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Abstract 1 
Compositional multistability is widely observed in multispecies ecological communities. 2 
Since differences in community composition often lead to differences in community function, 3 
understanding compositional multistability is essential to comprehend the role of biodiversity 4 
in maintaining ecosystems. In community assembly studies, it has long been recognized that 5 
the order and timing of species migration and extinction influence structure and function of 6 
communities. The study of multistability in ecology has focused on the change in dynamical 7 
stability across environmental gradients, and was developed mainly for low-dimensional 8 
systems. As a result, methodologies for studying the compositional stability of empirical 9 
multispecies communities are not well developed. Here, we show that models previously 10 
used in ecology can be analyzed from a new perspective - the energy landscape - to unveil 11 
compositional stability in observational data. To show that our method can be applicable to 12 
real-world ecological communities, we simulated assembly dynamics driven by population 13 
level processes, and show that results were mostly robust to different simulation assumptions. 14 
Our method reliably captured the change in the overall compositional stability of multispecies 15 
communities over environmental change, and indicated a small fraction of community 16 
compositions that may be channels for transitions between stable states. When applied to 17 
murine gut microbiota, our method showed the presence of two alternative states whose 18 
relationship changes with age, and suggested mechanisms by which aging affects the 19 
compositional stability of the murine gut microbiota. Our method provides a practical tool to 20 
study the compositional stability of communities in a changing world, and will facilitate 21 
empirical studies that integrate the concept of multistability from different fields. 22 
 23 
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Introduction 1 
The order and timing of species migration and extinction during community assembly 2 
influence the structure (Drake 1991, Fukami and Morin 2003, Kadowaki et al. 2012) and 3 
function (Fukami et al. 2010, Jiang et al. 2011) of communities, resulting in multistability 4 
(also known as alternative stable states) of different community compositions (Fukami 2010, 5 
Fukami 2015). Compositional dynamics play a prominent role in real world ecosystem 6 
organization, and understanding community assembly in terms of the management of 7 
ecological systems has direct relevance to conservation biology, agriculture, and medicine 8 
(Fukami et al. 2015). There is a need for development of a methodology that accounts for 9 
compositional stability in multispecies communities to facilitate predicting, preventing and 10 
controlling large-scale shifts in community compositions. 11 
 12 
In the field of microbial ecology, the recent development of next-generation sequencing 13 
technology has made it possible to comprehensively study community structures (Caporaso et 14 
al. 2010, Ding and Schloss 2014, Thompson et al. 2017, Bolyen et al. 2019). This 15 
development led to recognition of the association between composition and function of 16 
microbial communities that is essential for the maintenance of host organisms or physical 17 
environment (Costello et al. 2012, Widder et al. 2016, Sommar et al. 2017). 18 
 19 
In the animal intestine there is a phenomenon called dysbiosis in which function is severely 20 
impaired due to infection or other causes (Carding et al. 2015). One example would be C. 21 
difficile infection (CDI) (Kelly and LaMont 2008, Britton and Young 2014) that can occur 22 
when the gut microbiota has been disrupted from its normal balance, e.g., by antibiotics. The 23 
normal microbiota is resistant to C. difficile colonization, whereas it is significantly altered 24 
when C. difficile successfully colonizes the intestine. There would be at least two community 25 
compositions (with or without C. difficile) that are stable at the same environmental 26 
conditions. In this case, transplantation of the normal microbiota can effectively restore the 27 
infected microbiota back to normal (Bakken et al. 2011). However, simply implanting a 28 
desirable microbiota is not a universal method for its establishment (Rilling et al. 2015, 29 
Castledine et al. 2020), and a more systematic methodology is required (Mueller and Sachs 30 
2015, Sbahi and Di Palma 2016, Toju et al. 2020). 31 
 32 
There are many empirical examples of multistability in community assembly dynamics (see, 33 
e.g., review by Schlöder et al. 2005). In aquatic microbial communities, Drake (1991) 34 
showed the effect of the sequence of species invasions on final community composition. 35 
More recently, Pu & Jiang (2015) found that alternative community states were maintained 36 
for many generations despite frequent dispersal of individuals among local communities. On 37 
the other hand, studies of multistability in ecology have been mainly developed for low 38 
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dimensional systems (May 1977, Scheffer et al. 2001, Beisner et al. 2003). One typical 1 
example is the relationship between the abundance of phytoplankton and plant species with 2 
phosphorus concentration in lake systems (Scheffer and Jeppsen 2007); there are contrasting 3 
conditions represented by low and high algal density, and a gradual shift of phosphorus 4 
concentration triggers a rapid transition known as a catastrophic regime shift. These studies 5 
raise two important challenges regarding the analysis of compositional stability in 6 
multispecies communities, which we focus on here. 7 
 8 
First, the potential landscape description, called a “ball and cup diagram”, has been 9 
frequently used to explain the stability of low dimensional systems (see, e.g., Scheffer et al. 10 
2001), but how should it be interpreted when the system cannot be simplified to a few 11 
dimensions? As a solution, we introduce the concept of the stability landscape (Figure 1) in 12 
this paper. Walker et al. (2004) used the term to refer to the ball and cup diagram itself. 13 
Recent studies implement this idea to study the stability of microbial communities by 14 
projecting their abundance data on to a continuous potential landscape with a few dimensions 15 
(Gibson et al. 2017, Shaw et al. 2019). Here, we define the stability landscape as a structure 16 
that maps out the overall compositional stability of an ecological community. It can be 17 
represented as a graph with a set of community compositions and transition paths between 18 
them. Such a view has already been introduced in some experimental (Weatherby et al. 1998, 19 
Law et al. 2000, Warren et al. 2003) and theoretical studies (Law and Morton 1993, Capitan 20 
et al. 2011), but our goal here is to develop a methodology to study stability landscapes of 21 
empirical communities. 22 
 23 
Second, it is also important to capture changes in stability landscape in response to 24 
environmental changes. For example, Lahti et al. (2014) showed that there are some taxa in 25 
human gut microbiota that show contrasting abundances according to age and lead to a shift 26 
of microbial composition during middle to old age. In this case, age was regarded as a 27 
dominant parameter of the intestinal environment and the key to transition between two 28 
contrasting states. However, given that the composition of microbiota may shift due to causes 29 
other than aging, such as infections (Kelly and LaMont 2008, Costello et al. 2012), it would 30 
be important to address changes in the overall compositional stability rather than the stability 31 
of two contrasting states. 32 
 33 
To analyze the stability landscape of multispecies communities addressing the points 34 
described above, we introduce an energy landscape analysis (Becker and Karplus 1997, 35 
Wales et al. 1998, Watanabe et al. 2014a) incorporating an extended pairwise maximum 36 
entropy model. The extended pairwise maximum entropy model is a combination of two 37 
models that have previously been used in ecology. One is the species distribution model 38 
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known as MaxEnt (Philips et al. 2004, 2006), and the other is the pairwise maximum entropy 1 
model (Schneidman et al. 2006; in ecology it is introduced as Markov network, see, e.g., 2 
Azaele et al. 2010, Araújo et al. 2011, Harris 2015). MaxEnt was developed around a model 3 
that predicts species distribution from environmental conditions, and by using the maximum 4 
entropy principle, it provides least-biased distribution estimates given prior knowledge such 5 
as observational data (Jaynes 1982, Harte and Newman 2014). The pairwise maximum 6 
entropy model has been used to predict species distribution and/or to detect signals of biotic 7 
interactions behind co-occurrence data (Azaele et al. 2010, Araújo et al. 2011, Harris 2016), 8 
and is obtained by applying the maximum entropy principle to co-occurrence information 9 
(Azaele et al. 2010). 10 
 11 
While MaxEnt is known to give more accurate predictions relative to comparable models 12 
(Elith et al. 2006), it is unable to handle co-occurrence information that signals biotic 13 
interactions as well as shared environmental preferences between species (Kissling et al. 14 
2012, Ockendon et al. 2014, Thuiller et al. 2015, Barner et al. 2018, Freilich et al. 2018). 15 
When community-level occurrence data is available, such information can be used to obtain 16 
more accurate predictions for species distribution (Meier et al. 2010, Leach et al. 2016, 17 
Barbaro et al. 2019). Therefore, the integration of the two models is a natural extension to 18 
handle environmental and co-occurrence data simultaneously. This has been attempted in one 19 
previous study, aimed at improving the accuracy of species distribution predictions and 20 
refining the estimation of biotic interactions under environmental heterogeneity (Clark et al. 21 
2018), but the purpose of introducing the integrative model here is different. 22 
 23 
By introducing the energy landscape analysis, we show how we can use the pairwise 24 
maximum entropy models to study the stability landscape of multispecies communities. 25 
While the stability landscape represents the actual compositional stability driven by 26 
population dynamics, the energy landscape is its approximation based on the maximum 27 
entropy principle given observational data. Briefly, energy landscape is a weighted network 28 
whose nodes represent unique community compositions and links represent transition path 29 
between them. Energy landscape analysis is the analysis of topological and connection 30 
attributes of the weighted network (Watanabe et al. 2014a). This analysis informs how a 31 
stability landscape constrains the compositional dynamics just as the ball and cup diagram 32 
does for low dimensional systems. Energy landscape analysis has its origins in the study of 33 
molecular dynamics (Becker and Karplus 1997, Wales et al. 1998) and was recently proposed 34 
as a data analysis method for neuroscience (Watanabe et al. 2014a,b, Ezaki et al. 2017, 35 
Watanabe & Rees 2017, Ezaki et al. 2018). Watanabe et al. (2014a) described the activity of 36 
multiple brain regions as binary vectors to show that the activity patterns of the resting brain 37 
are attracted to a small number of attractive states, and these states are hierarchically 38 
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structured. This was done by 1) defining a set of unique activity patterns (network nodes) and 1 
connections between them as the transition path between different activity patterns (network 2 
links), 2) weighting each activity pattern by energy given by a pairwise maximum entropy 3 
model, and 3) analyzing the connection attributes of the weighted network. 4 
 5 
We attempt to fully ground the concept of energy landscape analysis in an ecological context, 6 
and, by introducing the extended pairwise maximum entropy model, add a methodological 7 
advancement to account for the shift of stability landscapes across environmental changes. 8 
This will be a practical tool to study the compositional stability of multispecies communities 9 
in a changing environment, and will open up the possibility of empirical studies that integrate 10 
the concept of alternative stable states in community assembly studies and regime shifts 11 
developed mainly for low-dimensional systems. To show that our proposed method can be 12 
applicable to real-world ecological communities, we simulated the assembly dynamics driven 13 
by population level processes, and show that the features characterizing the stability 14 
landscape can be effectively inferred by pairwise maximum entropy models with the help of 15 
energy landscape analysis.  16 
 17 
This paper is organized as follows. In the next section, we thoroughly explain our 18 
methodology, as well as the setup of a Lotka-Volterra (LV) model that we used for 19 
benchmarking. We then demonstrate how a stability landscape of the LV model was studied. 20 
We also benchmarked our methodology for multiple independent data sets obtained from 21 
different simulation conditions. Finally, as the application to a real-world community, we 22 
applied our methodology to the murine gut microbiota (Nakanishi et al. 2020). We found two 23 
alternative stable states and revealed how change in their relative stability is affected by age 24 
interacting with species relationships. 25 
 26 
 27 
Materials and Methods 28 
Definition of state space 29 
By formalizing the concept of the stability landscape, we obtain a definition of the state space 30 
for an energy landscape. We define community composition σ as a binary vector of length 31 
S. Here, S is the total number of species. There is a total of 2S unique community 32 
compositions, which are the nodes of the stable state. We denote a community composition of 33 
kth sample (k ∈ {0,1, … , 2S−1}) as σ(k) = (σ1

