundational to most
108 global recovery plans for large carnivores including those for tigers in India
109  (Walston 2010, NTCA 2012).

110

111  Recently, Harihar et al. (2017) analyzed these NTE survey results to show
112  that increase of sampled areas in tiger "source sites’ among successive

113  surveys led to decreases in tiger density. Hence, this study (Harihar et al.
114  2017) also contradicts implications from NTE surveys by showing that tiger
115  population sinks are indeed performing worse than reported and supporting
116  the proposals of Karanth et al. (2016) and Harihar et al. (2018), that tiger
117  population recovery rates will be far slower than expected.

118

119 What are the reasons for these gross ecological anomalies that arise from
120 Indian tiger surveys? The explanation by Darimont et al. (2018) is that

121  ecological claims about political populations may often be disconnected from
122  formal science. But the acceptance of the Darimont et al. (2018) explanation,
123 without critical examination, may impede our gaining an understanding of tiger
124  population biology from potential scientific serendipities (Wintle et al. 2010).

125  Therefore, here we examine the basis of India’s claims on tiger numbers by
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assessing, in detail, the methods and models used to generate India’s tiger

population estimates.

DOUBLE-SAMPLING USING INDEX-CALIBRATION MODELS

The NTE survey method was developed and implemented in 2005 as India’s
new official tiger monitoring approach (Jhala et al. 2008) after the failure of the
previous ‘pugmark census’ method. Incidentally, the 'pugmark census' method
persisted for three decades until it had to be suddenly abandoned only in
2005 due to its failure to detect the extirpation of an important tiger population
(Sariska; Tiger Task Force 2005), followed by the extinction of another

important tiger population (Panna; Special Investigation Team 2009).

The NTE survey method is based on the double-sampling experimental
approach (Eberhardt and Simmons 1987). Double-sampling was developed
because rigorous estimation of abundance at large spatial scales is often
impractical because of ecological, environmental and logistical constraints
(Eberhardt and Simmons 1987). When applied correctly, double-sampling
involves the following steps:

(1) Random selection of a sample of sites from a larger pool of potential sites
spread across a large region.

(2) Conduct of surveys at the sampled sites to estimate true animal
abundance using a rigorous, reliable, method which is typically expensive,
intensive and relatively difficult to implement (e.g photographic capture-

recapture sampling, distance sampling).
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150 (3) Conduct of a less rigorous, but practically feasible, field survey using an
151 index of animal abundance (eg. number of animal tracks/km walked) at the
152  selected sites as well as across the larger region.

153  (4) Development of an ‘index-calibration’ model (often a simple linear

154  regression model) to establish a statistical relationship between true animal
155 abundance (2) and its putative index (3).

156  (5) Estimation of animal abundance for the larger area using the index-

157  calibration model (4).

158 Consequently, the reliability of results from the double-sampling approach will
159 rest on the performance of the index-calibration model (step 4 from above)
160 developed.

161

162 In the past, practical index-calibration experiments have yielded divergent
163  results in terms of efficiency (see Gopalaswamy et al. 2015a,b and citations
164 therein). Gopalaswamy et al. (2015a,b) mathematically modeled typical index-
165 calibration models to analyze key contributors that produce such divergent
166  outcomes in real world field surveys. In Appendix 1, without getting into all the
167 mathematical complexities of Gopalaswamy et al. (2015a,b) we, heuristically,
168 summarize the concepts of sampling-based overdispersion (SOD) and

169 parameter covariation.

170

171

172

173 INDEX-CALIBRATION MODELS OF INDIA’S TIGER SURVEYS

174

175 Based on mathematical and simulation-based explanations presented in

176  Appendix 1, we reassess the inferences of empirical, large-scale, tiger
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177  surveys discussed in Gopalaswamy et al. (2015a,b). We elaborate on certain
178  empirical details that were implicitly assumed in Gopalaswamy et al. (2015a,b)
179 to contextualize the concepts for conservationists.

