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Abstract 1 

Protein Kinase A (PKA) exists as a tetrameric holoenzyme which activates with increase of cAMP and plays 2 

an important role in many physiological processes including cardiac physiology, neuronal development, 3 

and adipocyte function. Although this kinase has been the subject of numerous biosensor designs, a 4 

single-fluorophore reporter that performs comparably to a Förster resonance energy transfer (FRET) has 5 

yet been reported. Here, we have used basic observations of electrostatic interactions in PKA substrate 6 

recognition mechanism and nucleus localization sequence motif to design a phosphorylation switch that 7 

shuttles between the cytosol and the nucleus, a strategy that should be generalizable to all basophilic 8 

kinases. The resulting reporter yielded comparable kinetics and dynamic range to the PKA FRET reporter, 9 

AKAR3EV. We also performed basic characterization and demonstrated its potential use in monitoring 10 

multiple signaling molecules inside cells using basic fluorescence microscopy. Due to the single-11 

fluorophore nature of this reporter, we envision that this could find broad applications in studies involving 12 

single cell analysis of PKA activity. 13 
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Introduction 1 

As one of the earlier kinases to be characterized, Protein Kinase A (PKA) has been discovered to play an 2 

important role in numerous physiological processes including cardiac physiology1, neuronal development2, 3 

and adipocyte function3. The kinase, in its inactive form, exists as a holoenzyme composed of two catalytic 4 

subunits and two regulatory subunits. Activation of the kinase is generally understood to occur through 5 

the increase of cAMP, which leads to the dissociation of the holoenzyme. Kinase activity can further be 6 

spatially regulated through the existence of A-kinase anchoring proteins which anchor the holoenzyme to 7 

specific subcellular localizations4. 8 

This well-characterized nature of PKA has naturally lent to it being used as a platform for number of 9 

interesting concepts for kinase reporters. One of the earliest of such designs was the utilization of Förster 10 

resonance energy transfer (FRET) to monitor the dissociation of the catalytic and regulatory subunits of 11 

the protein, a basic design that was used to demonstrate the localness of cAMP concentration and PKA 12 

activity5. A more generalizable variant of this design was established by Zhang, et al. which involved 13 

creating a chimera that consisted of FRET-compatible fluorescent proteins, a phosphopeptide binding 14 

domain, and a short kinase substrate sequence6. Upon phosphorylation, the binding affinity between the 15 

phosphopeptide binding domain and the substrate sequence dramatically increase leading to a 16 

conformational change, which is then measured through changes in FRET. This design has been the basis 17 

for number of generations of PKA FRET reporters existing in literature7–11. 18 

One of the main advantages of fluorescent kinase reporters is the ability to analyze kinase activity on a 19 

single cell level in real time. Despite this advantage, FRET reporters have the inherent downside of 20 

requiring two fluorophores, limiting the ability to monitor multiple kinases simultaneously with most 21 

experimental setups. Numerous groups have reported various approaches to overcome this limitation in 22 
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respect to PKA. These approaches have included using multiple FRET pairs12, utilizing polarization of light 1 

as a readout13, or designing proteins that changes subcellular localization in response to phosphorylation14. 2 

Our approach here utilizes a similar principle that we reported in a previous study where we designed a 3 

membrane-bound phosphorylation switch15. In summary, arginines in the P-2 and P-3 positions are 4 

important residues for substrate recognition16,17. By placing the amino acid sequence for the substrate in 5 

tandem with minor modifications, we designed an amino acid sequence that loosely conformed to known 6 

consensus nuclear localization sequence (NLS) motifs18. This peptide responded to PKA activity by 7 

shuttling between the nucleus and the cytosol. We furthermore performed basic optimization and 8 

demonstrated its use in simultaneously monitoring two different signals within a cell. 9 