(k),σ2
(k), … ,σS

(k)), where σi
(k) ∈ {0,1} is the 34 

presence absence status of the ith species. Then, we define the links that connect community 35 
compositions under the assumption that community compositions change in a stepwise 36 
manner, i.e., two community compositions are adjacent by a link only if they have the 37 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 17, 2021. ; https://doi.org/10.1101/709956doi: bioRxiv preprint 

https://doi.org/10.1101/709956


7 
 

opposite status (i.e., 0/1) for just one species. Under this assumption, the community 1 
compositions form a regular network in which each node has S links. 2 
 3 
Pairwise maximum entropy models and Energy landscape 4 
We assign energy to each community composition and impose the potential structure to the 5 
state space by introducing the extended pairwise maximum entropy model. The model 6 
determines the probability of the occurrence of community composition σ(k) in an 7 
environmental condition ε = (ε1, ε2, … , εM), which is an array of continuous values 8 
representing environmental factors such as resource availability, pH, temperature, or age of 9 
host organism: 10 

P�σ(k)|ϵ� = e−E(σ(k),ε)/Z,        (1) 11 

E�σ(k), ε� = −∑ hiσi
(k)S

i=1 − ∑ ∑ gijεi
(k)σj

(k)M
i=1

S
j=1 − ∑ ∑ Jijσi

(k)σj
(k)S

j=1,j≠i
S
i=1 /2.  (2) 12 

Here, E�σ(k), ϵ� is defined as the energy of community composition σ(k), and 13 
Z = ∑ e−E(σ(k),ε)2S−1

k=0 .         (3) 14 
It is worth noting that we label E�σ(k), ϵ� as energy simply because of the terminology for 15 
the same equation in statistical physics (Brush 1967, Azaele et al. 2010). In ecology, it is 16 
nothing but an exponent in eq.(1) and is an indicator of how often a community composition 17 
is likely to be observed; it does not correspond in any way to the physical form of energy 18 
used in the ecological studies. Parameters in eq.(2) are his, Jijs and gijs, which are elements 19 
of a vector h = (h1, h2, . . , hS) and matrix J = (Jij)i=1,2,…,S;j=1,2,…,S and matrix g =20 
(gij)i=1,2,…,M;j=1,2,…,S, respectively. hi is the net effect of unobserved environmental factors 21 
that may favor the presence (hi > 0) or absence (hi < 0) of species i, and gij represents the 22 
effect of the ith (observed) environmental factor on the occurrence of the jth species. Each 23 
species is coupled to all others in a pairwise manner through Jijs (Jij = Jji), therefore Jij > 0 24 
favors the co-occurrence of species i and j and Jij < 0 disfavors the co-occurrence of 25 
species i and j. The extended pairwise maximum entropy model can be reduced to the 26 
pairwise maximum entropy model (Azaele et al. 2010, Araújo et al. 2011, Harris 2015) with, 27 

E�σ(k)� = −∑ hiσi
(k)S

i=1 − ∑ ∑ Jijσi
(k)σj

(k)S
j=1,j≠i

S
i=1 /2,     (4) 28 

if the effect of environmental conditions can be ignored. Eq. (2) and (4) include pairwise 29 
relationships. Thus, it is assumed that all higher-order occurrence patterns are well-captured 30 
by the information encapsulated in the first two moments (Azaele et al. 2010). This is relaxed 31 
by including the high order terms in these equations. However, such extension would 32 
increase the dataset size required to obtain enough predictive performance (Nguyen et al. 33 
2017). 34 
 35 
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The pairwise maximum entropy models assign energy to each community composition in 1 
state space. The energy represents the directionality of the transition between community 2 
compositions. For each pair of two adjacent nodes (say, σ(k) and σ(k′)), let P�σ(k)� <3 
P�σ(k′)� such that E�σ(k)� > E�σ(k′)�. The transition of community compositions is more 4 
likely to occur from σ(k) to σ(k′) than σ(k′) to σ(k). Since such a local transition rule 5 
governs the transition dynamics in a chain, the energy landscape determines the directionality 6 
of overall compositional dynamics. We expect that this could be an approximation of the 7 
stability landscape. 8 
 9 
We assume that we have a dataset containing the community compositions of N samples 10 
(Fig. 2A, B). We denote the community composition of samples as an S × N matrix X =11 
(x1, x2, … , xN) and xi ∈ {σ(1),σ(2), … ,σ(2S)} (Fig. 1B). If available, we denote the 12 
environmental condition of N samples as M × N matrix Y = (y1, y2, … , yN), where local 13 
environmental condition yi = ε(i) = (ε1