180

181 (i) Assessing the predictive strengths of tiger sign index-calibration

182  experiments

183  Gopalaswamy et al. (2015a,b) examined two different tiger sign index-

184  calibration experiments (briefly labeled IC1 and IC2), which produced

185  extremely divergent calibration successes. As a framework for statistical

186 comparisons, they assumed that over India's tiger occupied habitat of about
187  ~80000 km? (Jhala et al. 2011a), there could be a potential pool of more than
188 400 sites each of ~ 200 km? size (approximately the size of sites used in the
189 two experiments). In the two experiments, at each site, an estimate of tiger
190 density was derived from photographic capture-recapture sampling (Karanth &
191 Nichols 1998) from replicated surveys (see Karanth et al. 2004, Jhala et al.
192 2011Db, for field work details).

193

194 At these sampled sites, tiger signs (scats and tracks) were counted by

195  observers walking along trails to derive encounter rate indices (number of
196  scats or track sets/km walked). These index count data, S|N were fitted to
197 linear regression models by Ordinary Least Square (OLS) solutions. The first
198 experiment (IC1), with a sample size of 21 sites, returned a high R? estimate
199 of 0.95 (as reported in Jhala et al. 2011a), whereas the second experiment

200  (IC2), with a sample size of 8 sites, returned a low R? estimate of 0.0004 (as
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computed using the Im function in R that uses the Eqn 4 from Kvalseth 1985
for estimating R?).

We note that the slope of these index-calibration relationships is =kp*, where
p*is the average detection probability per individual. Because the index
based on tiger signs was computed from counts obtained in single sweep of
each site, we set the value of k=1. Thus, making S=p*in this case. If we apply
the mathematical formula derived by Gopalaswamy et al. (2015a,b) for
population R? to the binomial model (less overdispersed case) we can obtain
the estimate of detection probability p*. This computed value is seen to be
high for IC1 ( p,., = 092 ) and low for IC2 ( p,., = 0.0003 ). These two slopes

are plotted as blue lines in Figure 4.

(ii) Estimating the true value of p* for tiger sign index-calibration experiments

From the larger tiger distribution surveys conducted by Jhala et al. (2011a)
and Karanth et al. (2011), the average p* from these two surveys has an
estimated value of 0.125 (represented by the red line in Figure 4), lying

between the two blue lines.

This result clearly shows that sample sizes in both experiments (IC1=21 sites
and 1C2=8 sites) were far too small to accurately reflect the population
characteristics. Secondly, the sampled sites selected non-randomly were not
truly representative of the assumed larger pool of >400 sites because they
both failed converge on the correct population estimate of average p*. This

implies that both these index-calibration models have poor predictive power

9
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226  across the wider spatial region of interest. Furthermore, in IC1, the 21 sites
227  selectively excluded southwestern Indian region (see Jhala et al. 2011a,b). As
228 seen earlier, the presence of large SOD makes index-calibration models very
229 data-hungry, and any such selective, and potentially biased, sub-sampling of
230 sites will compound the predictive inefficiency of these models.

231

232 (iii) Factors likely to influence the potentially large variation in p*

233 We note that the tiger sign index-calibration models assume k is a constant
234 andis equal to 1. In reality, k will be a function of the number of index values
235 accumulated during the days prior to sampling and hence the constant k

236  assumption may itself be unreal. For example, in drier forests (that cover

237  about 50% of tiger habitats in India), tiger scats may remain intact for days
238  prior to the counting, whereas they disappear rapidly in wetter regions.

239  Although, Gopalaswamy et al. (2015a,b) did not derive explicit expressions for
240  such variations in k, by assuming k is a constant, such an assumption will

241  further, unrealistically, imply that the slope of Bis entirely due to the variation
242 in p*. We also note that p*=ap. In this context, p refers to the detection

243  probability of an individual tiger and its magnitude being determined primarily
244 by the type of substrate (see Figure 3). Similarly, o represents the total

245  fraction trails sampled. For example, in a photographic capture-recapture

246  study, Karanth ef al. (2004) demonstrated that detection probability p* was
247  much higher for tigers in the denser forests of Tadoba (0.174) and Bhadra
248  (0.22), compared to open forests at Panna (0.039) or Bandipur (0.055) sites.
249  This was possibly because the unknown proportion of trails used by tigers that

250 were actually sampled, ¢, is relatively higher in denser forests with lower
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251 density of trails. We note here though that the value of p can potentially be
252 very high only in exceptional circumstances, for example, detecting tiger
253  tracks in snow in Russia (Miquelle et al. 2015) but o will continue to be

254  dictated by the relative sampling effort per unit area.