Methods 10 

Cell Culture and Transfection 11 

HeLa cells were cultured in DMEM with 10% FBS and routinely passaged. Cells were seeded at a density 12 

of 2.0x104 cells/cm2 in a 6-well plate containing a 25 mm coverslip one day before transfection. They were 13 

transfected with multiple plasmids at an amount of 50 ng each using FugeneHD according to 14 

manufacturer’s protocol. On the following day, culture media was replaced with serum-free DMEM in the 15 

morning. Imaging took place in the afternoon of the same day. 16 

Image Acquisition 17 

Images were acquired on an inverted microscope (IX81, Olympus) with a heated incubator that 18 

maintained the chamber at 37° and 5% CO2 (WELS, Tokai-Hit). Images were acquired for either 15 or 25 19 

minutes at 1-minute interval. Drugs were added at the 5-minute and 15-minute point. PKA activation was 20 

achieved through treatment with 50 µM forskolin and 100 µM IBMX, unless otherwise noted. For the 21 

experiment demonstrating reversibility, the media was replaced with new media containing 40 µM H89 22 
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at the 15-minute point, as residual forskolin and IBMX led to an incomplete inhibition of PKA. Images were 1 

acquired with a CMOS camera (C11440, Hamamatsu) in a 60x oil objective (Plan Apo N, Olympus) with the 2 

appropriate excitation and emission filters driven by a filter wheel controller. Metamorph was used to 3 

control the hardware associated with the microscope which includes the motorized stage (MS-2000, 4 

Applied Scientific Instrumentation), filter wheels (Lambda 10-3, Sutter Instruments), and LED light source 5 

(pE-300, CoolLED). To measure response with the FRET reporter, cells were excited on the CFP channel, 6 

and images were acquired on the YFP channel. 7 

Image Analysis 8 

All cells were co-transfected with H2B-mCherry (Figs 1, 2, 3, S1) or H2B-mCerulean3 (Figs 4, S2) to mark 9 

the nucleus. Using the H2B as a mask, ImageJ was used to distinguish cytosolic fluorescent signal from the 10 

nuclear signal. The fluorescent signal change was tracked by creating a ratio of cytosol-to-nuclear signal. 11 

For FRET experiments, the fluorescent signal was tracked by tracking the ratio from YFP emission to CFP 12 

emission. For response profiles, data was normalized by the average of the pre-treatment signals. For all 13 

experiments excluding the experiment involving duplex monitoring, analysis was carried out across 3 14 

independent experiments. 10 cells were analyzed from each experiment, resulting in a total of 30 cells 15 

analyzed. Student’s t-test for unequal variance was used to test for statistical significance in Figs 2D and 16 

3D. 17 

DNA Cloning 18 

The cDNA for H2B (gift from Sergi Regot) was amplified by PCR and inserted into NheI and AgeI site of the 19 

mCherry-C1 and mCerulean3-C1 vectors (Clontech). YFP-PH(Akt) is a standard PH domain construct for 20 

PIP3 labeling. All the reporter variants were inserted into the EYFP-C1 vector (Clontech) at the SacII and 21 

BamHI restriction sites using annealed oligonucleotides. The forward sequences of the annealed 22 

oligonucleotides are tabulated below: 23 
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DNA construct cDNA sequence Amino acid sequence 

Substrate GGGCctgagaagagccagcctgggcTAGG LRRASLG 

Substrate2 GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcTAGG 

LRRASLGKRRASLG 

Substrate3 GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcaagagaagagccagcctgggcTA
GG 

LRRASLGKRRASLGKRRASLG 

Substrate4 GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcaagagaagagccagcctgggcaag
agaagagccagcctgggcTAGG 

LRRASLGKRRASLGKRRASLGKRRASLG 

Substrate3-NesA GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcaagagaagagccagcctgggcgtg
gaccagctgagactggagagactgcagatcgacgag
TAGG 

LRRASLGKRRASLGKRRASLGVDQLRL
ERLQIDE 

Substrate3(AAA)-
NesA 

GGGCctgagaagagccgccctgggcaagagaaga
gccgccctgggcaagagaagagccgccctgggcgtg
gaccagctgagactggagagactgcagatcgacgag
TAGG 

LRRAALGKRRAALGKRRAALGVDQLRL
ERLQIDE 

Substrate3-NesB GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcaagagaagagccagcctgggcgac
cccctgcccgtgctggagaacctgaccctgaagagcT
AGG 

LRRASLGKRRASLGKRRASLGDPLPVLE
NLTLKS 

Substrate3-NesC GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcaagagaagagccagcctgggcaag
gtggccgagaagctggaggccctgagcgtgaaggag
TAGG 

