
pyBedGraph: a Python package for fast operations on 1-
dimensional genomic signal tracks
Henry B. Zhang1,2, Minji Kim2*, Jeffrey H. Chuang2, and Yijun Ruan2,3
1Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA, 2The Jackson
Laboratory for Genomic Medicine, Farmington, CT, USA, 3Department of Genetics and Genome Sciences, University of
Connecticut Health Center, Farmington, CT, USA

*To whom correspondence should be addressed.

Abstract
Motivation: Modern genomic research relies heavily on next-generation sequencing experiments such as ChIP-seq
and ChIA-PET that generate coverage files for transcription factor binding, as well as DHS and ATAC-seq that
yield coverage files for chromatin accessibility. Such files are in a bedGraph text format or a bigWig binary format.
Obtaining summary statistics in a given region is a fundamental task in analyzing protein binding intensity or
chromatin accessibility. However, the existing Python package for operating on coverage files is not optimized for
speed.
Results: We developed pyBedGraph, a Python package to quickly obtain summary statistics for a given interval in
a bedGraph file. When tested on 8 ChIP-seq and ATAC-seq datasets, pyBedGraph is on average 245 times faster
than the existing program. Notably, pyBedGraph can look up the exact mean signal of 1 million regions in ~0.26
second on a conventional laptop. An approximate mean for 10,000 regions can be computed in ~0.0012 second
with an error rate of less than 5 percent.
Availability: pyBedGraph is publicly available at https://github.com/TheJacksonLaboratory/pyBedGraph under
the MIT license.

1 Introduction

The advancement of next-generation sequencing technologies allowed researchers to measure various biological
signals in the genome. For example, one can probe gene expression (RNA-seq) (Mortazavi et al., 2008), protein
binding intensity (ChIP-seq) (Robertson et al., 2007), chromatin accessibility (DHS and ATAC-seq) (Buenrostro
et al., 2015), and protein-mediated long-range chromatin interactions (ChIA-PET) (Fullwood et al., 2009).
Members of the ENCODE consortium (ENCODE Project Consortium, 2012) have collectively generated these
datasets in diverse organisms, tissues, and cell types. The 1-dimensional (1-D) signal tracks of the datasets are
generally stored in a bigWig compressed binary format or in a bedGraph text format. Although bigWig is a space-
efficient standard format for visualizing data on genome browsers, the bedGraph format is often used for text
processing and downstream analyses.
A common task in analyzing 1-D signals is extracting summary statistics of a given genomic region. For instance,
it is useful to compare an average binding intensity in a peak region of the ChIP-seq signal track to that in a non-
peak region. When analyzing new assays with unknown background null distributions, one may need to randomly
sample as many as 10 billion regions to obtain sufficient statistical power to assess the significance of observed
data for de-noising (Zheng et al., 2019). Thus, a fast algorithm is highly desirable. To accommodate this feature in
the widely used Python language, we developed a package pyBedGraph and demonstrate its ability to quickly
obtain summary statistics directly from a bedGraph file without the need to convert it to bigWig. The features of

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

pyBedGraph include finding: 1) exact mean, minimum, maximum, coverage, and standard deviations; 2)
approximate solutions to the mean.

2 Methods

Searching for a given interval in a large bedGraph file is a computationally expensive job. To overcome this
problem, pyBedGraph creates an array that contains an index to an entry of data corresponding to a bedGraph line
for every base pair in a chromosome. Therefore, when searching for a statistic, pyBedGraph can then simply use
the array indices to rapidly access the bedGraph values, thereby avoiding the need to search.

In addition to finding the exact mean, pyBedGraph offers the option to approximate it with a reduced calculation
time. The program can pre-calculate and store bins containing values over non-overlapping windows to substantially
decrease the number of values indexed and hence the runtime. In this method, pyBedGraph looks up the two bins
containing the start and end of the interval and inclusively extracts all bins between the two. When the first and last
bin do not exactly match the start and end of the interval, respectively, an estimate is made for each bin by taking
the (value of the bin)×(proportion of the bin overlapping the interval). This method trades off the speed with
accuracy.

pyBedGraph is implemented in Python3 using Cython to further optimize speed. Detailed methods are provided
in Supplementary data.

3 Results

We benchmarked the performance of pyBedGraph and its bigWig counterpart pyBigWig (Ramírez et al., 2016) on
6 ChIP-seq and 2 ATAC-seq mammalian datasets (Supplementary data) downloaded from the ENCODE portal
(Sloan et al., 2016) (https://www.encodeproject.org). All runs were on a Intel(R) Core(TM) i5-7300HQ CPU @
2.50GHz with 16 GB of RAM using a single thread.