255

256  We also note that in both the above experiments IC1 and IC2, no particular
257  spatial sampling design was employed to select trails. This factor also would

258 additionally to contribute to causing biases in the estimate of «. Therefore,
259  overall, the combined uncertainties of k, @ and p are likely to contribute to the

260 large variation seen in the value of p* resulting in the high overdispersion
261 observed in such survey data.
262

263 SAMPLING-BASED OVERDISPERSION IN INDIA’S TIGER SURVEY OF

264 2014

265

266  The resulting implication is that if SOD is not taken into account then any
267  estimate of tiger abundance at the national scale will be non-robust and

268  potentially flawed. To assess the generality of this conclusion, we evaluate
269 estimates of tiger abundance from the previously unexamined NTE survey of
270 2014 (Jhala et al. 2015).

271

272  The calibration models developed during this survey comprised of a few

273  environmental covariates in addition to tiger signs as explanatory variables to

274  model tiger density. By the measure of relative importance of covariates (see

275  Burnham and Anderson 2002), the survey results confirm that tiger sign index
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276 is the most important predictor of tiger density as this covariate is featured in
277  the three main landscape models. This shouldn’t be surprising because signs
278  of tigers are due to the presence of tigers. Whether treating tiger sign index as
279  arelevant covariate in such modeling efforts is a separate question worthy of
280 independent investigation. What is relevant to us here is whether there is SOD
281 present in the relationship between tiger signs and tiger abundance.

282

283 In all the intensively monitored sites, the surveys estimated the beta

284  coefficients corresponding to the tiger sign index covariate to be

285 betdy, (SE (betdy;)) = 0.1(0.06), betd ;g (SE (betdcy, )) = 0.258(0.028) and

286 bet&WG(SE(bet&WG)) =1.01(0.08), where SG, CIEG and WG correspond to

287  abbreviated forms of Shivalik-Gangetic Plains, Central-Indian and Eastern
288 Ghats and Western Ghats, respectively. We note here that the definition of

289  beta in these reports will differ from our definition of 3 earlier in that beta is

290 meant to represent the rate of change of animal density for a unit increase in
291 the signs detected. However, our purpose is to investigate SOD and

292  parameter covariation and these estimates of beta serve that purpose well
293  enough.

294

295 The full mathematical specification of the model used in Jhala et al. (2015) is
296 not available. However, from the model coefficients reported, they appear to
297  be generated using the default log-linear model in the package secr (Efford
298 2019). Therefore, the above beta estimates must be back-transformed

299 exponentially for appropriate interpretation. Accordingly, one unit increase in
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300 the tiger sign index results in a corresponding exponential increase in tiger
301 density of (i) 10.5% in the Shivalik-Gangetic Plains (ii) 29.4% in the Central
302 Indian and Eastern Ghats landscape and (iii) a massive 174.6% increase in
303 tiger density in the Western Ghats. Such a massive variation in the influence
304 of tiger sign index on tiger density demonstrates the presence of enormous
305 SOD inherent in the population. Interestingly, these estimates of beta indicate
306 that the non-linear nature of the relationship between tiger sign index and tiger
307 density is very pronounced, perhaps indicating a strong interaction between p

308 and/or e and N as discussed earlier.

309

310  Such variations arising from SOD mean that when these beta estimates are
311 utilized to estimate tiger abundance over wider regions (eg: at regional and
312 national levels) or used to assess changes in tiger abundance over time, the
313 resulting trends can essentially lack any real ecological meaning. And the
314 large variation in the extent of non-linearity further weakens predictions of
315 tiger abundance at regional and national levels.

316

317 CONSERVATION IMPLICATIONS

318

319 The beta estimates reported in Jhala et al. (2015) strongly confirm the

320 presence of a high degree of SOD and parameter covariance in tiger index-
321 calibration experiments used in Indian tiger surveys. The temporal variations
322 inthe beta estimates and the unpredictable changes in the form of the index-
323 calibration relationship itself make the prediction of animal abundance at large

324  spatial scales very unreliable. We conclude that changes in the tiger
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325 population size and occupancy reported from Indian tiger surveys, which are
326 so anomalous in the context of ecological rationale (see Introduction), are
327 outcomes from an unreliable method used which spuriously seems to

328 challenge existing understanding of animal population dynamics in ecology.
329

