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Abstract—We discuss a method for producing a set of absent
words in a reference genome with a guaranteed Hamming
distance along all positions and additional information about
the number of mismatches, their location and the position of
the best match. We implemented it exploiting the massively
parallelism of modern GPUs hardware: the code is available at
https://bitbucket.org/mfalda/cuda_keeseek/.
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I. INTRODUCTION

Non-existent sequences in genomes, also known as nullom-
ers, have been considered for a number of different biomed-
ical applications, for example they are thought to impact
population genetics and they can be used as molecular tags
or as specific adaptors for PCR. However, to the best of
our knowledge, all algorithms proposed so far for nullomer
generation are only focused on the detection of absent words
in genomes, without providing any information about their
distance in terms of number of mismatches, and they focus
on words with a limited length. When such words are to be
employed as barcodes or PCR primers, absent words must
be distant enough to any position of the reference genome,
and must possess "primer-like" features that allow them to be
applied as primers.

In this paper we propose an algorithm for producing, for
a given reference genome, a set of sufficiently long absent
words in that genome (>= 18) with a guaranteed Hamming
distance along all positions of the reference and additional
information about the number of mismatches, their location
and the position of the best match in the reference genome.
The problem is not easy: The solution space provided by an
arbitrary genome cannot be characterized in terms of a fitness
function, therefore it is nearly impossible to design in a correct
way an informed search exploiting heuristic properties. More
formally, this is an NP-Complete problem, and this fact can
be proven by reducing it from the Hamming Center Problem
(HCP) [1]. HCP has been studied extensively in Theoreti-
cal Computer Science and also in Computational Biology,
however most studies are focused on the related clustering
problem, while the aim of this paper is to provide reasonable
primers with fair biological properties. Meta-heuristics and
parallel implementations with good practical running times
have also been developed; the drawback of these approaches
is that they cannot guarantee that an exact solution will be
found.

Since the aim is quite practical, in that we just need
to produce a number of potential good primers, we can
exploit such requirements and move their selection before
their exhaustive search in the genome; this means that we
can apply Biology-driven criteria to our candidates in order
to reduce their number a priori. The state-of-the-art parallel
devices are now the Graphical Processing Units (GPUs).
GPGPU computing is the use of a GPU together with a
CPU to accelerate general-purpose scientific and engineering
applications. It offers unprecedented application performance
by offloading compute-intensive portions of the application to
the GPU, while the remainder of the code still runs on the
CPU. Preliminary tests on a optimized version exploiting the
complex memory hierarchy of modern devices seem promising
even on a consumer class device with a limited amount of
resources with respect to the multi-threaded algorithm.

The article is organized as follows. Section II starts with
a discussion of the temporal complexity of the problem at
hand and it contains a proof of its NP-completeness. In
Section III we propose some heuristics in order to simplify the
problem and provide sound solutions from a biological point
of view. Validation of the results and timings are presented in
Section IV. Finally, a summary of findings and directions for
future research are discussed.

II. THEORY

A. Preliminaries
The problem under study concerns the processing of strings

of symbols belonging to the DNA, however the solutions pro-
posed could be applied to a generic finite alphabet of symbols.
Without loss of generality we will use a genomic alphabet
Σ4 composed by the set of the four symbols {A,C,G, T}.
The alphabet used in common Fasta files can include other
symbols. For the aim of this paper k-mers lower case letters
will be considered as their corresponding upper case symbols,
while k-mers containing any other symbol will be discarded,
since they mark areas of inferior quality.

Definition 1 (extended alphabet). The genomic alphabet Σ4

can be extended with a symbol N that stands for any symbol
not in {A,C,G, T}. Such alphabet will be called ΣN4 .

Definition 2 (complementary symbols). Each symbol of the
genomic alphabet Σ4 has a complementary symbol which
is univocally identified by the function compl : Σ4 → Σ4,
defined as compl(A) = T , compl(C) = G, compl(G) = C,
compl(T ) = A.
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Definition 3 (word, k-mer). Let Σ∗4 and Σk4 be, respectively,
the set of all the strings of finite length and of length k over
the genomic alphabet. A word is a finite ordered sequence of
symbols w ∈ Σ∗4. The length of a word is denoted by |w|. A
word of length k, w ∈ Σk4 , is called k-mer. The jth symbol
of a k-mer is referred to as σj , for j = 1, . . . , k.