3.1 Speed

Using an interval size of 500 bp and bin sizes of 100, 50, or 25 bp, we measured the runtime of looking up 0.1 to 1
million intervals from chr1. The results are illustrated for POLR2A ChIP-seq data (‘ENCFF376VCU’), where
pyBedGraph takes 0.26 second (cf. 56 seconds for pyBigWig) to obtain an exact mean in 1 million intervals (Figure
1a). Our approximate computation takes 0.09, 0.11, and 0.14 seconds for bin sizes 100, 500, and 25 bp, respectively,
while pyBigWig takes 56 seconds. As the size of the query intervals get larger, the run time gradually decreases for
pyBedGraph’s approximate mean while it increases for the calculation of the exact mean (Supplementary data).

3.2 Accuracy

We next measured the amount of error resulting from the approximation. For each interval size from 100 bp to
5,000 bp, the percentage error was defined as "##

$
∑ |'()*+,-)*(+)01,-213(+)|

1,-213(+)
$
+4" , where 𝑛 = 10,000 is the number of

regions to look up (test case intervals) in chr1. A test case interval was excluded from the error calculation when its
actual value was ‘None’ or 0 while the predicted was not, occurring in less than 2.5 percent of test cases. Mean
squared errors and absolute errors were also computed (Supplementary data). On the ‘ENCFF376VCU’ dataset,
the error was around 6%, 3%, and 1% for pyBedGraph with bin sizes equal to the interval size divided by 5, 10,

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

and 20, respectively (Figure 1b). By contrast, pyBigWig utilizes ‘zoom levels’ in the bigWig file and its
approximation error peaked at 11% and 9% for interval sizes of 1,000 bps and 4,000 bps, respectively.

3.2 Memory

The memory usage of pyBedGraph depends on the number of lines in the bedGraph file and sizes of each
chromosome in the reference genome. Reading in the bedGraph file stores two 32-bit integers and a 64-bit float for
each line; “loading” each chromosome creates an array of 32-bit integers to store the location of the corresponding
line from the bedGraph file. Furthermore, the pre-calculated bins are stored in an array of 64-bit floats of length
equal to the genome size divided by the bin size. For example, a bedGraph file for POLR2A ChIP-seq data in mouse
spleen (‘ENCFF376VCU’) uses ~1.6GB (=100,620,515 lines × (4 + 4 + 8) bytes) of memory to load the whole
genome and an additional 0.8GB (= 2.0 × 10? base pair × 4 bytes) to load chromosome 1 (chr1). Storing bins of

size 100 base pairs (bps) requires only 16MB (= @.#×"#A

"##
× 8	bytes). The memory usage of pyBedGraph is non-

trivial, yet still reasonable for most laptops. By contrast, pyBigWig does not load the bigwig file and consequently
uses no memory.

4 Discussion

We developed pyBedGraph and demonstrated its ability to quickly obtain summary statistics from 1-dimensional
genomic signals in bedGraph format. Specifically, obtaining the exact mean for 10 billion intervals is estimated to
take 43 minutes with pyBedGraph and 7.4 days with pyBigWig. However, one drawback of pyBedGraph is that it
can take up to a minute to load files whereas pyBigWig allows instant computation. Therefore, we recommend
users to choose pyBedGraph if they prefer working with bedGraph file instead of bigWig, or if they have to search
within more than 1 million intervals. For more than 1 billion intervals with limited compute time, our approximate
solution with a small bin size may be a viable option. As genomics researchers continue to develop novel
technologies ranging from bulk cells to single-cell and single-molecule experiments, it will be imperative to
distinguish true signal from technical noise. Particularly, some ChIP-seq, ChIA-PET, and ChIA-Drop experiments
yield only 10-20% enrichment rates due to weak antibody, resulting in noisy tracks. We envision pyBedGraph to
play a vital role in quickly sampling null distributions to help researchers to de-noise the data.

Funding
This work has been supported by a Jackson Laboratory Director’s Innovation Fund (DIF19000-18-02), 4DN (U54
DK107967) and ENCODE (UM1 HG009409) consortia; Human Frontier Science Program (RGP0039/2017), and
Florine Roux Endowment to Y.R.
Conflict of Interest: none declared.

References
Buenrostro,J. et al. (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc.

Mol. Biol., 109(1), 21–29.
ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature,

489(7414), 57.
Fullwood,M.J. et al. (2009) An oestrogen-receptor-a-bound human interactome. Nature, 462(7269), 58.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods, 5(7),
621.

Ramírez,F. et al. (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids
Res., 44(W1), W160–W165.

Robertson,G. et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation
and massively parallel sequencing. Nat. Methods, 4(8), 651–7.