330 There are several management implications that arise from our analyses. It is
331 essential that the raw data from the past NTE surveys (Jhala et al. 2008,

332 Jhala et al. 2011a, Jhala et al. 2015) be thoroughly re-analyzed to account for
333 the hitherto ignored underlying SOD and parameter covariance we have we
334  have uncovered here. Only such a re-analysis can correct these tiger

335 population estimates, by fully recognizing the true underlying uncertainties
336 that have been previously ignored. We note that, analytically, the SOD

337 problem can at least be reduced partially by accounting for spatial random
338 effects (Dey et al. 2017). More importantly, the understanding of the effects of
339 SOD provides an opportunity for conservation agencies to introspect deeply
340 about properly designing monitoring programs keeping in view suggestions of
341 Nichols and Williams (2006) given the enormous resources (manpower, time
342 and money) spent on Indian tiger surveys as detailed in Jhala et al. (2015).
343

344 CONSERVATION OUTCOMES: DOES SCIENCE INFLUENCE POLICY?

345  Accepting the premise that species conservation programs should be based
346 on science and evidence, the conservation implications discussed above can
347  serve as a template for future tiger monitoring policies. But, as discussed in
348 Darimont et al. (2018), this often will not be the case with political populations.

349
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350 Our understanding of the presence of large SOD in India’s official tiger

351 estimation approach was based on the 2010 survey results and presented in
352 Gopalaswamy et al. (2015a). Coincidentally, this publication appeared only a
353 month after India announced that its tiger population had risen by 30% during
354 the years 2010-2014.

355

356  Surprisingly, instead of seeking more information, studying implications of
357 Gopalaswamy et al. (2015a) in detail, or by engaging in a formal scientific
358 debate, some scientists and officials associated with the NTE survey, rushed
359 to the journal demanding, summarily, the retraction of Gopalaswamy et al.
360 (2015a) (Vishnoi 2015, Kempf 2016). Given that our analysis of the NTE

361 survey of 2014 discussed here further strengthens arguments advanced by
362 Gopalaswamy et al. (2015a,b), this conservation outcome of demanding

363 retraction is perplexing.

364

365 We note with some concern that in spite of the presence of a body of scientific
366 evidences pointing towards major concerns about India’s tiger population rise
367 claims (Gopalaswamy et al. 2015a,b, Karanth et al. 2016, Harihar et al. 2017,
368 Harihar et al. 2018) major international conservation agencies, such as the
369 Global Tiger Forum (GTF), Global Tiger Initiative (GTI), and the World Wide
370 Fund for Nature (WWF), continued to endorse claims of success made by
371 Indian Tiger Surveys (WWF 2016). Consequently, India's tiger conservation
372  budget jumped from USD $70 million to $144 million in 2016 to reward this
373 achievement (PTI 2016).

374
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375 Of even greater concern is the fact that index-based monitoring methods

376  continue to be uncritically employed by India's National Tiger Conservation
377  Authority and Wildlife Institute of India (Jhala et al. 2017) and even being

378 further promoted by GTF and by the GTI in other tiger range countries that are
379 justinitiating national monitoring programs (see Dey et al. 2015 for an

380 example of from Bangladesh). Similarly, Nepal also claimed that their tiger
381 numbers doubled in a relatively short period of time (Davis 2018) without

382 adequate scientific support.

383

384 More recently, Qureshi et al. (2018) archived in a public preprint repository a
385 critique of Gopalaswamy et al. (2015a,b), but at the same time supporting
386 claims of the NTE survey of 2014 (Jhala et al. 2015). Since we demonstrate
387 that Jhala et al. (2015) only buttresses the scientific findings of Gopalaswamy
388 etal. (2015a,b), especially with regards to SOD and parameter covariance,
389 we find that this critique (Qureshi et al. 2018) too appears to be a paradoxical
390 conservation outcome (Gopalaswamy 2019), and contrary to science-based
391 implications.

392

393 DISCUSSION

394

395 As we elucidate in this article, the combined phenomena of sampling-based
396 overdispersion and parameter covariance can induce a large amounts of
397 uncertainty in predictions of animal abundance over large spatial and

398 temporal scales. This implies that the claims of a 58% tiger population rise in

399 India over the past 8 years (from 2006-2014) based of estimates from the
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400 three NTE surveys (Jhala et al. 2008, Jhala et al. 2011a, Jhala et al. 2015)
401 lack reliable scientific support.