LRRASLGKRRASLGKRRASLGKVAEKLE
ALSVKE 

Substrate3-NesD GGGCctgagaagagccagcctgggcaagagaaga
gccagcctgggcaagagaagagccagcctgggcgcc
ctgcagaagaagctggaggagctggagctggacgag
TAGG 

LRRASLGKRRASLGKRRASLGALQKKLE
ELELDE 

Results 1 

We designed a phosphorylation switch based on the basic observation that the PKA substrate can be 2 

arranged in tandem to form a NLS. Due to the overlapping nature of the NLS with the phosphate acceptor, 3 

phosphorylation of this peptide results in a shift in localization. Our final design consisted of NLS and 4 

nuclear export sequence (NES), where the NLS contained the three phosphate acceptors for PKA (Fig 1A). 5 

When the reporter was fused to EYFP and transfected in cells, this peptide responded to PKA activation 6 

by 50 µM forskolin and 100 µM IBMX by redistributing from the nucleus to the cytosol (Fig 1B). When the 7 

signal change was quantified by taking the ratio of cytosolic fluorescence signal to nuclear signal, the 8 
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kinetics and dynamic range was comparable to the FRET reporter, AKAR3EV9. The response to 40 µM H89, 1 

which resulted in the inhibition of PKA, also revealed a similar kinetics and response to its FRET 2 

counterpart. A serine-to-alanine mutation of all the phosphate acceptors led to no response, while 3 

removing the NES led to a much slower response to the activation. Representative images show the 4 

change in localization of the EFYP within the 3 minutes following PKA activation (Fig 1C). 5 

To reach the final design, we first designed a switchable NLS. We utilized the Kemptide (LRRASLG)16, a 6 

well-established PKA substrate, as the working unit of the design, which contains the two arginines in the 7 

P-2 and P-3 position considered important for substrate recognition. A monovalent substrate alone does 8 

not conform to known NLS. However, placing these sequences in tandem leads to a sequence that 9 

conforms loosely to NLS motif (Fig 2A). We transfected cells with EYFP fused to various number of 10 

substrates. Increasing the number of substrates led to a concomitant increase in nuclear localization (Fig 11 

2B). When cells were treated with forskolin and IBMX, the fluorescent signal redistributed to become 12 

more diffuse at the end of 10 minutes of treatment determined by a normalized response profile (Fig 2C).  13 

The pre-treatment localization and the post-treatment localizations was determined by measuring the 14 

ratio of cytosol-to-nuclear fluorescent signal (Fig 2D). We also tested a construct containing four 15 

substrates. However, because of the strong nuclear localization, there was very little measurable cytosolic 16 

signal. For this peptide, we measured the depletion of nuclear signal and observed little difference 17 

compared to the construct containing three substrates (Fig S1). Given these considerations, the trivalent 18 

form was considered optimal. However, the response kinetics of the peptide was substantially slower than 19 

its counterpart FRET reporter (Fig 1B, blue). 20 

To mitigate this difference in response kinetics, we fused a NES to the trivalent substrate. A previous study 21 

established the relative strengths of the various NES’s19. Using this as a reference, we fused a 13-amino-22 

acid, leucine-rich fragment from FMR1, TFIIIA, RanBP1, and Map2K1 (Fig 3A). We observed that three of 23 

the four NES’s overpowered the NLS (Fig 3B). This also translated to a decrease in both response amplitude 24 
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and kinetics (Figs 3C, 3D). Amongst the four sequences tested, the NES fragment from FMR1 protein led 1 

to a substantial improvement in kinetics and dynamic range in comparison to the peptide lacking a NES. 2 

The kinetics and response of this design was comparable to that observed with the FRET reporter (Fig 1B, 3 

blue). 4 

Lastly, by co-transfecting the PH domain from Akt (mCherry) and the PKA phosphorylation switch (EYFP), 5 

we simultaneously monitored the synthesis of PIP3, a lipid secondary messenger, and the activity of PKA. 6 

