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Abstract 
Motivation: Modern genomic research relies heavily on next-generation sequencing experiments such as ChIP-seq 
and ChIA-PET that generate coverage files for transcription factor binding, as well as DHS and ATAC-seq that 
yield coverage files for chromatin accessibility. Such files are in a bedGraph text format or a bigWig binary format.  
Obtaining summary statistics in a given region is a fundamental task in analyzing protein binding intensity or 
chromatin accessibility. However, the existing Python package for operating on coverage files is not optimized for 
speed.  
Results: We developed pyBedGraph, a Python package to quickly obtain summary statistics for a given interval in 
a bedGraph file.  When tested on 8 ChIP-seq and ATAC-seq datasets, pyBedGraph is on average 245 times faster 
than the existing program. Notably, pyBedGraph can look up the exact mean signal of 1 million regions in ~0.26 
second on a conventional laptop. An approximate mean for 10,000 regions can be computed in ~0.0012 second 
with an error rate of less than 5 percent. 
Availability: pyBedGraph is publicly available at https://github.com/TheJacksonLaboratory/pyBedGraph under 
the MIT license. 
 
1 Introduction  
 
The advancement of next-generation sequencing technologies allowed researchers to measure various biological 
signals in the genome.  For example, one can probe gene expression (RNA-seq) (Mortazavi et al., 2008), protein 
binding intensity (ChIP-seq) (Robertson et al., 2007), chromatin accessibility (DHS and ATAC-seq) (Buenrostro 
et al., 2015), and protein-mediated long-range chromatin interactions (ChIA-PET) (Fullwood et al., 2009).  
Members of the ENCODE consortium (ENCODE Project Consortium, 2012) have collectively generated these 
datasets in diverse organisms, tissues, and cell types. The 1-dimensional (1-D) signal tracks of the datasets are 
generally stored in a bigWig compressed binary format or in a bedGraph text format. Although bigWig is a space-
efficient standard format for visualizing data on genome browsers, the bedGraph format is often used for text 
processing and downstream analyses. 
A common task in analyzing 1-D signals is extracting summary statistics of a given genomic region. For instance, 
it is useful to compare an average binding intensity in a peak region of the ChIP-seq signal track to that in a non-
peak region. When analyzing new assays with unknown background null distributions, one may need to randomly 
sample as many as 10 billion regions to obtain sufficient statistical power to assess the significance of observed 
data for de-noising (Zheng et al., 2019). Thus, a fast algorithm is highly desirable. To accommodate this feature in 
the widely used Python language, we developed a package pyBedGraph and demonstrate its ability to quickly 
obtain summary statistics directly from a bedGraph file without the need to convert it to bigWig. The features of 
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pyBedGraph include finding: 1) exact mean, minimum, maximum, coverage, and standard deviations; 2) 
approximate solutions to the mean.   
 
2 Methods 
 
Searching for a given interval in a large bedGraph file is a computationally expensive job. To overcome this 
problem, pyBedGraph creates an array that contains an index to an entry of data corresponding to a bedGraph line 
for every base pair in a chromosome. Therefore, when searching for a statistic, pyBedGraph can then simply use 
the array indices to rapidly access the bedGraph values, thereby avoiding the need to search. 

In addition to finding the exact mean, pyBedGraph offers the option to approximate it with a reduced calculation 
time. The program can pre-calculate and store bins containing values over non-overlapping windows to substantially 
decrease the number of values indexed and hence the runtime.  In this method, pyBedGraph looks up the two bins 
containing the start and end of the interval and inclusively extracts all bins between the two. When the first and last 
bin do not exactly match the start and end of the interval, respectively, an estimate is made for each bin by taking 
the (value of the bin)×(proportion of the bin overlapping the interval). This method trades off the speed with 
accuracy. 

pyBedGraph is implemented in Python3 using Cython to further optimize speed. Detailed methods are provided 
in Supplementary data.  
 
3 Results 
 
We benchmarked the performance of pyBedGraph and its bigWig counterpart pyBigWig (Ramírez et al., 2016) on 
6 ChIP-seq and 2 ATAC-seq mammalian datasets (Supplementary data) downloaded from the ENCODE portal 
(Sloan et al., 2016) (https://www.encodeproject.org). All runs were on a Intel(R) Core(TM) i5-7300HQ CPU @ 
2.50GHz with 16 GB of RAM using a single thread. 
 