402

403  Our analysis of these additional sources of uncertainty, however, helps in

404 explaining the ecological paradoxes (see Infroduction) that the survey results
405 lead to. For example, the unusual concave upwards relationship between tiger
406  occupancy and abundance (Figure 1; derived from the summary table in Jhala
407 etal. 2015), the reversal of the source-sink mechanism (Karanth et al. 2016,
408 Harihar et al. 2017) and the unusually the high estimates of tiger population
409 growth rates in source populations (Karanth et al 2006, Duangchantrasiri et al.
410 2016) all appear to be consequences of inferential problems arising from

411 sampling-based overdispersion and parameter covariance.

412

413  In general, we believe that such misreading of population growth patterns

414 resulting from inferences based on vague survey methodologies can be

415 detrimental to wildlife conservation. Just over a decade ago a similar

416  disregard to scientific findings, using an earlier flawed survey methodology
417  known as the pugmark census (Karanth et al. 2003) had hidden real tiger

418 population collapses in India. At that time, India’s tiger numbers were reported
419 to have reached 3642 individuals (Ramesh 2008). This was followed by

420 abandonment of the census method, as tiger populations collapsed from a
421  wave of poaching in two key reserves in India (Tiger Task Force 2005,

422  Chundawat 2018).

423
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424  The current claim of an upward trend in tiger numbers is reminiscent of that
425  previous conservation ‘bubble’. Based on our results and more general

426  suggestions of (Nichols and Williams 2006), we question the very purpose of
427  conducting such massive, resource intensive surveys across large regions
428  without first addressing challenge of SOD and parameter covariance, which
429 remains challenging if not intractable.

430

431  We note that at the high profile Global Tiger Summit in St. Petersburg in 2010,
432  doubling the global number of wild tigers by 2022 was proclaimed as the goal
433  and financial commitments of about US $ 330 million were pledged (Watts
434  2010). We worry that large financial commitments in species conservation
435 initiatives may subconsciously create social pressures on conservation

436  agencies leading to motivation or cognitive bias (Kunda 1990, Kahneman

437  2013) influencing either the survey design itself or the reporting of results from
438  surveys. For example, by claiming rising tiger numbers, Indian conservation
439 agencies obtained an immediate increase in their tiger conservation budgets
440 (PTI12016). And when non-robust monitoring survey methodologies (eg: with
441 inherently large SOD and/or parameter covariance) are employed, they can
442  even dangerously legitimize any popular claim about population trends

443  because such estimates can understate the true, but much wider, confidence
444 intervals. We observe the similarity of this situation to the 4-way categorization
445 by Pielke (2007) corresponding to the category of “high scientific uncertainty,
446  popular choice”.

447
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448  We therefore stress the importance of structuring a sound monitoring program
449  in species conservation initiatives (Nichols and Williams 2006, Karanth and
450 Nichols 2017). While claims about population increases or decreases may
451 meet the goal of increasing public support and assist in raising more funds for
452  conservation, we argue that this line of reasoning can be hugely detrimental to
453  species conservation. First, such an approach will tend to benefit the most
454  advertised conservation strategy as opposed to the most effective one.

455  Consequently, those invested in solving on-ground conservation or scientific
456  problems could potentially be pressured into investing time and effort in

457  marketing and outreach. Second, monitoring programs that do not truly

458 advance scientific knowledge will undermine the entire discipline of field

459  ecology itself. For example, with respect to our above example with tigers,
460 the unexplainable concave upward relationship of tiger occupancy-abundance
461 dynamics (Figure 1) or the inexplicable accelerated growth rate of tiger

462  populations only raises more unsolvable ecological questions rather than

463  providing good answers.

464

465 We argue that when conservationists fail to keep pace with novel scientific
466 methodologies, any claimed estimate will prima facie be non-robust. If

467  massive changes in tiger numbers is attributed to change in methods (eg:

468 drop in India’s tiger numbers from 3642 tigers (Ramesh 2008) to 1411 tigers
469 in 2006 (Jhala et al. 2008)) or due to unreliable methods (as analyzed here) it
470 has little value to either science or conservation because monitoring can no
471 longer provide useful information to conservationists in real time.