Upon stimulation with 50 ng/mL EGF, we observed a transient increase in PIP3, indicated by the 7 

translocation of the PH domain from the cytosol to the plasma membrane (Fig 4A). This was indicated by 8 

the accumulation of PH domain at the plasma membrane upon activation with EGF but not upon PKA 9 

activation (Fig 4B). PKA activity as measured by the reporter led to a sustained level of increase upon 10 

activation of EGF and saturated with treatment of the forskolin and IBMX cocktail (Fig 4C). We also 11 

reversed the order of treatment and observed PIP3 enrichment only when the cells were treated with EGF 12 

(Fig S2). 13 

Discussion 14 

Our PKA phosphorylation switch is de novo amino acid sequence based on simple observations of PKA 15 

consensus sequence and NLS motif. Using this information, we designed a switch that reproduced the 16 

kinetics measured with a well-established FRET reporter. In contrast to FRET reporters, this type of single-17 

fluorophore reporter frees up a fluorescent color, allowing for an additional channel of analysis. We then 18 

demonstrated this capability monitoring two different signaling molecules by overexpressing cells with 19 

the PH domain from Akt and the PKA reporter. 20 

A switchable NLS alone did not reproduce the kinetics of PKA activation observed with a FRET reporter. 21 

The distribution of a protein observed in a cell is determined by the net flux of the nuclear import and 22 

nuclear export transport processes. With peptides containing only NLS’s, the nuclear import is driven by 23 
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facilitated diffusion while nuclear export is driven by passive diffusion. As passive diffusion is slower than 1 

facilitated diffusion, the time required to reach steady state is longer, reflected by the decrease in 2 

response kinetics. The addition of a NES mitigated this issue. An ideal reporter, thus, should be rate-limited 3 

by the kinetics of the underlying phosphorylation not by auxiliary processes. 4 

Another important property of reporters is kinase specificity. In our study, we have used a well-5 

characterized substrate sequence of PKA that has been used in previous FRET reporters7–11. 6 

Phosphorylation prediction algorithm, NetPhos3.120, strongly suggests PKA as the target kinase for this 7 

reporter. Furthermore, based on current literature of AGC kinases, PKA is the only AGC kinase that 8 

requires two arginines at P-2 and P-3 position16,17,21,22. These reports do not rigorously rule out non-specific 9 

phosphorylation, as substrates are not necessarily required to conform to consensus sequences. However, 10 

given current literature and our data, PKA activity appears to be the driving force behind the shuttling. 11 

We used the interaction of positively charged residues in the substrate sequence to the catalytic subunit 12 

of PKA to design the reporter. However, this is not necessarily the only method of achieving specificity. 13 

Regot, et al. developed a similar reporter which shuttles between the cytosol and the nucleus using a 14 

different strategy14. The phosphate acceptors in this reporter are placed in a much weaker, proline-rich 15 

substrate recognition sequence derived from c-Jun. The affinity towards the substrate is increased 16 

through docking sequences, which elevates the effective concentration of the substrate to the kinase23,24. 17 

We were unable to observe a measurable response with this PKA reporter. However, we speculate that 18 

this reporter design relies on a much weaker interaction with the kinase than our design, requiring a more 19 

careful optimization of experimental conditions. 20 

In summary, we have designed a reporter based on a rearrangement of a PKA substrate to create a NLS. 21 

In principle, this is generalizable to all basophilic kinases, as this mechanistically relies on disruption of 22 

electrostatic interactions through phosphorylation. Due to the single-fluorophore nature of this reporter 23 
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and its comparable performance to a FRET reporter, we envision that this could find broad applications in 1 

studies involving single cell analysis of PKA activity. 2 
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Figure 1: Basic design of the PKA kinase reporter. 1 
(A) Design consists of a NLS with three phosphorylation sites fused to a NES sequence. Phosphorylation 2 

regulates the activity of the NLS. Basic residues are colored blue; phosphoserine is colored red; and 3 
NES is colored green. 4 

(B) Response profile shows the normalized signal change resulting from the activation and inhibition of 5 
PKA FRET reporter (blue) and three variants of the nuclear-cytosol translocation reporter. The three 6 
variants are: a full version with the NES (yellow), a version lacking the NES (green), and a full version 7 
with serine-to-alanine mutations (red). 8 