(i), ε2
(i), … , εM

(i)) represents the environmental factors 14 
of the ith sample (Fig. 2B). Thus, a pair of X and Y is the observational data required for our 15 
analysis (Y is not always necessarily). The maximum likelihood estimates of h, J and g 16 
(Fig. 2C) can be obtained by a gradient descent for the pairwise maximum entropy model 17 
(eq.(4)) or stochastic approximation method for the extended pairwise maximum entropy 18 
model (eq.(2)) as described in Appendix S1. Since these equations are derived from the 19 
maximum entropy principle, probability distribution of community compositions with these 20 
parameters is the least biased estimate given the observational data (Jaynes 1982, Harte and 21 
Newman 2014). In other words, the probability distribution satisfies the constraints imposed 22 
by the observational data while maximizing the remaining uncertainty. This is a reasonable 23 
and well-verified (Shipley et al. 2006, Elith et al. 2006, Franklin 2009, Parisien and Moritz 24 
2009, Harte 2011, Staniczenko et al. 2017, Clark et al 2018) assumption to estimate the 25 
probability of the occurrence of a community composition that is not actually observed. 26 
 27 
 28 
Energy landscape analysis 29 
Energy landscape analysis is an analysis on the topological and connection attributes of an 30 
energy landscape (Fig. 2D). Below, we show how to identify its key components and explain 31 
how they can help us to understand the structure of a stability landscape. We will use the term 32 
“node” in the same sense as one community composition. 33 
 34 
Energy minima - We identify energy minima of an energy landscape as stable states of a 35 
stability landscape (red and yellow filled circles in Fig. 2D). The local minima have the 36 
lowest energy compared to all neighboring nodes, and thus constitute end-points when 37 
assembly processes are completely deterministic (i.e., when transition of community 38 
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compositions always go down the energy landscape). Presence of multistability can be 1 
identified as multiple energy minima within an energy landscape. Since an energy minimum 2 
is a node with energy less than all S neighboring nodes, we examined whether each of the 3 
2S nodes were local minima. The same idea has already been described in Azaele et al. 4 
(2010) but was there only mentioned it briefly in the analysis of a plant community 5 
distribution. 6 
 7 
Basin of attraction - The basin of attraction (red and yellow circles in Fig. 2D) is the set of 8 
community compositions that reach one distinct stable state when assembly processes are 9 
completely deterministic, and are identified according to the stable state to which it 10 
converges. The basin of attraction to which a community composition belongs is determined 11 
by a steepest descent method, as follows. First, we selected a node i in the energy landscape. 12 
If the selected node is not a local minimum, we moved to the node with the lowest energy 13 
value among the nodes adjacent to the current node. We repeated moving downhill in this 14 
manner until a local minimum was reached. The initial node i belongs to the basin of the 15 
identified local minimum. We ran this procedure for each of 2S nodes except for the local 16 
minima. 17 
 18 
Disconnectivity graph - A disconnectivity graph is a tree diagram that summarizes the 19 
hierarchical relationships among stable states of an energy landscape (Fig. 2D). Terminal 20 
leaves of the tree represent the stable states and their vertical positions represent their energy 21 
values. Those of the branches represent the height of the energy barrier that separates the 22 
stable states belonging to the two branches. Here, the community composition connecting 23 
two branches is a tipping point. The tipping point is the lowest part of the ridge between two 24 
basins (green filled-circles in Fig. 1D). When we consider the transition from a stable state 25 
σ(A) to stable state σ(B) (σ(A) → σ(B)), the height of the energy barrier is calculated as the 26 
energy of the tipping point minus that of σ(A). Similarly, the height of the energy barrier for 27 
σ(B) → σ(A) is calculated as the energy of the tipping point minus that of σ(B). Thus, the 28 
directionality of the transition between two stable states is typically asymmetrical and 29 
transitions with smaller energy barriers occur more frequently than the opposite direction. 30 
Tipping points can be obtained by checking connectivity of an energy landscape while 31 
changing an energy threshold value as follows. First, we set an energy threshold value, 32 
denoted by Eth, to the energy value of the node that attained the second highest energy value 33 
among community compositions. Second, we removed the node (and the links connected to 34 
the node) with the highest energy value such that the node with energy Eth becomes the 35 
highest energy state. Third, we checked whether each pair of stable states was connected in 36 
the reduced network. Forth, we lowered Eth to the second highest energy value again. Then, 37 
we repeated this process until all the local minima were isolated. For each pair of stable 38 
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states, we recorded a community composition having the lowest Eth value below which the 1 
two stable states were disconnected. In practice, some stable states must be removed because 2 
they are implausible. Here, we pruned stable states whose shallowest energy barrier was 20% 3 
lower than the highest energy barrier among all energy barriers across the energy landscape. 4 
 5 
Stable state diagram – A stable state diagram unfolds the energy of stable states and tipping 6 
points in disconnectivity graphs over environmental conditions (Fig. 2D). It maps out how an 7 
energy landscape changes in response to environmental gradients. A stable state (and tipping 8 
point) is represented as a line segment that indicates a range of environmental conditions in 9 
which it is identified. Typically, we identify stable states as solid lines and tipping points as 10 
dashed lines. 11 
 12 
Numerical simulations - We carried out numerical simulations to generate transition 13 
sequences of community compositions constrained by an energy landscape, and we refer to 14 
these simulations as emulated compositional dynamics (Fig. 2D). We employed the heat-bath 15 
method (also known as Gibbs sampling; Gilks et al. 1996) as follows. First, we selected an 16 
initial community composition. Then, at each time step, a transition from the current 17 
community composition σ(k) to one of its S adjacent community composition σ�k′�, 18 
selected with probability 1/S, was attempted (σ(k) and σ�k′� differ only with respect to the 19 
presence/absence status of one of S species). The transition to the selected community 20 

composition took place with probability e−E�σ
�k′��/(e−E(σ(k)) + e−E(σ�k

′�)) . 21 

 22 
By using the algorithm, we collected transition sequences of community compositions 23 
between different stable states. We then extracted the community composition having the 24 
highest energy in each transition sequence. These compositions constitute the effective 25 
boundary between the basin of stable states on the energy landscape. We refer to a fraction of 26 
effective boundary that mediates most of the transition between two stable states as transition 27 
channels. 28 
 29 
 30 
Competitive Lotka-Volterra model 31 
To test the applicability of our method to community assembly dynamics driven by 32 
population level processes, we used the following Lotka-Volterra (LV) competition equation: 33 

𝑑𝑑𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖�1 − Σ𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + Σ𝑏𝑏𝑖𝑖𝜖𝜖�. (5) 34 
Here, 𝑥𝑥𝑖𝑖 is the population abundance of species 𝑖𝑖 and it is an element of abundance vector 35 
�⃗�𝑥. A positive real number 𝑎𝑎𝑖𝑖𝑖𝑖 represents competitive interactions between species i and j, 36 
which is an element of an interaction matrix 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖). The diagonal elements of 𝐴𝐴, i.e., 37 
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𝑎𝑎𝑖𝑖𝑖𝑖s, represent the intraspecific interactions. The environmental condition is represented by 1 
𝜖𝜖. It can include multiple environmental factors, but we assumed that it is a scalar with a 2 
range of [0, 1] throughout our simulation. If we do not consider environmental variation 3 
then 𝜖𝜖 = 0. Response of species 𝑖𝑖 to 𝜖𝜖 is represented by 𝑏𝑏𝑖𝑖, which is an element of a 4 
response vector 𝑏𝑏. When 𝜖𝜖 = 0, eq. (5) is considered to be one of the simplest multi-species 5 
systems whose multistability has already been investigated (Gilpin and Case 1976). In a more 6 
general view, LV equations are derived as the continuous limit of individual based models 7 
(Wilson et al. 1993) or an approximation of patch dynamic models (Keymer et al. 2000). 8 
Therefore, the LV equation-based model will be an important starting point for testing the 9 
applicability of our method to real-world ecological communities. 10 
 11 
To simulate assembly dynamics, we introduced the processes of “extinction” and 12 
“recruitment” into our model. Extinction is a process that reduces the frequency of species if 13 
they fall below a certain threshold (𝑒𝑒) to zero, and recruitment is an operation to introduce a 14 
species that is absent from the system at a propagule size (𝑟𝑟). We set 𝑒𝑒 = 10−5 and 𝑟𝑟 =15 
10−4 throughout this paper. To simplify the analysis, we set a fixed interval for recruitment 16 
𝜏𝜏𝑟𝑟 = 300. 17 
 18 
LV data set - We generated a LV data set that characterizes the stability landscape of a LV 19 
competition model. First, we generated 20,000 empty sites (i.e., �⃗�𝑥s such that all elements are 20 
zero). The number of species, 𝑆𝑆, was fixed throughout the simulation. We assumed that the 21 
population dynamics, extinctions and recruitments occurred independently among sites. We 22 
obtained the numerical solution of the LV equation by the first-order Euler method with 23 
𝑑𝑑𝑑𝑑 = 0.1. After the first species (randomly selected among 𝑆𝑆 species) was added to each 24 
site, every 𝜏𝜏𝑟𝑟 steps, for each site we checked the absent species, randomly select one of 25 
them and introduced it with a propagule size 𝑟𝑟. During these processes, the abundance vector 26 
�⃗�𝑥 of the LV model was recorded every 10 steps after replacing the abundance of species that 27 
fell below 𝑒𝑒 to zero. We interpreted �⃗�𝑥 as a community composition 𝜎𝜎(𝑘𝑘) by an 28 
observational threshold 𝑜𝑜 = 10−3, where abundance was replaced by 1 if 𝑥𝑥𝑖𝑖  >  𝑜𝑜 else 0. 29 
Then, time series was interpreted as assembly sequences represented by community 30 
compositions. The following test for stopping the simulation was applied every 𝜏𝜏𝑟𝑟 steps 31 
before introducing a species; let �̂�𝑝(𝜎𝜎(𝑘𝑘)) be the present probability of community 32 
compositions of 20,000 sites and 𝑞𝑞�(𝜎𝜎𝑖𝑖) be the same value at 𝜏𝜏𝑟𝑟 steps ago, for the set of the 33 
indices of community compositions K that appeared in records, we calculated the Jensen-34 
Shannon divergence between them as: 35 