472
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473  Our article attempts to convey and contextualize the mathematical and

474  empirical findings of Gopalaswamy et al. (2015a,b) to conservationists,

475  especially in the context of India’s claims of tiger population rise. But there is
476  vast scope for further research on this theme. If we ignore the presence of
477  SOD and parameter covariation for the moment, it is ecologically interesting to
478  assess these tiger population dynamics in the context of biological

479  overdispersion (May 1978). Since Jhala et al. (2015) and Gopalaswamy et al.
480 (2015a,b) demonstrate the difficulty of applying double-sampling in practice
481  for tigers, it becomes relevant to derive the parameters for the population level
482  overdispersion caused by variation in detection rates, even though the

483 relevance of using indices for regional population level estimation may remain
484 futile (see Belant et al. 2019, in the case of lions in Serengeti).

485

486  With respect to tigers, we recommend that monitoring investments be targeted
487  to reliably understand the drivers influencing vital rates (survival, recruitment
488 and movement) at critical tiger source populations (Karanth et al. 2006,

489  Duangchantrasiri et al. 2016, Walston et al. 2010). Complementarily, we

490 recommend landscape scale, sign surveys (conducted once in 4-5 years) to
491 track and understand the mechanisms of tiger range contractions, expansions
492  and connectivity (Karanth and Nichols 2017).

493

494  More generally, we propose that animal monitoring programs, particularly of
495  political populations such as tigers, be designed and implemented entirely to
496  answer sound scientific and management objectives (Krebs 1991, Nichols and

497  Williams 2006) rather than be influenced by social or fund raising pressures
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498 from extraneous sources. Such a focus will help prevent charismatic large
499  carnivore populations to avoid the risk of being stigmatized as a political
500 population (Darimont et al. 2018).
501
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730

731

732

733

734

735

736

737  Figure legends:

738  Figure 1. The occupancy-abundance relationship of India’s tigers. The

739 concave upward relationship apparently challenges the existing

740  monotonically-increasing, concave downward, occupancy-abundance

741 relationship discussed in ecological literature.

742

743  Figure 2. lllustration of the contrasting estimates of p* under the binomial
744  model of tiger index-calibration, N versus S (which is conditional on N). The
745 lines are generated by the model S|N ~ Binomial(kN, p¥), so that E(S|N)=kNp™*.
746  The sampling occasion k is assumed to be a constant with a value of one. The
747  two blue lines represent sample p* estimates from two different tiger index-
748 calibration experiments. The red line represents the line generated by a p*
749  estimate from an independent survey of the larger population of sites over
750 Indian landscapes.

751

752  Figure 3: Photo-trapped images of tigers on contrasting substrate types. A
753  dusty substrate (top) is conducive for detecting tiger tracks yielding a high

754  detection probability p. In contrast, it is virtually impossible to detect tracks of
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755  tigers on leaf-littered, grassy, substrate types (bottom) yielding a low detection
756  probability p. Picture courtesy of Ullas Karanth/WCS.

757

758

759

760

761

762  Figures:

763

764  Figure 1)
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Varying slopes in tiger index-calibration experiments
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SUPPLEMENTAL INFORMATION
APPENDIX 1) INDEX CALIBRATION MODELS: Summary of concepts

from Gopalaswamy et al. (2015a,b)

Basic Statistical Concepts

The binomial and beta-binomial index-calibration models

As in Gopalaswamy et al. (2015a,b), we define N as the true animal
abundance at a site and S as the corresponding index of abundance
measured at the site. We assume N is known noting that Gopalaswamy et
al. (2015a,b) did not require this simplifying assumption. We assume that a
selected site is sampled over k occasions independently. If p* is the
probability of detecting an individual animal at this site during one
occasion, then the index over k occasions is modeled as S|N,k,p* ~
Binomial(kN, p*). SIN,k,p* (or S|N, for simplicity) is read as S conditional
on N, k and p*. This binomial model has the expected value (or
expectation) E(S|N)=kNp*. For example, if we conduct a survey of animals
at a single site on 3 occasions, with the true abundance being 20 animals,
and the detection probability per occasion being 0.1, then the average
count from such a survey is kNp*=(3)(20)(0.1), or 6 encounters. For a
large number of repeated experiments of this kind, the experiment-to-
experiment variation in counts at this site (with N=20) is described by
Var(S|N)=kNp*(1-p*)=6(1-0.1)=5.4.