Definition 4 (inverse-complementary word). For any word
w = σ1σ2 . . . σk, we define its inverse-complementary word
w̄ as

w̄ = compl(σk) compl(σk−1) . . . compl(σ2) compl(σ1).

Definition 5 (reference Genome, set of k-mers of a reference
Genome). A word that is as long as the genetic code of an
entire organism is called “reference Genome” and is denoted
by G; the set of its k-mers is indicated by Gk = {w ∈ G :
|w| = k}, clearly Gk ⊆ Σk4 .

Definition 6 (Hamming distance). The Hamming distance
between two k-mers w and w′ is defined as H : Σk4×Σk4 → N,

H(w,w′) = #
{
j : σj 6= σ′j , j = 1, . . . , k

}
.

Definition 7 (distance of a word from a reference Genome).
Given a reference Genome G and its complete set of k-mers,
Gk , we define the distance of a word w from G as

dH(w,Gk) = min
w′∈Gk

{H(w,w′)} .

B. The problem

A free text definition of the decision problem discussed in
this paper could be “is there any string of length k (k-mer),
composed of DNA symbols (A,C,G, T ), that differs by at
least n symbols from the complete set of k-mers of a reference
genome?” This decision problem can be reformulated as an
optimization problem by requiring that n is maximal.

Also the inverse-complementary words should be evaluated
in the same genome, however in the following we shall ignore
this latter hypothesis, since this can be easily taken into
consideration without increasing the asymptotic complexity of
the problem.

Problem 8 (MAX-KMER problem, MAX-KMER decision
problem). The MAX-KMER problem consists in identifying
the maximally distant k-mer wM ∈ Σk4 , such that

dH(w,Gk) ≤ dH(wM ,Gk) ∀w ∈ Σk4 .

The corresponding decision problem is stated as follows.
Given δ ∈ N and a word wM ∈ Σk4

is dH(wM ,Gk) ≥ δ ?

The MAX-KMER problem is NP-Hard; this can be easily
proved noting that once we map genomic strings into binary
strings we obtain an instance of the dual version of the
Hamming Center Problem (HCP), which is NP-Hard [1].

Definition 9 (Hamming Center problem (HCP), Hamming
Center decision problem (HCDP)). Let S ⊆ {0, 1}n be a finite
set of binary strings of length n. The HCP consists in finding
a binary string βm ∈ {0, 1}n such that

max
α∈S
{H(β, α)} is minimized,

i.e. max
α∈S
{H(βm, α)} ≤ max

α∈S
{H(β, α)} ∀β ∈ {0, 1}n.

The corresponding decision problem is stated as follows.
Given δ ∈ N and a binary string βm ∈ {0, 1}n

is max
α∈S
{H(βm, α)} ≤ δ ?

Theorem 10. The MAX-KMER problem is NP-Hard.

Proof: We prove the NP-hardness of the MAX-KMER
using a polynomial reduction from the Hamming Center
problem. We define a correspondence between a k-mer w =
σ1 . . . σk and a binary string by means of a bijective map
inBinary(w) : Σk4 → {0, 1}2k

where b : Σ4 → {0, 1}2 is a map defined as b(A) = 00,
b(C) = 01, b(G) = 10 and b(T ) = 11.

The inverse map fromBinary : {0, 1}2k → Σk4 it is
defined as

fromBinary(b1b2 . . . b2k−1b2k)

= chr(b1b2) . . . chr(b2k−1b2k)

where chr := b−1 : {0, 1}2 → Σ4, chr(00) = A,
chr(01) = C, chr(10) = G and chr(11) = T .