Sloan,C. et al. (2016) ENCODE data at the ENCODE portal. Nucleic Acids Res., 44(D1), D726–D732.
Zheng,M. et al. (2019) Multiplex chromatin interactions with single-molecule precision. Nature, 566(7745), 558.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Fig. 1. Speed and accuracy benchmark on ENCFF376VCU dataset. a) Runtimes of pyBigWig
(pyBW) and pyBedGraph (pyBG) are recorded for 0.1 to 1 million intervals of size 500 bps. The
approximate algorithm for pyBG uses bin sizes of 100, 50, 25 bps. b) The percentage error rate is calculated
for approximate solutions as a function of interval sizes ranging from 100 bps to 5000 bps, each with 10,000
intervals to test. For pyBG, bin sizes are the interval size divided by 5, 10, and 20.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

pyBedGraph: a Python package for fast operations on 1-dimensional genomic signal tracks

Henry B. Zhang1,2, Minji Kim2*, Jeffrey H. Chuang2, and Yijun Ruan2,3

1Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA,
USA.
2The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
3Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington,
CT, USA.
*Corresponding author. Email: minji.kim@jax.org

Supplementary Method, Tables and Figures

Supplementary Method S1. Example mean statistics and error calculation
Supplementary Method S2. pyBedGraph usage and commands
Supplementary Table S1. Details of 8 datasets used in the benchmark
Supplementary Table S2. Runtime for 1 million test intervals
Supplementary Table S3. Error statistics for ENCFF050CCI and ENCFF321FZQ
Supplementary Table S4. Error statistics for ENCFF631HEX and ENCFF847JMY
Supplementary Table S5. Error statistics for ENCFF376VCU and ENCFF643WMY
Supplementary Table S6. Error statistics for ENCFF384CMP and ENCFF770CQD
Supplementary Figure S1. Runtime vs. number of tests for all 8 datasets
Supplementary Figure S2. Runtime vs. interval size for all 8 datasets
Supplementary Figure S3. Error rate vs. interval size for all 8 datasets

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Method S1. Example mean statistics and error calculation

An example bedGraph file is given by the following:

chr1 0 2 0.7
chr1 2 5 0.9
chr1 8 9 0.1
chr1 13 14 0.9
chr1 19 20 0.4

After reading the file, the bedGraph object stores the following table as three NumPy arrays for ‘Start’, ‘End’, and ‘Value’.

Index 0 1 2 3 4
Start 0 2 8 13 19
End 2 5 9 14 20
Value 0.7 0.9 0.1 0.9 0.4

Loading “chr1” creates the following array used to skip the searching process.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Value 0 0 1 1 1 -1 -1 -1 2 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 4

Exact statistics:
If the user searches the interval [‘chr1’, 8, 12], pyBedGraph begins by looking up the 8th index and obtains the value ‘2’. It
then goes to the 2nd index in the arrays stored in the bedGraph object. The value ‘0.1’ and length of the interval (9 – 8 = 1) at
the 2nd index is used to calculate the relevant statistic. Moving on to the next interval at the 3rd index, pyBedGraph sees that
the “Start” (‘13’) is outside our query interval and stops looking further.

Approximate mean:
If bins of size 5 are used for storing the above values, the following bin array is created:

Index 0 1 2 3
Value 2 * 0.7 + 3 * 0.9 = 4.1 1 * 0.1 = 0.1 1 * 0.9 = 0.9 1 * 0.4 = 0.4

If the user searches the interval [‘chr1’, 0, 6], pyBedGraph notes that the starting index in the bin array is 0 / 5 = 0 and the
end index is floor(6/5) = floor(1.2) = 1. Since the 0th bin is completely inside the interval, the value is stored with the weight
of 5 (=bin size). The next bin with index 1 is only partly in the interval so the value is stored with the weight of 1 (=6 mod 5).
The calculation found is then (4.1 + 0.1 / 5) / (5 + 5 * 1/5) = 0.69 The correct exact mean is (0.7×2 + 0.9×3) / (2 + 3) = 0.82.
As a result, the percentage error in this example is 100*|0.69 – 0.82| / 0.82 = 15.9%.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Method S2. pyBedGraph usage and commands

from pyBedGraph import BedGraph

arg1 - chromosome sizes file
arg2 - bedgraph file
arg3 - (optional) chromosome_name
Just load chromosome 'chr1' (uses less memory and takes less time)
bedGraph = BedGraph('myChrom.sizes', 'random_test.bedGraph', 'chr1')

bedGraph.load_chrom_data('chr1')

test_intervals = [
 ['chr1', 24, 26],
 ['chr1', 12, 15],
 ['chr1', 8, 12],
 ['chr1', 9, 10],
 ['chr1', 0, 5]
]
values = bedGraph.stats(intervals=test_intervals)