In the above example, we have assumed detection probability p* to be
unvarying. In reality, there are many sources that can induce variation in

p* either temporarily or spatially. To account for such variation,
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26 Gopalaswamy et al. (2015a,b) developed a beta-binomial version of the
27 model, so that S|N,k,a,b ~ Beta-binomial(kN, a, b). Here, the detection

28 probability is described as a random quantity drawn from a beta

29 distribution with shape parameters a and b. Under such a model, the

30 variation in the animal counts obtained will always be larger than in the

31 binomial case (implying that Var(S|N) > 5.4 if there is variation in p*). In
32 either case, the variance of the count increases when N increases. This
33 critical phenomenon is defined statistically as overdispersion. We

34 specifically define this phenomenon as ‘sampling-based overdispersion
35 (SOD)’ to distinguish it from ‘biological overdispersion’ traditionally defined
36 in ecology to represent the heterogeneity in abundances over space (May
37 1978).

38

39 (i) Slopes of the index-calibration experiments

40 A good index-calibration experiment involves conduct of similar surveys at
41 multiple sample sites, with different values of N. These counts result in the
42 index, S|N, from all these sites. For a fixed value of k and mean p*, the

43 average slope, say f, of this relationship is given by kp* for the binomial
44 model, and k[a/(a+b)] for the beta-binomial model. With parameters

45 defined earlier, for example applying a coefficient of variation in p* of 0.4
46 for the beta-binomial case, we can simulate multiple data points for two
47 imaginary index-calibration experiments (see Figures 1a,1b). The

48 divergent, flash-light like, spread of these data points (in blue circles)

49 indicates the extent of SOD inherent in such data.

50
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(iii) Measuring predictive strength in index-calibration experiments

The strength of an index-calibration experiment can be assessed either
from graphical visual assessments or using formal statistical measures.
Gopalaswamy et al. (2015a,b) used the coefficient of determination R? (a
goodness-of-fit measure commonly used in the applied sciences) to
assess predictive strengths index calibrations under both the binomial
model and beta-binomial models. They showed that strong predictive
relationships (R? is close to 1) are obtained when detection probability p*
is high as well as unvarying. In our simulated experiments, the estimated
R? is lower for the beta-binomial model (0.46) model compared to the
binomial (0.63) model, because of its greater SOD. Further, Figure 1c
shows how the R? measure increases from 0.46 to 0.54, when the slope of
the relationship, determined by average detection probability p*, increases

from 0.1 to 0.2 in the beta-binomial model.

Field sampling concepts

Random and representative selection of sites for double-sampling

The basic statistical concepts and mathematical formulae applied by
Gopalaswamy et al. (2015a,b) assume that the sample size (number of
index-calibration data points) is infinite or very large. In practice, this is
unrealistic because only a few data points are usually selected for fitting
the index-calibration model. But it is essential that the selection of data
points should at least representatively retain the same slope and 'flash-
light' like SOD shown in Figures 1a, 1b and 1c. Only with such random site

selection can an investigator ensure that model predictions from sampled
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points can be extended to generate abundance estimates to larger spatial
scales using the double-sampling approach. Therefore, the assumption
that the sites sampled do representatively capture the overdispersion
pattern in this manner becomes critical to extend inferences about animal

abundance to wider areas.

(ii) Deconstructing the detection probability p*

The detection probability p* defined here is actually the product of two
probabilities: a and p, so that p*=op, where o is the proportion of the area
within each site that is actually sampled, and p is the probability that an
animal within the sampled area in that site is detected during the survey
(Williams et al. (2002)). Hence, variation in either o or p will inevitably

induce variation in p* (Elliot and Gopalaswamy (2017), Karanth and

Nichols (2017)).