(C) Representative images show the changes in distribution of the full version of the reporter that occurs 9 
within three minutes of PKA activation. 10 

All data points in this figure represent an average signal intensity calculated from 30 cells over 3 11 
independent experiments. Error bar represents standard error of mean. Scale bar represents 10 µm. 12 
 13 
Figure 2: Effects of valency on initial localization and response to PKA activation. 14 
(A) Representative images show the initial distribution (Pre) and the distribution 10 minutes post-15 

treatment (Post) for peptides containing one, two, and three substrates. 16 
(B) Response profile shows the normalized signal change resulting from the activation of PKA for peptide 17 

consisting of one (blue), two (yellow), and three (black) substrates. 18 
(C) Bar chart represents the pre-treatment localization (blue) and post-treatment localization (red) as 19 

measured by taking the ratio of cytosol-to-nuclear fluorescent signal for peptide consisting of one, 20 
two, and three substrates. 21 

(D) Table contains the amino acid sequences of the peptides containing the different number of 22 
substrates. 23 

All data points in this figure represent an average signal intensity calculated from 30 cells over 3 24 
independent experiments. Error bar represents standard error of mean. * represents p<0.001. Scale bar 25 
represents 10 µm. 26 
 27 
Figure 3: Effects of addition of NES on initial localization and response to PKA activation. 28 
(A) Representative images show the initial distribution (Pre) and the distribution 10 minutes post-29 

treatment (Post) for peptides fused with NesA, NesB, NesC, and NesD. 30 
(B) Response profile shows the normalized signal change resulting from the activation of PKA for peptide 31 

consisting fused with NesA (blue), NesB (yellow), NesC (green), and NesD (red) along with a peptide 32 
without NES (black). 33 

(C) Bar chart represents the pre-treatment localization (blue) and post-treatment localization (red) as 34 
measured by taking the ratio of cytosol-to-nuclear fluorescent signal for peptides fused with NesA, 35 
NesB, NesC, and NesD compared to a peptide without NES. 36 

(D) Table contains the amino acid sequences of the NES that was fused to the peptide along with the 37 
derived gene names. 38 

All data points in this figure represent an average signal intensity calculated from 30 cells over 3 39 
independent experiments. Error bar represents standard error of mean. * represents p<0.001. Scale bar 40 
represents 10 µm. 41 
 42 
Figure 4: Duplex monitoring of PIP3 and PKA in a single cell 43 
(A) Representative images show PIP3 accumulation (as indicated by translocation of PH domain) and PKA 44 

activity in a single cell after EGF treatment followed by PKA activation. 45 
(B) Line-scan of the image in Figure 4A (white line) shows the transient appearance of enriched 46 

fluorescent signal at the plasma membrane (arrows). 47 
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(C) Response profile shows the normalized signal change that results from EGF stimulation followed by a 1 
saturation of the reporter response with forskolin and IBMX cocktail. 2 

Data points represent measurement from a single cell. Scale bar represents 10 µm. 3 
 4 
Figure S1: Response of tetravalent substrate to PKA activation. 5 
(A) Representative images show the localization of YFP-Sub4 pre-treatment (Pre) and 10 minutes post-6 

treatment (Post). 7 
(B) Response profile shows the normalized change in nuclear fluorescent signal after PKA activation 8 

with the peptides containing the different number of substrates. 9 
All data points in this figure represent an average signal intensity calculated from 30 cells over 3 10 
independent experiments. Error bar represents standard error of mean. Scale bar represents 10 µm. 11 
 12 
Figure S2: Duplex monitoring of PIP3 and PKA in a single cell with PKA activation followed by EGF 13 
treatment. 14 
(A) Representative images show PKA activity and PIP3 accumulation (as indicated by translocation of PH 15 

domain) in a single cell after PKA activation followed by EGF treatment. 16 
(B) Line-scan of the image in Figure 4A (white line) shows the transient appearance of enriched 17 

fluorescent signal at the plasma membrane with EGF treatment but not with PKA activation (arrows). 18 
(C) Response profile shows the normalized signal change that results from PKA activation followed by 19 

EGF stimulation. 20 
Data points represent measurement from a single cell. Scale bar represents 10 µm.  21 
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