Output is [-1. 0.9 0.1 -1. 0.82]
print(result)

Full documentation at https://github.com/TheJacksonLaboratory/pyBedGraph

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Table S1. Details of 8 datasets used in the benchmark

ID Assay type Factor Organism Genome assembly Cell/tissue type

ENCFF376VCU ChIP-seq POLR2A Mus musculus C57BL/6 mm10 Adult spleen
ENCFF643WMY ChIP-seq ZNF384 Mus musculus 129S mm10 ES-E14
ENCFF384CMP ChIP-seq H3K9me3 Mus musculus C57BL/6 mm10 Forebrain embryo
ENCFF321FZQ ChIP-seq POLR2A Homo sapiens GRCh38 K562
ENCFF050CCI ChIP-seq CTCF Homo sapiens GRCh38 K562
ENCFF847JMY ChIP-seq H3K4me3 Homo sapiens GRCh38 K562
ENCFF631HEX ATAC-seq N/A Homo sapiens GRCh38 A549
ENCFF770CQD ATAC-seq N/A Mus musculus C57BL/6 mm10 p0 liver

The 8 ENCODE datasets used in the benchmark. ID: unique identification assigned by ENCODE; Assay type: experimental
assay; Factor: protein immunoprecipitation factor if ChIP-seq; Organism: name of the species and strain (if Mus musculus);
Genome assembly: reference genome used for mapping reads; Cell/tissue type: name of the cell line or tissue as listed by
ENCODE.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Table S2. Runtime for 1 million test intervals

Dataset pyBW exact pyBW app. pyBG exact pyBG app.
Bin=100 bps

pyBG app.
Bin=50 bps

pyBG app.
Bin=25 bps

ENCFF050CCI 59.265 59.649 0.266 0.093 0.113 0.137
ENCFF321FZQ 62.871 126.587 0.373 0.092 0.115 0.139
ENCFF376VCU 55.952 56.134 0.254 0.089 0.111 0.135
ENCFF384CMP 54.093 54.245 0.252 0.089 0.111 0.136
ENCFF631HEX 117.052 117.129 0.216 0.093 0.115 0.139
ENCFF643WMY 55.591 55.774 0.257 0.090 0.112 0.137
ENCFF770CQD 52.306 52.282 0.255 0.089 0.111 0.136
ENCFF847JMY 56.080 56.408 0.215 0.092 0.115 0.137
AVERAGE 64.151 72.276 0.261 0.091 0.113 0.137

Runtime recorded in seconds, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Table S3. Error statistics for ENCFF050CCI and ENCFF321FZQ

Additional error statistics for approximate results from pyBigWig and pyBedGraph. Mean squared error is calculated as
(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)@, and the absolute error is calculated as |𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|. “# actual is 0” is the number of test
cases not included in the percentage error rate due to the actual result being 0 while predicted was not. ENCFF050CCI:
CTCF ChIP-seq in human K562 cell line; ENCFF321FZQ: POLR2A ChIP-seq in human K562 cell line. Tables S4, S5, S6
follow the same notation as Table S3.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Table S4. Error statistics for ENCFF631HEX and ENCFF847JMY

Refer to Table S3 legend for labels. ENCFF631HEX: ATAC-seq in human A549; ENCFF847JMY: H3K4me3 ChIP-seq in
human K562 cell line.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Table S5. Error statistics for ENCFF376VCU and ENCFF643WMY

Refer to Table S3 legend for labels. ENCFF376VCU: POLR2A ChIP-seq in C57BL/6 (B6) mouse adult spleen;
ENCFF643WMY: ZNF384 ChIP-seq in 129S mouse ES-E14.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Table S6. Error statistics for ENCFF384CMP and ENCFF770CQD

Refer to Table S3 legend for labels. ENCFF384CMP: H3K9me3 ChIP-seq in C57BL/6 mouse forebrain embryo;
ENCFF770CQD: ATAC-seq in C57BL/6 p0 liver.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure S1. Runtime vs. number of tests for all 8 datasets

Runtime for various numbers of test cases, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.
Except for ENCFF321FZQ, pyBW exact has approximately the same runtime as pyBW app., making the red and yellow lines
overlap.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure S2. Runtime vs. interval size for all 8 datasets

Runtime for various interval sizes, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure S3. Error rate vs. interval size for all 8 datasets

Percentage error for various interval sizes, for all 8 datasets. pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.
Errors from exact statistics of both pyBigWig and pyBedGraph are not included since they are zero.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709683doi: bioRxiv preprint

https://doi.org/10.1101/709683
http://creativecommons.org/licenses/by-nd/4.0/