To solve the HCP problem using an algorithm for the MAX-
KMER problem we express the HCP, defined on an input set
of binary strings S ⊆ {0, 1}2k, in its dual form and then use
the map fromBinary to reformulate the problem as a MAX-
KMER over the genomic alphabet. The HCP is equivalent to
its dual form in which we maximize the minimum number
of matches. The problem consists in finding a binary string
βm ∈ {0, 1}n such thatβ is the binary complement of β, i.e.
is a string of the same length of β in which each binary symbol
is replaced by its complement (1 by 0 and vice versa). Let βm
be a solution of the HCP that solves also the dual problem. By
taking fromBinary(β̄m) we obtain a solution of the MAX-
KMER problem.

Conversely, let wM be a solution of the MAX-KMER
problem, by taking inBinary(wM ) we obtain βM , and β̄M
is the solution of an instance of the HCP.

Proposition 11. The MAX-KMER decision problem is NP −
Complete.

Proof: to obtain a polynomial certificate for a MAX-
KMER decision problem solution 〈wM , δ〉 it is sufficient to
search the k-mer wM in the complete set of k-mers Gkof the
reference genome G, in O(k ·#Gk), and report the minimum
Hamming distance m; if m ≤ δ accept the solution, otherwise
reject it.

III. IMPLEMENTATION

A. Algorithm

The algorithm for searching the current candidate against
the reference genome is linear in the size of the genome;
the pseudo-code is shown in Algorithm 1. It takes as inputs
the reference genome and the current candidate sequence
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Algorithm 1 parallel algorithm for searching a k-mer against
a reference genome.

procedure parallel_search(curr_seq, reference)
begin

seq_d ← curr_seq
seq_i ← inv_compl(seq_d) // L.4

if seq_d > seq_i then // L.5
begin

return
end // L.8
{ if seq_d = seq_i the following code is optimized }

dd[thr_id] ← parallel_diff(seq_d, reference)
di[thr_id] ← parallel_diff(seq_i, reference)

md ← parallel_reduce(dd)
mi ← parallel_reduce(di)

pq_insertMax2(md, mi)
end

curr_seq. For each offset in the reference genome it computes
in parallel, using GPU cores or CPU threads, the arrays of the
differences between the current direct and inverse complemen-
tary sequences, named dd and di respectively; the elements
of the arrays are filled according to internal scheduling of
the threads, whose index is indicated by thr_id. The inverse
complement of the current sequence, seq_i, is determined at
line L.4. Then, two parallel reductions, implemented again
using GPU cores or CPU threads, are applied to the arrays
of the differences in order to obtain the global minima md
and mi. The global minima are finally inserted into a max
priority queue that performs a Pareto optimal comparison of
both criteria. Candidate sequences can be explored in several
ways, however it is better to generate them by enumeration, so
we obtain two advantages: First, by establishing a total order
among k-mers we do not need to keep track of the candidates
already processed and so we can build an anytime algorithm
that can be interrupted and restarted. Second, also the pairs of a
sequence and its inverse complementary are ordered, therefore
we can immediately tell, by establishing a conventional order,
whether the current candidate is a new code or the inverse
complementary of an already processed code; lines L.5-L.8
of Algorithm 1 exploit this fact by skipping pairs that have
already computed.

In the case we want to fix the number of occurrences of
each symbol, another type of exhaustive generation of k-
mers is represented by the set of the permutations of a initial
sequence. Over permutations it is indeed possible to establish
a total order by relating them to a factorial number system,
i.e. a mixed radix numeral system adapted for numbering
permutations [2]. This could have a meaning from a biological
point of view since, for example, it is possible to fix a priori
the percentage of C and G symbols (see section III-C2).

Table I
POSSIBLE REPRESENTATIONS OF 4-MERS.

String Binary Base 4 NibbleHex
AAAA 00 00 00 00 0000 00
AAAC 00 00 00 01 0001 01
AAAG 00 00 00 10 0002 02
AAAT 00 00 00 11 0003 03

... ... ... ...
AATA 00 00 11 00 0030 0C

... ... ... ...
ATAA 00 11 00 00 0300 30

... ... ... ...
TAAA 11 00 00 00 3000 C0

... ... ... ...
TTTT 11 11 11 11 3333 FF

Algorithm 2 algorithm for determining the number of different
symbols between two 64-bit binary numbers.