(c) Data analytic concepts

Fitting index-calibration models using overdispersed data

Ideally these index-calibration models confronting overdispersed data
should be defined by likelihood functions for specific data-generating
cases (binomial or beta-binomial) (see Richards 2008). However, animal
monitoring studies often apply standard linear regression models using
ordinary least square (OLS) solutions prescribed in standard textbooks
(e.g. Sutherland 2006). There is an inherent problem in doing this, as we
illustrate in Figure 3. For p*=0.5, the expected value of S|N is indicated by

a solid dark green line. Let us assume that the average p* comes from an
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101 underlying beta distribution, with a coefficient of variation = 0.4. In sign-
102 based indices, k may be unknown and there is an inherent identifiability
103 issue between k and p*. So, we assume that the number of sampling

104 occasions k is fixed and set to 1 (see Gopalaswamy et al. (2015a,b) for the
105 limiting case when k =). The circles, distributed around this line,

106 represent one simulated outcome from a set of 20 imaginary data points.
107 When a standard linear regression analysis is conducted on data to relate
108 the variables S|N and N, an imaginary straight line is constructed (the solid
109 orange line) through the data points. Visually, the placement of this line
110 involves finding an alignment, which will minimize the least distance

111 between each data point and the line. This is called the OLS solution

112 (Casella and Berger 1990). We can use this fitted line to draw inferences
113 about the regression parameters (the slope and intercept) of the linear
114 relationship between S|N and N. We conducted such a standard linear
115 regression analysis by OLS on our simulated set of data points and plotted
116 the regression line (in solid orange) along with its associated confidence
117 intervals (in dashed orange).

118

119 We notice here (Figure 2) that while the index S tracks the variation in N
120 reasonably well, the absolute variation in S|N itself is quite large,

121 especially when N increases. For this particular simulation, the OLS

122 solution leads to an overestimation of the slope by a substantial degree
123 (45.4%). If this fitted regression line were to be used for making

124 predictions of animal abundance over large scales, seriously biased

125 estimates would result. What is worse is that the direction and magnitude
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of the bias depends on the true value of N. Further, we note that the
estimated 95% confidence intervals do not even bind the true expected
value (dark green line) in many regions of the graph. Where does this
inconsistency come from? The answer is found in statistical theory
(Kruskal 1968). It turns out that OLS fits are inefficient in the presence of
overdispersion — in our simulated case due to the presence and variation
in p*. In fact, this key problem is well recognized in the econometrics
literature (Hayashi 2000). This mathematical result means that if
overdispersion is present (as it indeed is in most animal survey data sets),
abundance predictions employing double sampling approaches using
standard linear regression analysis by OLS will not reflect the true

underlying uncertainty (eg: poor coverage probability).

(i) How parameter covariance induces artificial non-linearity in index-
calibration relationships

There is an additional problem affecting the index-calibration method.
Often, an inherent covariance can exist between model parameters. The

binomial model is denoted as: E(S|N)=kNop=(kop)N=BN. Here, we notice
that there are three sampling-related parameters, k, o and p, and one

ecological parameter, N. In practice, if there are underlying ecological or
sampling relationships among some of these parameters, the index-
calibration relationship will take a non-linear form. In such cases, linear
regression models are no longer applicable and their predictions from

index calibration data will further be at fault.
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195 FIGURES

196

197  Figure Legends

198

199  Figure 1. Simulation results for hypothetical index-calibration experiments
200 (abundance index S|N versus N) with large sample sizes (2000 data points)

201 are depicted here for the (a) binomial model and (b & c¢) beta-binomial
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202  models. The number of sampling occasions is fixed at k=3. We show that the
203  estimated R? value drops from (a) to (b) when a coefficient of variation of 0.4
204 is applied to the average detection probability parameter p* (set at 0.1 for both
205 cases). Similarly, the R? value increases from (b) to (c) when the average

206  detection probability parameter p* increases from 0.1 to 0.2. The red lines
207  depict the expected index-calibration relationship, E(S|N)=kNp* for the

208  binomial model and E(S|N) = kN[a/(a+b)] for the beta-binomial model. The
209 parameters a and b are estimated from the given coefficient of variation by the
210 formulae provided in Gopalaswamy et al. (2015a,b).

211

212  Figure 2. lllustration of the extent of dispersion under the beta-binomial model
213  of index-calibration, N versus S (which is conditional on N). The

214  overdispersion is caused by the presence of a variable detection probability,
215 so that S|N ~ Beta-binomial(kN, a, b) with the corresponding a and b set to
216 reflect a coefficient of variation of 0.4 around the average p*. The sampling
217  occasion k is assumed to be a constant with a value of one. The dark green
218 circles represent a random selection of data points from the specified

219  distribution, where mean = Na/(a+b) and variance

220 =[Nab(a+b+N)J/[(a+b)2(a+b+1)], for average p*=0.5.

221
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