𝐷𝐷𝐽𝐽𝐽𝐽 = �{��̂�𝑝(𝜎𝜎(𝑘𝑘)) log
�̂�𝑝(𝜎𝜎(𝑘𝑘))
𝜇𝜇𝑝𝑝𝑝𝑝(𝜎𝜎(𝑘𝑘))

+ �𝑞𝑞�(𝜎𝜎(𝑘𝑘)) log
𝑞𝑞�(𝜎𝜎(𝑘𝑘))
𝜇𝜇𝑝𝑝𝑝𝑝(𝜎𝜎(𝑘𝑘))

}/2. 36 
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Here, 𝜇𝜇𝑝𝑝𝑝𝑝�𝜎𝜎(𝑘𝑘)� = ��̂�𝑝�𝜎𝜎(𝑘𝑘)� + 𝑞𝑞��𝜎𝜎(𝑘𝑘)��/2. The simulation was stopped if 𝐷𝐷𝐽𝐽𝐽𝐽 < 0.0001. 1 
We have arranged the numerical simulation procedure to facilitate the determination of stable 2 
states. It would be difficult to find an ecological interpretation of this procedure; currently, 3 
there are few studies on population-level models aimed at capturing compositional stability of 4 
multispecies communities (but see Capitan et al. 2011). It is beyond the purpose of this paper 5 
to consider what process should be implemented to reproduce the probability distribution of 6 
community compositions in nature. 7 
 8 
Evaluation - By using the LV data set, we identified five features that characterize the 9 
stability landscape. Then, we compared them to the comparable features of an energy 10 
landscape inferred from community compositions sampled from the LV data set (prior to 11 
sampling, we truncated the first 25 points of the assembly sequences to remove the effect of 12 
initial conditions). For the sake of simplicity, we will refer to the former values as actual 13 
features. Actual features can only be obtained with large amounts of time series data. 14 
Therefore, the usual data analysis relies solely on the features of an energy landscape. 15 
 16 
Actual features are calculated as follows. To reduce variation, we calculated these features 17 
for community compositions observed more than 20 times. Prior to this, we truncated the first 18 
five points of the assembly sequences to remove the effect of initial state. First, we identified 19 
the unique community compositions found at the end of each time series as stable states. 20 
These are directly comparable to the stable states of the energy landscape. Second, we 21 
calculated the empirical probability of the occurrence of a community composition σ(k) 22 
across overall assembly sequences as P�(σ(k)). It is comparable to the probability calculated 23 
from a pairwise maximum entropy model, P(σ(k)), which we refer to as the expected 24 
probability. Third, we calculated the relative convergence time (RCT) for each community 25 
composition. This value indicates distance from a community composition to a stable state to 26 
which it converges. RCT is calculated as follows: first, if there are sub-sequences of the same 27 
composition in an assembly sequence, we removed the redundancy by replacing them with 28 
one (i.e., �… , σ(A),σ(B),σ(B), σ(C), … � → {… ,σ(A),σ(B), σ(C), … }). Then, we rescaled the 29 
position of community composition as a value between 0-1. For each community 30 
composition, RCT(σ(k)) is the mean of their rescaled position in all sequences in which they 31 
appeared. RCT is comparable to the energy of community states; more precisely, we 32 
compared it to the rescaled energy E�k, which takes 0 at a stable state and 1 at the community 33 
composition that has the highest energy within a basin of attraction. Fourth, we identified the 34 
basin of attraction of σ(k) as follows: for each community composition σ(k), we picked the 35 
end state of the sequences in which it appeared and counted the number of each stable state. 36 
We determined that σ(k) is in the basin of attraction of a stable state to which it most 37 
frequently converged (if there is more than one such state, it belongs to all of them). It is 38 
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directly comparable to the basin of attraction inferred by the energy landscape. Finally, we 1 
calculated the imbalance score (IS) to evaluate how stable states that a community 2 
composition converges to are uniquely determined. Similar to determining the basin of 3 
attraction, for each community composition σ(k), we picked the end state of sequences in 4 
which it appeared. Then, we calculated a Gini-Simpson index for the set of stable states as the 5 
imbalance score (i.e., IS(σ(k)) = 1 − Σp�i2; here, p�i is the relative frequency of stable states). 6 
Different from other features, instead of defining a comparable value in the energy landscape, 7 
we used IS to evaluate the relevance of the hierarchical structure of the energy landscape to 8 
the actual transition dynamics. 9 
 10 
 11 
Murine gut microbiota 12 
We applied our approach to the data of gut-microbiota taken from the feces of six male 13 
C57BL/6J mice, which are in the DDBJ database (http://trace.ddbj.nig.ac.jp/DRASearch/) 14 
under accession number DRA004786 (Nakanishi et al. 2020). Feces were sampled once every 15 
4 weeks between 4 to 72 weeks of age, thus 18 data points were obtained per mouse. Hence, 16 
108 data points are available. We transformed the relative abundance data into 17 
presence/absence data by setting a cutoff level at 1%, and we picked OTUs that were found 18 
in 20% to 80% of samples. This provided presence/absence data for 8 OTUs specified at the 19 
genus level. We also used mouse age (4-72 weeks) as an explicit environmental parameter. In 20 
the analysis, we scaled 4-72 weeks to a value within a 0-1 range. We assumed that a 4-week 21 
interval was sufficiently longer than the transient dynamics of the gut microbiota (Gerber 22 
2014), and treated microbiota composition of the same mouse at different ages as 23 
independent data. 24 
 25 
 26 
Software 27 
We used Mathematica (version 10.2 and 11.0, Wolfram Research, Inc., Champaign, Illinois, 28 
USA) to implement the method and generate simulation data. Computer codes (Mathematica 29 
notebook and package file) are available as online supporting information (DataS1). 30 
 31 
 32 
Results 33 
Analysis of a competitive Lotka-Volterra system 34 
We analyzed the stability landscape of a 16-species competitive LV system with a fixed 35 
environmental condition (𝜖𝜖 = 0) having three stable states (Fig 3; see Appendix S2: Table S1 36 
for the parameter values). We first generated the LV data set, calculated actual features, and 37 
sampled 256 compositions across assembly sequences to fit the parameters of the pairwise 38 
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maximum entropy model. At the population level, there were sequences of extinctions and 1 
invasions, and the system finally converged to one of three stable states. Below, in order to 2 
emphasize that we are considering community compositions, we denote a community 3 
composition as Ck instead of σ(𝑘𝑘); k is an integer obtained by transforming a binary vector 4 
into a decimal number, e.g., if the community composition is (0,1,1,0,1), it is represented as 5 
C13. 6 
 7 
The stable states were C25233, C38092 and C59852 and they appeared 5,332, 6,002, and 8,666 8 
times within 20,000 simulations. We found 19,190 unique community compositions in the 9 
simulation out of 216 = 65,536 possible compositions. The length of the assembly 10 
sequences was 80 points and we used 75 points after truncating the first 5 points. Thus, we 11 
had 20,000 × 75 = 150,000 data points for calculating actual features. We focused on 12 
1628 community compositions that appeared 20 times or more. While they are only 8% of the 13 
unique community compositions found in the assembly sequences, they covered 75% of 14 
observations, i.e., a small fraction of community compositions appeared repeatedly. 15 
 16 
Energy landscape of the LV system - Figure 4a shows the disconnectivity graph obtained 17 
from the energy landscape analysis of the LV system. Since we do not consider 18 
environmental variation in this case, we used eq. (4) for the analysis. The stable states 19 
identified by the energy landscape analysis were in perfect agreement with that of the LV 20 
system. Figure 4b is a scatterplot comparing the expected probability P(σ(k)) calculated by 21 
the pairwise maximum entropy model (x-axis) and the empirical probability P�(σ(k)) (y-22 
axis). This analysis is not specific to the energy landscape analysis but is a general criterion 23 
to assess the performance of maximum entropy models (Azaele et al. 2010). The Spearman 24 
rank correlation coefficient was 0.40 (p<0.001). This value shows the overall performance of 25 
the maximum entropy model to predict the occurrence of community compositions. 26 
However, this value may be underestimated because the number of observations is not large 27 
enough to make an accurate calculation for P�(σ) of rare community compositions. Figure 4c 28 
shows the relationship between the rescaled energy (E�k) and relative convergence time (RCT; 29 
y-axis). The Spearman rank correlation coefficient was 0.36 (p<0.001), 0.69 (p<0.001), and 30 
0.52 (p<0.001) for predicted basins of attraction of C25233, C38092 and C59852 and their 31 
weighted mean according to the number of observations (Table 1) was 0.55. The correlation 32 
found here indicates that the energy landscape agrees well with the actual stability landscape, 33 
in the sense that it will predict the order in which community compositions appear during 34 
transient to stable states. 35 
 36 
We next evaluated how well the energy landscape predicted the basin of attraction. The color 37 
of each circle in figure 4c represents the basin of attraction of the energy landscape. A filled 38 
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or open circle represents whether it agrees (or disagrees) with the stability landscape. The 1 
overall result for the prediction is summarized as a confusion matrix with both number of 2 
community compositions and observations (Fig. 4d). As suggested from the disconnectivity 3 
graph (Fig. 4a), the basins of attraction of C38092 and C59852 are more easily mislabled with 4 
each other than those of C25233 and C38092 or C25233 and C59852. To evaluate the predictive 5 
performance in more detail, we calculated precision and recall for different positions in the 6 
energy landscape according to the number of correct/incorrect observations (Fig. 4e-h). The 7 
overall precision and recall for the basin of attraction of C25233, C38092 and C59852 is in Table 1. 8 
The weighted mean of the precision and recall according to the number of observations of 9 
each stable state was 0.80 and 0.79, respectively. As the overall trend, both precision and 10 
recall increased when E�k decreased (Fig. 4e,f). Since community compositions having lower 11 
E�k are expected to be close to the stable states, this result suggests that the energy landscape 12 
is a good approximation of the stability landscape especially around the stable states. 13 
Furthermore, in addition to figure 4d, we see how the hierarchical relationship among the 14 
stable states (fig. 4a) reflect the relationship of stable states in the stability landscape. As 15 
energy decreased, the recall for the basin of attraction of C25233 increases faster than that of 16 
C38092 and C59852 (fig. 4f). Moreover, the imbalance score (IS) for C25233 and (C38092, C59852) 17 
(here, C59852 is identified with C38092) was always larger than that of C38092 and C59852 (fig. 4i). 18 
This suggest that the transition towards C25233 tends to be determined at an earlier stage of 19 
assembly processes compared C38092 and C59852. In other words, these two community 20 