function binary_diff(seq, reference)
begin

xor_even ← (seq & 0xAAAA) ^ (reference & 0xAA...A)
xor_odd ← (seq & 0x5555) ^ (reference & 0x55...5)

return popcount((xor_even >> 1) | xor_od)
end

B. Representation of the genome words

Genomes are huge sets of data, for instance the human
genome has about 3× 109 base pairs. For this reason we will
operate on bits in the domain {0, 1} to represent the 4 main
symbols in Σ4. If we consider that the ASCII standard uses
8 bits to represent a single character while 4 symbols can be
stored with log2(4) = 2 bits of information, it is easy to figure
a gain of 75%; in the real case the reference alphabet is ΣN4 ,
therefore we have to use 4 bits and the gain is reduced to 50%.
We cannot use simply 3 bits to store the additional symbol
because there would be slack bits in the 64-bit registers and
the symmetry and efficiency of the algorithms would suffer.
We consider the lexicographical order of the symbols: A, C, G,
T and we assign to each symbol a progressive base 2 number
to represent it, therefore we use the numbers 002, 012, 10 and
112 respectively. In practice, we are using half a byte, that is
a nibble, per symbol; an example for 4-mers is reported in
Table I.

The binary representation allows for the use of bitwise oper-
ations that are directly mapped on atomic processor operators
at hardware level, being performed on 64-bit registries, as
illustrated in Algorithm 2.

The operators &, |, ˆ and >> stand for bitwise “and”, “or”,
“xor” and “right shift” respectively. The only non atomic oper-
ation is the function popcount for counting the number of ones
in the sequence, however it is one of the SSE v4.2 intrinsic
instructions provided by modern CPUs and so it is very fast.
The search algorithm has also been written for Nvidia GPUs
exploiting their massive number of computational cores and
their complex memory hierarchy: The reference genome is
stored in global memory, while the candidate sequence is kept
in the constant memory; the latter is optimized at hardware
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level for efficient broadcasting towards all cores. The reduction
operations are implemented exploiting the shared memory and
require a logarithmic number of steps [RIF CUDA].

C. Heuristics and good biological solutions

Since the problem is NP-hard, under the hypothesis that
DNA fragments contain information a heuristic criterion is to
increase the “entropy” of the sequences. Moreover, even the
optimal solution could not be satisfactory from a biological
point of view: Primers have indeed features that characterize
their “fitness”, and these features can be exploited to reduce
the candidate k-mers.

1) Abstract heuristics: A simple heuristics consists in
promoting k-mers with a higher heterogeneity of symbols.
Real genomes are very complex, therefore we have to choose
relatively long values for k in order to have a reasonable
number of missing combinations. To have an idea about
which values, we built a hash table containing all k-mers of
three reference genomes: A small bacterial genome (Mycobac-
terium tubercolosis, 4MB), a small plant genome (Arabidopsis
thaliana, 120MB) and the human genome (3GB); in Table II
we report three measures, redundancy, relative redundancy and
coverage, defined as in the following.

Definition 12 (genome multiset). We define the multiset of a
genome G as

G+ = {〈gi,m(gi)〉, gi ∈ G}

where m : Σk → N is the usual generalized multiplicity
function [RIF?].

Definition 13 (redundancy). the redundancy of a set of k-mers
Gk is

R(Gk) =
(#Σ4)k −#G+

k

(#Σ4)k

Definition 14 (relative redundancy). the redundancy of a set
of k-mers Gk is

RR(Gk) =
#Gk −#G+

k

#Gk
Definition 15 (coverage). the coverage of a set of k-mers Gk
over an alphabet Σ4 is

Cov(Gk) =
#Gk

(#Σ4)k

It is clear from Table II that 15 is a reasonable number for
interesting genomes such as the human genome.

In any case, since the majority of Genome words should
have statistically a normal distribution of symbols, the heuris-
tic would measure in some way the “heterogeneity” of their
composition and to prioritize candidate words with a higher
(or smaller, but, again, this would be of little interest from
a biological point of view) heterogeneity. In Figure III.1 we
show the distribution of one of the complexity measures
discussed below for the Human genome.