3.1 Speed 
 
Using an interval size of 500 bp and bin sizes of 100, 50, or 25 bp, we measured the runtime of looking up 0.1 to 1 
million intervals from chr1. The results are illustrated for POLR2A ChIP-seq data (‘ENCFF376VCU’), where 
pyBedGraph takes 0.26 second (cf. 56 seconds for pyBigWig) to obtain an exact mean in 1 million intervals (Figure 
1a).  Our approximate computation takes 0.09, 0.11, and 0.14 seconds for bin sizes 100, 500, and 25 bp, respectively, 
while pyBigWig takes 56 seconds. As the size of the query intervals get larger, the run time gradually decreases for 
pyBedGraph’s approximate mean while it increases for the calculation of the exact mean (Supplementary data). 
 
3.2 Accuracy 
 
We next measured the amount of error resulting from the approximation.  For each interval size from 100 bp to 
5,000 bp, the percentage error was defined as  "##

$
∑ |'()*+,-)*(+)01,-213(+)|

1,-213(+)
$
+4" , where 𝑛 = 10,000 is the number of 

regions to look up (test case intervals) in chr1. A test case interval was excluded from the error calculation when its 
actual value was ‘None’ or 0 while the predicted was not, occurring in less than 2.5 percent of test cases. Mean 
squared errors and absolute errors were also computed (Supplementary data). On the ‘ENCFF376VCU’ dataset, 
the error was around 6%, 3%, and 1% for pyBedGraph with bin sizes equal to the interval size divided by 5, 10, 
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and 20, respectively (Figure 1b). By contrast, pyBigWig utilizes ‘zoom levels’ in the bigWig file and its 
approximation error peaked at 11% and 9% for interval sizes of 1,000 bps and 4,000 bps, respectively.  
 
3.2 Memory 
 
The memory usage of pyBedGraph depends on the number of lines in the bedGraph file and sizes of each 
chromosome in the reference genome. Reading in the bedGraph file stores two 32-bit integers and a 64-bit float for 
each line; “loading” each chromosome creates an array of 32-bit integers to store the location of the corresponding 
line from the bedGraph file. Furthermore, the pre-calculated bins are stored in an array of 64-bit floats of length 
equal to the genome size divided by the bin size. For example, a bedGraph file for POLR2A ChIP-seq data in mouse 
spleen (‘ENCFF376VCU’) uses ~1.6GB (=100,620,515 lines × (4 + 4 + 8) bytes) of memory to load the whole 
genome and an additional 0.8GB (= 2.0 × 10? base pair × 4 bytes) to load chromosome 1 (chr1). Storing bins of 

size 100 base pairs (bps) requires only 16MB (= @.#×"#A

"##
× 8	bytes). The memory usage of pyBedGraph is non-

trivial, yet still reasonable for most laptops. By contrast, pyBigWig does not load the bigwig file and consequently 
uses no memory.  
 
4 Discussion 
 
We developed pyBedGraph and demonstrated its ability to quickly obtain summary statistics from 1-dimensional 
genomic signals in bedGraph format. Specifically, obtaining the exact mean for 10 billion intervals is estimated to 
take 43 minutes with pyBedGraph and 7.4 days with pyBigWig.  However, one drawback of pyBedGraph is that it 
can take up to a minute to load files whereas pyBigWig allows instant computation. Therefore, we recommend 
users to choose pyBedGraph if they prefer working with bedGraph file instead of bigWig, or if they have to search 
within more than 1 million intervals. For more than 1 billion intervals with limited compute time, our approximate 
solution with a small bin size may be a viable option. As genomics researchers continue to develop novel 
technologies ranging from bulk cells to single-cell and single-molecule experiments, it will be imperative to 
distinguish true signal from technical noise. Particularly, some ChIP-seq, ChIA-PET, and ChIA-Drop experiments 
yield only 10-20% enrichment rates due to weak antibody, resulting in noisy tracks. We envision pyBedGraph to 
play a vital role in quickly sampling null distributions to help researchers to de-noise the data. 
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Fig. 1. Speed and accuracy benchmark on ENCFF376VCU dataset. a) Runtimes of pyBigWig 
(pyBW) and pyBedGraph (pyBG) are recorded for 0.1 to 1 million intervals of size 500 bps. The 
approximate algorithm for pyBG uses bin sizes of 100, 50, 25 bps. b) The percentage error rate is calculated 
for approximate solutions as a function of interval sizes ranging from 100 bps to 5000 bps, each with 10,000 
intervals to test.  For pyBG, bin sizes are the interval size divided by 5, 10, and 20. 
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Supplementary Method S1. Example mean statistics and error calculation 
 