compositions are in close proximity in the stability landscape. These results show the 21 
agreement between the dysconnectivity graph (fig. 4a) and the numerical simulations. 22 
 23 
Emulating community assembly dynamics - We considered the transition between stable 24 
states in the energy landscape to see how they inform the ridge structure that lies between the 25 
basins of stability landscape. Since we are considering assembly dynamics starting from an 26 
empty state, such ridge states may correspond to a set of community compositions where the 27 
terminal stable state is almost unique below it (i.e., they may be representing the points of no 28 
return in assembly processes). If a community composition is located on a ridge, it will have 29 
an intermediate RCT value in the sense that it is apart from both the stable states (where RCT 30 
is 0) and the states at the earlier stage of assembly dynamics (where RCT is close to 1). Also, 31 
because the dynamics are less deterministic on the ridge, it’s IS will be lower than that of 32 
other community compositions having a comparable energy. 33 
 34 
Here, to demonstrate how we can use the energy landscape to study the ridge structure, we 35 
investigated the transitions between the stable state C38092 and C59852 in more detail. By using 36 
the heat bath algorithm, we collected 5,000 transition sequences of community compositions 37 
from C38092 to C59852 (C59852 to C3809). We then extracted the community composition having 38 
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the highest energy in each transition sequence as the effective boundary between them. There 1 
were 1,616 such compositions and, as shown in Figure 5a, in the LV data set, 81% of 14,668 2 
sequences that converged to C38092 or C59852 (Table 1) contained one of these compositions. 3 
We focus on the 100 lowest energy compositions as transition channels, since 0.3% of them 4 
(that is 56 out of 19,190, of all observed community compositions) actually appeared in 52% 5 
(7,596 out of 14,668) of assembly sequences. Figure 5b is the scatterplot showing the energy 6 
and RCT of community compositions where transition channels are highlighted as red points, 7 
and Figure 5c is the smoothed histogram of the RCT of transition channels and that of all 8 
community compositions. RCT of transition channels had a median of 0.33 (95% CI, 0.31-9 
0.37), which was lower than that of all compositions, which was 0.65 (95% CI, 0.64-0.66). 10 
Furthermore, the IQR (difference between the third and first quartiles) of transition channels 11 
was 0.16 (95% CI, 0.10-0.22), which was lower than that of all compositions (0.29; 95% CI, 12 
0.27-0.30). Thus, transition channels tended to be clustered in a narrow area of the lower part 13 
of the stability landscape. Figure 5d shows RCT and IS of transition channels (red) or other 14 
130 community compositions in the range of energy where channels are distributed (Fig. 5b). 15 
The median of IS was 0.60 (95% CI, 0.56-0.79) for transition channels and it was smaller 16 
than that of others which was 0.80 (95% CI, 0.65-0.92). From the above, it can be said that 17 
there is a certain relationship between the ridge that controls the transitions between C38092 18 
and C59852 on the energy landscape and the structure of the stability landscape that determines 19 
direction of assembly towards C38092 or C59852. 20 
 21 
Energy landscape across environmental gradient - If species occurrence depends on abiotic 22 
factors, change in the stability landscape in response to environmental changes will be 23 
observed. Here, we generated LV data sets with variation in environmental parameter 𝜖𝜖 and 24 
a fixed response vector 𝑏𝑏 (see Appendix S2: Table S1 for the parameter values), and 25 
demonstrate how the energy landscape of the extended pairwise maximum entropy model can 26 
capture the change in the stability landscape across ϵ. 27 
 28 
We generated a LV data set for 𝜖𝜖 at every 0.01 steps between 0 and 1 to calculate the 29 
features of a stability landscape. Figure 6a shows the number and composition of stable states 30 
with respect to 𝜖𝜖. The black lines show the range of 𝜖𝜖 in which a community composition 31 
was observed as a stable state. There were three branches that originated from C59852, C25233 32 
and C38092; C59852 disappeared at 𝜀𝜀 = 0.08, C25233 changed to C58001 at 𝜖𝜖 = 0.125 and then 33 
disappeared at 𝜀𝜀 = 0.3, and C38092 sequentially changed to five other community 34 
compositions across 𝜖𝜖 = 0 to 1. 35 
 36 
We randomly sampled 256 community compositions from the above data set for the 37 
parameter fitting of the extended pairwise maximum entropy model and then applied the 38 
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energy landscape analysis. Our approach identified all existing branches of stable states and 1 
slightly over-estimated the range of 𝜖𝜖 in which they exist (Fig. 6b). Also, it captured the 2 
sequence of the transition of community compositions within the branch of C25233 and C38092, 3 
except for false detection of C41617 and non-detection of C38284. The correlation between P�(σ) 4 
and P(σ) (Fig. 6c) was around 0.4 and slightly decreased with 𝜖𝜖. This value was 5 
comparable to the corresponding value in the constant environment we described above 6 
(0.40). Correlation between RCT and E�k (Fig. 6d) was mostly larger than 0.5 before 𝜖𝜖 <7 
0.7, and then it started to decrease. While we did not investigate the reason in detail, this 8 
might be due to the increase in the stability of a single stable state that can reduce the range 9 
of community compositions other than the stable state within the data set. Overall, however, 10 
the addition of an environmental axis did not significantly reduce the accuracy of the stability 11 
landscape estimates. 12 
 13 
 14 
Benchmarking 15 
In our baseline condition (A in Fig. 7), the median Spearman rank correlation between the 16 
empirical and expected probability for the community compositions was 0.43, for RCT and 17 
E�k the same value was 0.51. The median of both precision and recall was 1 for stable states, 18 
and 0.79 for the basins of attraction. Reducing the number of stable states in the LV system 19 
only modestly affected the results (B in Fig. 7), but increasing it slightly made it difficult to 20 
predict basins of attraction (C in Fig. 7). This is unsurprising given that it increases the 21 
likelihood of confusion among basins. Increasing the number of species tended to make 22 
identification of stable states and their basins more difficult (D in Fig. 7). However, the 23 
difference would be small, given that the total number of possible compositions of 24-species 24 
system is 256 times larger than for the 16-species model. Although the increase of the data 25 
set size improved the results when comparing 128 and 512 data point cases (E and F in Fig. 26 
7), no additional improvement was found when comparing 256 and 512 data point cases (A 27 
and F in Fig. 7). Because of the fundamental difference between the stability landscape of LV 28 
system and the energy landscape, this suggests the limitations of approximating the former by 29 
the later. Both Type II functional response (G) and system noise (H) did not alter the results 30 
much, but slightly reduced the correlation between E�k and RCT. 31 
 32 
 33 
Application to real data 34 
We applied our approach to the gut microbiome data of six mice with 108 samples. 35 
Community compositions were represented by eight genus-level OTUs that can be identified 36 
as species in the above analysis, and we used mouse age as the environmental condition (i.e., 37 
only one environmental factor was considered). Since we included only age as the 38 
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environmental factor in the analysis, in the extended pairwise maximum entropy model (eq. 1 
(2)), 𝜀𝜀 is a scalar associated with each sample and g is a vector that represents response of 2 
each species to age. 3 
 4 
At the community level, there were two stable states C227 and C93 at initial age (Fig. 6a). C227 5 
remained until 72 weeks and showed reduced energy with increasing age. C93 had lower 6 
energy than C227, and increased energy as age increased. C93 changed to C125 at 29 weeks of 7 
age and then showed reduced energy with increasing age. C125 further changed to C253 at 38 8 
weeks of age. The energy of C125 and C253 was lower than C227 up to 72 weeks of age. The 9 
difference in the height of the energy barriers between the two alternative stable sates (i.e., 10 
distance between the stable states to the tipping point with respect to y-axis in Fig. 8a) 11 
decreased with increasing age until C125 changed to C253. These results suggest that C93 is 12 
more representative of gut microbiota during early life stages. The difference between C93 13 
and C227 was the presence of a group of three genera (unclassified Lachnospiraceae, 14 
unclassified Ruminococcaceae and Oscillospira) or Sutterella (Table 2). Although C93 did not 15 
contain Turicibacter and Bifidobacterium, these genera sequentially appeared as C93 changed 16 
to C253: Turicibacter appeared when C93 changed to C125 and Bifidobacterium appeared when 17 
C125 changed to C253. 18 
 19 
In addition to the height of energy barriers, the number of community compositions and 20 
energy distribution of the basins of attraction provides information on the robustness and 21 
variability of stable states. Figure 8b shows the energy distribution of community 22 
compositions in the basins of attraction of C93 and C227 at 10 weeks of age. The median and 23 
IQR of the two energy distributions were almost the same, but the difference in the number of 24 
community compositions was large (Fig. 8b, Table 2). In other words, C93 is more stable to 25 
stochastic variation than C227 in the sense that it has a larger basin of attraction. However, this 26 
difference almost disappeared by 60 weeks of age (Fig. 8c, Table 2). On the other hand, the 27 
difference between the median and stable state energies was 6.76 for C93 and 3.87 for C227 in 28 
10 weeks of age (Table 2). This was mainly because of the fact that C93 had a sharp decline in 29 
energy around the stable state (Fig. 8d), which is also indicated by the smaller kurtosis for C93 30 
than C227 (Table 2). Interestingly, in C253, which is on a branch of C93 (Fig. 8a), the difference 31 
between the median and stable state energies decreased (accompanying the increase in 32 
kurtosis) (Fig. 8c, Table 2) despite the decrease in stable state energy. This resulted in a 33 
reduced slope around the stable state (Fig. 8e), and lead to increase in the amplitude and 34 
autocorrelation of compositional variation around C253 (Fig. 8f, g). 35 
 36 
This is not specific to energy landscape analysis, but analysis of the estimated parameters 37 
provide some insights into the mechanisms behind community level responses (Azaele et al. 38 
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2010, Harris 2016). In figure 9a, the community level response is shown by the bars marked 1 
as ‘Total’ in addition to the genus level responses. The net effect of interspecific relationships 2 