The classical definition of heterogeneity is in terms of
information entropy [3] defined as

Figure III.1. distributions of the positional complexity in the human genome
for 10-mers, 15-mers and 20-mers.

H(w) = Σs=1,...,|Σ| − log2(p(σi))

where p(σi) is the frequency of the symbol σi. A more “re-
fined” idea comes from Wootton [4], [5] and allows evaluating
the local compositional complexity for a word of length k:

W (w) =
1

k
log|Σ|

(
k!

Πi=1,...,|Σ|ni!

)
where ni is the number of occurrences of the ith symbol in

w.
The previous formulas for H(w) and W (w) are not aware

of the positions of the symbols in the word, only of their
frequencies. For this reason, we developed a “positional com-
plexity” that takes into account all the sequences of symbols in
the word occurring every 1, . . . , k− 1 symbols; the positional
complexity seems more effective in describing the complexity
of a given set of words; in Figure III.2 we can observe
how its pattern is more variate with respect to those of the
classical entropies and the Wootton’s one. However, although
satisfactory from a theoretical point of view the positional
complexity, as well as its relatives, is too slow in practical
contexts, being O(k3). A faster alternative, that provides
similar gains, relies on the comparison of just 4 symbols, for a
total of 6 combinations, as shown in Algorithm 3. It is denoted
as “Diff4” in Figure III.2.

2) Biological selection criteria: To reduce the search space
we can rely on some desired properties of k-mers when
contextualized in a biological environment. An easy criterion
is the detection of series of consecutive identical symbols: It is
possible to set a threshold and discard k-mers containing too
long series that would cause alignment shifts. Also k-mers
ending in “AA”, “AT”, “TA” and “TT” can be discarded, as
well as those containing more than 3 symbols in {C,G} in
the last 5 positions.

If a k-mer contains genomic palindromes it can form
hairpins or self-dimers because of the presence of self-
complementary regions within its sequence or between couples
of identical sequences, therefore they should be avoided.
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Table II
SOME STATISTICS.

M. tubercolosis A. mediterranei A. thaliana Pyrus sp. X. tropicalis H. sapiens
Word size 10 Singleton codes 195,035 163,072 1,872 0 0 0

(tot. 1,048,576) Total codes 742,505 657,916 1,047,819 1,048,576 1,048,576 1,048,576
10-mers 4,411,522 10,236,705 118,960,596 501,311,979 856,997,629 2,864,785,127
Maximum freq. 437 1,108 54,523 677,362 27,494 2,975,193
Coverage 70.81% 62.74% 99.93% 100.00% 100.00% 100.00%
Rel. redundancy 81.40% 84.45% 99.82% 100.00% 37.26% 100.00%
Redundancy 83.17% 93.57% 99.12% 99.79% 99.88% 99.96%

Word size 15 Singleton codes 4,073,268 7,702,781 71,513,541 131,846,345 187,112,889 177,353,773
(1,073,741,824) Total codes 4,211,727 8,755,427 87,734,907 212,247,286 370,992,577 546,557,336

15-mers 4,411,517 10,236,700 118,960,591 501,311,974 856,997,624 2,864,785,122
Maximum freq. 160 65 16,770 412,533 1,130 1,198,752
Coverage 0.39% 0.82% 8.17% 19.77% 34.55% 50.90%
Rel. redundancy 99.62% 99.28% 99.05% 87.72% 100.00% 83.48%
Redundancy 4.53% 14.47% 26.25% 57.66% 56.71% 80.92%

Word size 20 Singleton codes 4,298,788 10,085,966 106,272,968 291,987,116 742,478,611 2,157,756,102
(1,099,511,627,776) Total codes 4,339,979 10,153,705 110,093,809 340,528,917 784,031,866 2,267,445,153

20-mers 4,411,512 10,236,695 118,960,586 501,311,969 856,997,619 2,864,785,117
Maximum freq. 52 53 10,147 311,195 872 451,296
Coverage 0.00% 0.00% 0.01% 0.03% 0.07% 0.21%
Rel. redundancy 100.00% 100.00% 100.00% 99.97% 100.00% 99.80%
Redundancy 1.62% 0.81% 7.45% 32.07% 8.51% 20.85%
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Figure III.2. several definitions of entropy.
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Algorithm 3 simplified version of the positional complexity.