An example bedGraph file is given by the following: 

chr1 0 2 0.7 
chr1 2 5 0.9 
chr1 8 9 0.1 
chr1 13 14 0.9 
chr1 19 20 0.4 

 
After reading the file, the bedGraph object stores the following table as three NumPy arrays for ‘Start’, ‘End’, and ‘Value’. 

Index 0 1 2 3 4 
Start 0 2 8 13 19 
End 2 5 9 14 20 
Value 0.7 0.9 0.1 0.9 0.4 

 
Loading “chr1” creates the following array used to skip the searching process. 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
Value 0 0 1 1 1 -1 -1 -1 2 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 4 

 
Exact statistics: 
If the user searches the interval [‘chr1’, 8, 12],  pyBedGraph begins by looking up the 8th index and obtains the value ‘2’. It 
then goes to the 2nd index in the arrays stored in the bedGraph object. The value ‘0.1’ and length of the interval (9 – 8 = 1) at 
the 2nd index is used to calculate the relevant statistic. Moving on to the next interval at the 3rd index, pyBedGraph sees that 
the “Start” (‘13’) is outside our query interval and stops looking further. 
 
Approximate mean: 
If bins of size 5 are used for storing the above values, the following bin array is created: 

Index 0 1 2 3 
Value 2 * 0.7 + 3 * 0.9 = 4.1 1 * 0.1 = 0.1 1 * 0.9 = 0.9 1 * 0.4 = 0.4 

 
If the user searches the interval [‘chr1’, 0, 6], pyBedGraph notes that the starting index in the bin array is 0 / 5 = 0 and the 
end index is floor(6/5) = floor(1.2) = 1. Since the 0th bin is completely inside the interval, the value is stored with the weight 
of 5 (=bin size). The next bin with index 1 is only partly in the interval so the value is stored with the weight of 1 (=6 mod 5). 
The calculation found is then (4.1 + 0.1 / 5) / (5 + 5 * 1/5) = 0.69 The correct exact mean is (0.7×2 + 0.9×3) / (2 + 3) = 0.82. 
As a result, the percentage error in this example is 100*|0.69 – 0.82| / 0.82 = 15.9%. 
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Supplementary Method S2. pyBedGraph usage and commands 
 
from pyBedGraph import BedGraph 
 
# arg1 - chromosome sizes file 
# arg2 - bedgraph file 
# arg3 - (optional) chromosome_name 
# Just load chromosome 'chr1' (uses less memory and takes less time) 
bedGraph = BedGraph('myChrom.sizes', 'random_test.bedGraph', 'chr1') 
 
bedGraph.load_chrom_data('chr1') 
 
test_intervals = [ 
    ['chr1', 24, 26], 
    ['chr1', 12, 15], 
    ['chr1', 8, 12], 
    ['chr1', 9, 10], 
    ['chr1', 0, 5] 
] 
values = bedGraph.stats(intervals=test_intervals) 
 
 
# Output is [-1.    0.9   0.1  -1.    0.82] 
print(result) 
 
Full documentation at https://github.com/TheJacksonLaboratory/pyBedGraph 
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Supplementary Table S1. Details of 8 datasets used in the benchmark 
 

ID Assay type Factor Organism Genome assembly Cell/tissue type 

ENCFF376VCU ChIP-seq POLR2A Mus musculus C57BL/6 mm10 Adult spleen 
ENCFF643WMY ChIP-seq ZNF384 Mus musculus 129S mm10 ES-E14 
ENCFF384CMP ChIP-seq H3K9me3 Mus musculus C57BL/6 mm10 Forebrain embryo 
ENCFF321FZQ ChIP-seq POLR2A Homo sapiens GRCh38 K562 
ENCFF050CCI ChIP-seq CTCF Homo sapiens GRCh38 K562 
ENCFF847JMY ChIP-seq H3K4me3 Homo sapiens GRCh38 K562 
ENCFF631HEX ATAC-seq N/A Homo sapiens GRCh38 A549 
ENCFF770CQD ATAC-seq N/A Mus musculus C57BL/6 mm10 p0 liver 