(ΣjJijσi
(𝑘𝑘)σj

(𝑘𝑘)), the bacterial responses to age (giϵ), and the implicit effect of environmental 3 

factors (hi; here, these values represent the sum of the effects other than the bacterial 4 
response to age or the biotic interaction between bacteria) are indicated by blue, orange and 5 
green, respectively. There were positive relationships among Lachnospiraceae, 6 
Ruminococcaceae and Oscillospira (Fig. 9b) and these relationships made up most of the 7 
interspecific relationships in C93, C125 and C253 (Fig. 9a). The three genera had a negative 8 
relationship with Suterella (Fig. 9b). Thus, they could be mutually exclusive, which was 9 
responsible for the presence of two alternative stable states over age. Sutterella had a positive 10 
relationship with Turicibacter and Bifidobacterium, supporting their presence in C227 (Fig. 9). 11 
In contrast, Turicibacter and Bifidobacterium had a negative relationship with 12 
Lachnospiraceae, Ruminococcaceae and Oscillospira. Thus, they were absent from C93 and 13 
then appeared as an effect of age. The correlation between age and the presence of a genus 14 
became positive if g (genus level response to age; Table 3) was positive; this correlation 15 
became negative when g was negative. The sum of g across community members determined 16 
the community level response to age (Fig. 8a). Since both Turicibacter and Bifidobacterium 17 
were positively affected by age, they appeared with increasing age despite their negative 18 
relationship with Lachnospiraceae, Ruminococcaceae and Oscillospira. In Fig. 9a the effect 19 
of interspecific relationships with Turicibacter in C125 was negative, while it was positive in 20 
C253 because of a positive relationship with Bifidobacterium (Fig 9b). The relationship 21 
between Turicibacter and Bifidobacterium also facilitated the appearance of Bifidobacterium 22 
at 38 weeks of age (Fig. 8a). Because of their positive relationship with age, the appearance 23 
of Turicibacter and Bifidobacterium changed the community level response to age when C93 24 
changed to C125 and C125 changed to C253. 25 
 26 
Our results show that there were two alternative stable states and their relative stability 27 
(difference in the height of the energy barriers between them) changed over age. To examine 28 
how this result explains microbial population dynamics represented by relative abundance 29 
data, we applied analysis of similarity (ANOSIM) to abundance of the 8 genera used for the 30 
energy landscape analysis. ANOSIM statistics of the abundance data grouped with age (4-28 31 
or 48-72 weeks) across different individuals was -884.8 (p<0.001), suggesting a difference in 32 
gut microbiota among early and later life stages. We then grouped abundance data with 33 
individuals in 4-28 or 48-72 weeks and applied the same analysis. ANOSIM statistics were -34 
65.2 (p<0.001) for 4-28 weeks and -37.6 (p=0.097) for 48-72 weeks. Thus, individual 35 
dependency of microbiota was strong in the early life stage and weakened in the later life 36 
stage. This was in correspondence with the structure of the energy landscape at 4-28 weeks; 37 
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since the energy barrier was higher and basin of attraction is larger for C93 than C227 (Fig. 8a, 1 
b), community composition would more likely remain in the basin of C93 once it shifted from 2 
that of C227. At 48-72 weeks, switching between C227 and C253 is more likely because of the 3 
increased autocorrelation and amplitude of compositional variation (Fig. 8g) as well as the 4 
small difference in energy barrier between the two stable states (Fig. 8a), and it would reduce 5 
the individual dependency of stable states. 6 
 7 
 8 
Discussion 9 
We showed that with a relatively small amount of data, our method is able to identify the 10 
features characterizing the stability landscape, i.e., it successfully detects stable states (Table. 11 
1) and predicts basin of attraction (Fig. 4e-h), the position of each community composition 12 
with respect to the stable states (Fig.4c), and whether a community composition is on a ridge 13 
of basins in which end state is not uniquely determined (Fig.4i, Fig5). We confirmed with 14 
multiple different data sets that these results were mostly robust to different simulation 15 
conditions (Fig. 7), although the results suggested the limitation of approximating the 16 
stability landscape as the energy landscape. We also demonstrated that the same analysis was 17 
applicable to the case in which environmental conditions for each sample were different 18 
(Fig.6), without the need for increasing the amount of data. This result highlights that our 19 
method reliably captures the change of the overall compositional stability of a multispecies 20 
community over environmental change, which we regarded as the requisites for integration of 21 
compositional stability and regime shift concepts.  22 
 23 
Our approach to quantifying compositional change in multi-stable communities could help 24 
the development of early warning signals for shifts of stable states (Scheffer et al. 2012, 25 
2015). Our analysis suggested that a small fraction of community compositions may be 26 
channels for transitions between alternative stable states (Fig. 5). If a system is in one of such 27 
states, it may indicate an increasing probability of transition to another stable states. This 28 
would be a basis for developing an early warning signal and considering some possible 29 
intervention to prevent such shifts. Secondly, given how spatial scale interacts with the 30 
drivers of community assembly (e.g. Chase 2014), the results of energy landscape analysis 31 
should be interpreted in light of the spatial scale of total sampling extent to disentangle the 32 
drivers of community assembly across scales (Viana & Chase 2019, Ross et al. submitted). If 33 
the spatial extent of observations is large and the effect of environmental heterogeneity is 34 
significant, by choosing a relevant environmental factor (or appropriately reducing multiple 35 
factors into a single dimension), the shift of stable community compositions can be unfolded 36 
with respect to the parameter as in the stable state diagram (Fig. 6b). One could then explore 37 
whether the model's explanation is consistent with our process-based understanding of 38 
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community assembly dynamics. Such an approach would complement existing methods 1 
proposed to assess the relative importance of the ecological processes that drive community 2 
assembly (Legendre et al. 2009, Meynard et al. 2013, D’Amen et al. 2018, Mertes & Jetz 3 
2018).  4 
 5 
In the murine gut microbiota, our approach showed the presence of two alternative states over 6 
age (Fig. 8a). The difference between the two stable states was characterized by presence of 7 
Suterella or unclassified Lachnospiraceae, unclassified Ruminococcaceae and Oscillospira 8 
(Table 3). Our result suggested that the stable state containing the three genera (C93) was 9 
more representative of the gut microbiota during early life stages because it had lower energy 10 
than the counterpart (C227) and became relatively unstable with increasing age (Fig. 8f, g). 11 
Langille et al (2014) reported that Lachnospiraceae, Ruminococcaceae and Oscillospiraceae 12 
are phylogenetically closely related and characterize the murine gut microbiota during early 13 
life stages. Our result supports tight associations among these groups and their role 14 
characterizing a stable state representing early-life gut microbiota. C93 changed to C125 (29 15 
weeks age) and C125 changed to C253 (38 weeks age) due to appearance of Turisibacter and 16 
Bifidobacterium, respectively. The response of Turicibacter and Bifidobacterium to age had a 17 
prominent role in the community level response during these shifts. However, the importance 18 
of interspecific relationships was also identified. Since Turicibacter and Bifidobacterium had 19 
a negative relationship with Lachnospiraceae, Ruminococcaceae and Oscillospira, they could 20 
not appear until 28 and 39 weeks of age, respectively. Here, presence of Turicibacter 21 
facilitated appearance of Bifidobacterium due to their positive relationship. In terms of the 22 
height of energy barriers, the transition between alternative stable states tended to be 23 
unidirectional (from C227 to C93) in the early life stage and bidirectional in the later life stage 24 