function diff4(s, l)
begin

cnt ← 0
for i ← 1 to l do
begin

for j ← i + 1 to min(l, i + 3) do
begin

if s[i] 6= s[j] then
begin

cnt ← cnt + 1
end

end
end
tot ← 3 ∗ (l − 2)
return cnt ∗ 100 / tot

end

Definition 16 (genomic palindrome). A word w = σ1 . . . σk
is a (genomic) palindrome if it satisfies the function gPalin :
Σk → {FALSE,TRUE},

gPalin(w) =
∧

i=1,...,k

σi = compl(σk−i+1)

We can use a “longest common subsequence” algorithm
(LCS) and compute all possible alignments between a se-
quence and itself. If the length of the common subsequence
exceeds a given threshold the sequence is discarded. An
additional check is done on the ends of the sequences: if the
last position in the alignment is a match, and four out of the
last five positions are matches, the sequence is discarded.

A balanced GC content is essential for a primer to be
functional. For this reason it is possible to limit the GC content
of a k-mer, usually between 40% and 60%.

Definition 17 (GC content). The GC content of a word w =
σ1 . . . σk is given by the function gcContent : Σk → N

gcContent(w) = #{σi : σi ∈ {C,G}, i = 1, . . . , k}

A final filter is computed on the so-called “melting temper-
ature”. The melting temperature of a candidate k-mer is cal-
culated with the Nearest Neighbor method and the SantaLu-
cia table with DNA/DNA thermodynamic parameters, [San-
taLucia, et al., 1996]:

Tm =

Σ(∆Hd) + ∆Hi

Σ(∆Hd) + ∆Si + ∆Sself +R · ln(CT /b)

+ 16.6 · log10([NA+])

. ∆Hd and ∆Sd, sums of enthalpy and entropy respec-
tively, are calculated for all internal nearest-neighbor doublets ;
∆Sself is the entropic penalty for self-complementary se-
quences. ∆Hi and ∆Si are the sums of initiation en-
thalpies and entropies, R is the gas constant and CT
is the molar concentration. b is a constant equal to 4 for

non-self-complementary sequences and 1 for duplexes of self-
complementary strands or for duplexes when one of the strands
is in significant excess.

.
All these combined filters allow for a drastic reduction

of plausible candidates, as illustrated in Table III for per-
mutations. Note that the total number of permutations is
complete, being equal to their theoretical number given by
the multinomial coefficient(

k
n1n2 · n|Σ|

)
=

(Σini)!

Πini!

where ni is the number of occurrences of the ith symbol,
written as nA : nC : nG : nT in the table.

IV. RESULTS

A. Validation

The algorithm has been implemented in a tool named
keeSeek (https://bitbucket.org/mfalda/cuda_keeseek/) imple-
mented in CUDA. We ensure the correctness of the proposed
tool by validating its results against glsearch (version 36.3.5b)
[6], a global-local aligner part of the Fasta3 package and
based on the Needleman and Wunsch algorithm [7]. Current
software for sequence alignments is designed to search for the
highest similarity between two sequences possibly by inserting
gaps between symbols, while keeSeek is designed to search
for the highest dissimilarity among continuous sequences.
Nonetheless, glsearch can be used to confirm keeSeek results if
candidate k-mers do not present discontinuities. The glsearch
command line arguments are:

-f -100 -g -100 -n -b 1 -d 1 -E 10000 -z -1

. To make the results from keeSeek and glsearch compa-
rable, we try to discourage the presence of gaps by heavily
penalize gap extensions (-g parameter). Even if performance
was not the target of these comparisons, we reported also
glsearch times in the next tables (Table IV and Table V).

B. Performance

To measure the performance in terms of speed, we consider
the three different reference genomes plus other three: A
medium sized bacterium (Amycolatopsis mediterranei, 10MB),
a small plant (Pyrus sp., 500MB) and a vertebrate (Xenophus
tropicalis, 1.5GB).