The 8 ENCODE datasets used in the benchmark.  ID: unique identification assigned by ENCODE; Assay type: experimental 
assay; Factor: protein immunoprecipitation factor if ChIP-seq; Organism: name of the species and strain (if Mus musculus); 
Genome assembly: reference genome used for mapping reads; Cell/tissue type: name of the cell line or tissue as listed by 
ENCODE. 
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Supplementary Table S2. Runtime for 1 million test intervals 
 

Dataset pyBW exact pyBW app. pyBG exact pyBG app. 
Bin=100 bps 

pyBG app. 
Bin=50 bps 

pyBG app. 
Bin=25 bps 

ENCFF050CCI 59.265 59.649 0.266 0.093 0.113 0.137 
ENCFF321FZQ 62.871 126.587 0.373 0.092 0.115 0.139 
ENCFF376VCU 55.952 56.134 0.254 0.089 0.111 0.135 
ENCFF384CMP 54.093 54.245 0.252 0.089 0.111 0.136 
ENCFF631HEX 117.052 117.129 0.216 0.093 0.115 0.139 
ENCFF643WMY 55.591 55.774 0.257 0.090 0.112 0.137 
ENCFF770CQD 52.306 52.282 0.255 0.089 0.111 0.136 
ENCFF847JMY 56.080 56.408 0.215 0.092 0.115 0.137 
AVERAGE 64.151 72.276 0.261 0.091 0.113 0.137 

 
Runtime recorded in seconds, for all 8 datasets.  pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.     
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Supplementary Table S3. Error statistics for ENCFF050CCI and ENCFF321FZQ 
 

 
Additional error statistics for approximate results from pyBigWig and pyBedGraph. Mean squared error is calculated as 
(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)@, and the absolute error is calculated as |𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|. “# actual is 0” is the number of test 
cases not included in the percentage error rate due to the actual result being 0 while predicted was not. ENCFF050CCI: 
CTCF ChIP-seq in human K562 cell line; ENCFF321FZQ: POLR2A ChIP-seq in human K562 cell line.  Tables S4, S5, S6 
follow the same notation as Table S3.  
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Supplementary Table S4. Error statistics for ENCFF631HEX and ENCFF847JMY 
 

 
Refer to Table S3 legend for labels. ENCFF631HEX: ATAC-seq in human A549; ENCFF847JMY: H3K4me3 ChIP-seq in 
human K562 cell line.  
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Supplementary Table S5. Error statistics for ENCFF376VCU and ENCFF643WMY 
 
 

 
Refer to Table S3 legend for labels.  ENCFF376VCU: POLR2A ChIP-seq in C57BL/6 (B6) mouse adult spleen; 
ENCFF643WMY:  ZNF384 ChIP-seq in 129S mouse ES-E14.   
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Supplementary Table S6. Error statistics for ENCFF384CMP and ENCFF770CQD 
 

 
Refer to Table S3 legend for labels. ENCFF384CMP: H3K9me3 ChIP-seq in C57BL/6 mouse forebrain embryo; 
ENCFF770CQD: ATAC-seq in C57BL/6 p0 liver.    
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Supplementary Figure S1. Runtime vs. number of tests for all 8 datasets 
 

 
Runtime for various numbers of test cases, for all 8 datasets.  pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation. 
Except for ENCFF321FZQ, pyBW exact has approximately the same runtime as pyBW app., making the red and yellow lines 
overlap. 
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Supplementary Figure S2. Runtime vs. interval size for all 8 datasets 
 

 
 
Runtime for various interval sizes, for all 8 datasets.  pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation.    
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Supplementary Figure S3. Error rate vs. interval size for all 8 datasets 
 

 
 
Percentage error for various interval sizes, for all 8 datasets.  pyBW: pyBigWig; pyBG: pyBedGraph; app.: approximation. 
Errors from exact statistics of both pyBigWig and pyBedGraph are not included since they are zero. 
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