(between C227 and C125 or C253). Furthermore, the mechanism of changing compositional 25 
variability was inferred from the analysis of energy distribution of basins of attraction. Our 26 
results suggest that there were two mechanisms. The first is the change in the number of 27 
community compositions in the basin of attraction, which directly affects the magnitude of 28 
compositional variability a basin accommodates, and thus corresponds to Holling's ecological 29 
resilience (Holling 1996). The second is the change in the shape of basin of attraction, 30 
especially related to the kind of curvature around the stable state (Fig. 8d, e). This relates to 31 
the return time to a stable state, and corresponds to Holling's engineering resilience (Holling 32 
1996). Not only the change in the height of barrier between stable states but also these 33 
mechanisms governing compositional variability works synergistically in the age-related loss 34 
of stability in murine gut microbiota. 35 
 36 
As an approximation of a stability landscape, the energy landscape would provide a reliable 37 
map for those who seek an effective path between different community compositions. In 38 
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conservation biology, knowledge of the paths by which communities are assembled helps 1 
ecologists to understand the role of history in shaping current communities, and is important 2 
for effective community restoration (Weiher and Keddy 1999, Lockwood & Samuels 2004, 3 
Suding et al. 2004, Wilsey et al. 2015, Young et al. 2005, 2015). In other words, when 4 
historical contingency occurs, restoring and maintaining native biodiversity may require 5 
specific sequences of exotic species removal and/or native species introduction. This is also 6 
relevant to agriculture, e.g., the successful inoculation of agricultural soils with beneficial 7 
fungi or other microbes may depend on the timing of inoculation relative to plant growth, as 8 
well as the profile of other soil microbes (Verbruggen et al. 2013, Toju et al. 2018). In 9 
medicine, the relevance of historical contingency in community assemblies to curing some 10 
human diseases is being recognized (Costello et al. 2012, Fierer et al. 2012, Lam & Monack 11 
2014, Devevey et al. 2015). Clinically meaningful evidence for the potential application of 12 
modulating the intestinal microbiota for therapeutic gain has created considerable interest and 13 
enthusiasm (Smits et al. 2013, Li et al. 2016, Shetty et al. 2017). In addition to Clostridium 14 
difficile Infection (CDI), a disruption to the gut microbiota is associated with, e.g., irritable 15 
bowel syndrome, autism, obesity, and cavernous cerebral malformations (Karczewski et al. 16 
2014, Cox et al. 2015, Tang et al. 2017). Driving disrupted microbial communities back to 17 
their healthy states could offer novel solutions to prevent and treat complex human diseases. 18 
 19 
There are alternative methodologies to study stability landscapes. Dynamical models (such as 20 
differential equations) are able to describe shifts in community compositions based on the 21 
gradual changes in population abundance of species (Gravel et al. 2011). If we are able to 22 
estimate the parameters of a dynamical model, it allows us to directly study the stability 23 
landscape that is inferred from observational data. However, it is generally difficult to 24 
develop fully mechanistic models for multi-species communities. The complex nature of 25 
microbial interactions makes it difficult to formulate all the present relationships into 26 
mathematical formulations (Hartig and Dormann 2013; Perretti et al. 2013a, b; De Angelis 27 
and Yurek 2015). Moreover, a theoretical study proved that finding a precise dynamical 28 
equation for a time-series is, in general, computationally intractable even with any 29 
amount/quality of data (Cubitt et al. 2012). Another potential approach may be developing a 30 
Markov chain model with a transition matrix between different community compositions 31 
(Wootton 2001). This can be done if we can obtain multiple observations on two consecutive 32 
community compositions. However, considering the number of possible paths in a 33 
multispecies system, it might not be a realistic approach. Actually, in our LV model with a 34 
constant environment, among randomly sampled 128 pairs of consecutive community 35 
compositions (comparative to the 256 data points used to fit pairwise maximum entropy 36 
models), 88.1% (s.d. 3.8) of them were observed only once. Thus, it is obvious that it requires 37 
much more data to reconstruct a transition matrix. Recently developed methods for 38 
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reconstructing low dimensional potential landscape (Gibson et al. 2017, Shaw et al. 2019, 1 
Chang et al. 2019) would be an appealing option, but since this approach projects microbial 2 
dynamics onto a low dimensional potential landscape, it is unable to reproduce overall 3 
compositional stability as we see in this paper. Also, it is unable to track the change of 4 
compositional stability across environmental parameters. Considering the data set size and 5 
observational procedure required, our method is a realistic option to study the compositional 6 
stability of empirical communities. 7 
 8 
There are still some flaws that need to be addressed. First, greater sophistication of the model 9 
fitting framework, including sparse modelling, would improve the performance of our 10 
approach. Second, further verification is required to assess the effect of replacing species’ 11 
abundance with presence/absence status. Does the pairwise maximum model always provide 12 
good approximation to the stability landscape? For example, since our approach relies on a 13 
gradient system, it cannot account for attractor dynamics that often appear in ecological 14 
systems. Heteroclinic cycles that cause cyclic alteration of community compositions (Morton 15 
and Law 1997, Fukami et al. 2015) are one example. These dynamics may still be identified 16 
as a set of stable states separated by low energy barriers, though the overall consequence of 17 
approximating dynamics in a continuous phase space into a coarse-grained phase space 18 
(where nodes of the weighted network represent each sub-system of the original phase space) 19 
is unknown. Finally, causal relationships between species’ presence/absence status and the 20 
transition of one community state to another are not well represented using our approach. 21 
Incorporating causal analysis (e.g., Sugihara et al. 2012, Runge et al. 2017) will strengthen 22 
our approach, especially when considering applications to control community states. 23 
 24 
 25 
Conclusion 26 
We have demonstrated the effectiveness of pairwise maximum entropy models as an 27 
approximation of overall compositional stability, which we defined as a stability landscape, 28 
of multispecies communities in a changing environment. The framework of energy landscape 29 
analysis played a prominent role in the success of this approach. Our model opens up new 30 
research directions encompassing the concept of alternative stability in community 31 
assemblies of multispecies communities, and the change in dynamical stability across 32 
environmental gradients, which have mainly been studied in low-dimensional systems in the 33 
past decades. There is urgent need for a methodology that is able to account for 34 
compositional dynamics in multispecies communities. Although some further verification and 35 
improvement is required, we believe that the methodological advancement presented here 36 
will be a new systemic paradigm for developing a predictive theory for real-world ecological 37 
communities (Mouquet et al. 2015). 38 
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 1 
Tables 2 
 3 
Table 1. Predictability of stable states. 4 
 5 

Stable 

states 

Composition Number of 

observations 

Basin of 

attraction 

(precision) 

Basin of 

attraction 

(recall) 

C25233 (0,1,1,0,0,0,1,0,1,0,0,1,0,0,0,1) 5332 0.72 0.96 

C38092 (1,0,0,1,0,1,0,0,1,1,0,0,1,1,0,0) 6002 0.78 0.86 

C59852 (1,1,1,0,1,0,0,1,1,1,0,0,1,1,0,0) 8666 0.89 0.70 

 6 
 7 
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 1 
Table 2. Summary statistics of the energy distribution of basins of attraction. 2 
 3  

10 
weeks 

     
60 
weeks 

     

 
Number of 

communit

y 

compositi

ons 

Media

n 

Min 

(stable 

state) 