Four systems have been tested:
• server1: Intel Xeon E5540 quad core processors,

2.53GHz, 32GB RAM;
• server2: AMD Opteron 6128 quad core processors,

2.6GHz, 64GB RAM with a GPU Nvidia Fermi M2050,
6GB global memory;

• desktop1: Intel Q6600, 2.40 GHz, 3GB RAM with a
GPU Nvidia GeForce GT 640 GDDR5, 2GB global
memory;

• notebook1: Intel i7 M260, 2.67 GHz, 4GB RAM with a
GPU Nvidia GeForce 310M, 0.5GB global memory.
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Table III
FILTERED SEQUENCES FOR SEVERAL COMPOSITIONS OF SYMBOLS

Initial permutation passed total % theoretical ms µs per seq
5:5:5:5 314,531,127 11,732,745,024 2.68% 11,732,745,024 26,289,100 2.24
5:4:5:4 37,598,833 771,891,120 4.87% 771,891,120 1,600,000 2.079
4:4:4:4 3,550,455 63,063,000 5.63% 63,063,000 151,134 2.40
3:3:3:3 208,271 369,600 56.35% 369,600 520.512 1.41
2:2:2:2 1,695 2,520 67.26% 2,520 3.11 1.84

Tables IV and V show the times required to search 128
20-mers in several genomes using candidates generated by
enumeration and by permutation respectively. Additional time
is required to load reference genomes (order of minutes for
the bigger genomes).

V. CONCLUSIONS

Finding non-existent words in genomes is an important
problem of Computational Biology. We have proposed a tool
for finding a set of sequences whose minimal Hamming
distance from a reference genome is guaranteed; it also pro-
vides information about the location of the best solutions in
the genome.This problem is not easy and we have formally
proved this fact. We have also implemented a software in
C++ exploiting the massive parallelism of modern Graphical
Processing Units.

The problem under study can be solved using distributed
algorithms and we intend to write a empowered version using
MPI technology. Another possible enhancement is to assign a
weight to each mismatch in order to rank solutions having the
same distance from the reference genome.
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Table IV
EXPECTED TIMES TO PRODUCE THE FIRST 128 FILTERED SEQUENCES USING ENUMERATION ON DIFFERENT GENOMES.

Reference genome Genome size length server1 server2 desktop1 notebook1
Mycobacterium tuberculosis 4.4 MB 20 0m2.7s 0m1.1s 0m0.408s 0m23.81s
Amycolatopsis mediterranei 10.2 MB 20 0m58.3s 0m2.0s 0m1.036s 0m54.08s

Arabidopsis thaliana 120 MB 20 11m27.2s 0m12.9s 0m9.937s 7m0.889s
Pyrus sp. 500 MB 20 48m25.42s 0m50.59s 0m41.847s NOT POSSIBLE

Xenopus tropicalis 1.5 GB 20 2h19m14s 2m2.87s 2m2.168s NOT POSSIBLE
Homo sapiens 3 GB 20 4h51m22s 6m12.8s NOT POSSIBLE NOT POSSIBLE

Table V
EXPECTED TIMES TO PRODUCE THE FIRST 128 FILTERED SEQUENCES USING PERMUTATIONS ON DIFFERENT GENOMES.

Reference genome Genome size composition server1 server2 desktop1 notebook1
Mycobacterium tuberculosis 4.4 MB 5:5:5:5 0m2.5s 0m1.1s 0m0.612s 0m23.28s
Amycolatopsis mediterranei 10.2 MB 5:5:5:5 0m58.1s 0m1.6s 0m0.868s 0m53.99s

Arabidopsis thaliana 120 MB 5:5:5:5 11m16.0s 0m13.4s 0m9.553s 7m2.203s
Pyrus sp. 500 MB 5:5:5:5 48m19.79s 0m52.83s 0m41.843s NOT POSSIBLE

Xenopus tropicalis 1.5 GB 5:5:5:5 2h19m16s 2m2.84s 2m1.396s NOT POSSIBLE
Homo sapiens 3 GB 5:5:5:5 4h52m02s 6m00.4s NOT POSSIBLE NOT POSSIBLE
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