Median-

Min 

IQR Kurtos

is 

Number of 

communit

y 

compositi

ons 

Media

n 

Min 

(stable 

state) 

Media

n-Min 

IQR Kurtos

is 

C93 191 1.16 -5.59 6.76 2.90 2.90 0 n/a n/a n/a n/a n/a 

C227 65 1.77 -2.10 3.87 3.12 2.28 124 -1.11 -7.68 6.58 4.62 2.29 

C253 0 n/a n/a n/a n/a n/a 132 -1.87 -8.08 6.21 4.66 2.34 

 4 
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 1 
Table 3. Profile of eight genera included in the analysis. h (effect from unobserved 2 
environmental factors) and g (genus level response to age) are the parameters inferred by 3 
stochastic approximation, and 0/1 values indicate membership of each genus in stable states 4 
and tipping points (marked by *). 5 
 6  

h g C93 C125 C227 C253 C241* C247* 

Bifidobacterium -0.003 1.814 0 0 1 1 1 1 

Prevotella 0.509 0.337 1 1 1 1 1 1 

Turicibacter -1.246 5.512 0 1 1 1 1 1 

UC_Lachnospiraceae 0.114 -0.458 1 1 0 1 1 1 

UC_Ruminococcaceae -1.84 -0.844 1 1 0 1 0 0 

Oscillospira 0.038 -0.318 1 1 0 1 0 1 

Sutterella -0.249 -1.395 0 0 1 0 0 1 

UC_RF39 -3.203 1.321 0 0 0 0 0 0 

 7 
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Figure legends 1 
 2 

 3 

Figure 1. Example of a stability landscape for a conceptual three-species system. Two species, 4 
A and B, are cooperative, and these species can exclude species C if both of them are present. 5 
On the other hand, C excludes either A or B as long as they are present alone. Arrows indicates 6 
the transition of community composition when species always joins the system one-by-one. 7 
Transition from {A, C} (or {B, C}) to {A, B, C} is only valid when {B} ({A}) appears before 8 
exclusion occur. Here, both composition {A, B} and {C} is a stable state correspond to the 9 
bottom of the valley in the ball and cup diagram. The remaining six transient states can be 10 
divided into those in the basin of either stable state (in terms of the result of competition among 11 
the species present) and those on the ridge between the basins (which can transition to either 12 
of the stable states depending on the subsequent recruitment). Thus, the potential landscape 13 
represented as a smooth curve in the ball and cup diagram is embodied as a network connecting 14 
different species compositions when capturing compositional stability. 15 
 16 
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 1 

 2 
Figure 2. Illustrative explanation of our approach. (A) we assume that the dataset includes 3 
occurrence of species in local communities sampled from multiple targets (e.g., sites, hosts) 4 
and/or timepoints, with possibly accompanying values representing local environmental 5 
condition (environmental factors) (in the illustration, circles and filled circles show species 6 
that are absent from or present in a local community, and colors and size of ellipses represent 7 
differences in environmental condition). (B) dataset is converted to matrices of 8 
presence/absence status, and environmental factors (if they are available). (C) these matrices 9 
are used to fit parameters in a pairwise maximum entropy model. Here, P�σ(𝑘𝑘)� is the 10 
probability of a community state σ(𝑘𝑘) (see Materials and Methods for the detail). (D) the 11 
fitted pairwise maximum entropy model specifies an energy landscape which is a network 12 
with nodes representing community states and links representing transitions between 13 
community compositions. Its change over environmental conditions can be described as a 14 
stable state diagram. Energy landscape analysis, acknowledges (I) the stable states (red and 15 
yellow filled-circles) and tipping points (green filled-circle), (II) disconnectivity graph 16 
summarizing the hierarchical relationships between the stable states and tipping points, (III) 17 
basin of attraction of stable states (red and yellow circles indicate basins of attraction of the 18 
two stable states), (IV) compositional dynamics constrained by the energy landscape. 19 
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 1 

 2 
Figure 3. Examples of population dynamics that converged to three different stable states. (a) 3 
C25233, (b) C38092 and (c) C59852. See table 1 for the detail of community compositions. 4 
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 1 
Figure 4. Energy landscape of a competitive LV system. (a) disconnectivity graph with three 2 
stable states and two tipping points. (b) scatterplot of the expected (P�σ(k)�) and empirical 3 
(P��σ(k)�) probability for community compositions. (c) scatterplot of the rescaled energy (E�k) 4 
and RCT for community compositions. The color of each circles represents the basin of 5 
attraction of the energy landscape and filled or open circles indicate whether it agrees (or 6 
disagrees) with that of the stability landscape. (d) confusion matrix with the number of 7 
observations (the number of community composition is shown in parentheses). Here, 8 
observations of stable states were removed from the result. (e) precision of the prediction of 9 
basin of attraction with respect to observations. (f) recall of the prediction on basin of 10 
attraction with respect to observations. (g) total number of observations for predicted basin of 11 
attraction. (h) total number of observations for actual basin of attraction. In (e-h), values were 12 
calculated for E�k value grouped into 10 bins of equal width. Color of bars indicate predicted 13 
basins of attraction in (g), and actual basins of attraction in (h). Shaded and unshaded areas in 14 
(g, h) indicate observations with mismatch and match between actual and predicted basins of 15 
attraction, respectively. Shaded areas are stacked on the unshaded areas. The ratio of the 16 
unshaded areas to the total length of the bars corresponds to precision in (g) and the same 17 
value in (h) corresponds to recall. (i) imbalance score calculated for the balance between 18 
C38092 and C59852 and C25233 and C38092-C59852. In the latter case, C59852 identified with C38092. 19 
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 2 
Figure 5. Emulated compositional dynamics between stable state C38092 and C59852. (a) 3 
coverage of assembly sequences of the LV data set that converged to C38092 or C59852 (14,668 4 
in total) including the community compositions in effective boundary ranked by their energy. 5 
Dashed line indicates top 100 community compositions (transition channels). (b) smoothed 6 
histogram of RCT of transition channels and that of all community compositions. (c) 7 
scatterplot with energy and RCT for community compositions belonging to the basin of 8 
attraction of C38092 and C59852, where transition channels are indicated by red points. (d) 9 
relationship between RCT and IS, where transition channels are indicated by red points. 10 
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 2 
Figure 6. Change of stability landscape and energy landscape in response to environmental 3 
change. (a) stable state diagram calculated from LV data sets. Here, vertical axis is PC1 4 
calculated from PCA including all stable states. (b) stable state diagram obtained from the 5 
energy landscape analysis. Solid lines indicate stable states and dashed lines indicates tipping 6 
points. (c) Spearman rank correlation between the expected (P�σ(k)�) and empirical (P��σ(k)�) 7 
probability for community compositions. (d) Spearman rank correlation between the rescaled 8 
energy (E�k) and RCT for community compositions. 9 
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 2 
Figure 7. Benchmarking with different simulation conditions. Spearman rank correlation 3 
between (a) expected and empirical probability for community compositions, and (b) rescaled 4 
energy and RCT, (c, d) precision and recall for the prediction on stable states and (e, f) the 5 
same values for basin of attraction. Precision (recall) for stable states is calculated by the ratio 6 
of correctly identified states in the predicted (actual) stable states, and the same values for 7 
basin of attraction are weighted by the number of observations (see main text). The median 8 
and the first and third quartile value was 1 in A,C,E,F, G, H in (c) and A,B,E,F, C in (d). In 9 
B, D in (c) and C, D, H in (d) the median and the third quartile value was 1. We used 30 10 
independent datasets for each simulation condition. Summarizing the simulation conditions 11 
as (number of species, number of stable states in LV system, number of samples, type of 12 
functional response, strength of noise), they are, A: (16, 3, 256, 1, 0), B: (16, 2, 256, 1, 0), C: 13 
(16, 4, 256, 1, 0), D: (24, 3, 256, 1, 0), E: (16, 3, 128, 1, 0), F: (16, 3, 512, 1, 0) , G: (16, 3, 14 
256, 2, 0) , H: (16, 3, 256, 1, 0.1). Here, for the type of functional response, 1 indicates Type 15 
I and 2 indicates type II. See Appendix S2 for more information. 16 
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 2 
Figure 8. Stability of a murine gut microbiota. (a) stable state diagram showing the energy of 3 
stable states and tipping points. Here, both stable states (solid lines) and tipping points 4 
(dashed lines) are shown. Each line segment labeled by community composition represents 5 
the range of age in which stable states (or tipping points) exist. (b) the energy distribution of 6 
community compositions in the basins of attraction of C93 and C227 at 10 weeks of age. (c) the 7 
energy distribution of community compositions in the basins of attraction of C227 and C253 at 8 
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60 weeks of age. In (b, c) horizontal bars indicate the median and IQR. (d) slope of the 1 
attractive basin of C93 (blue) and C227 (yellow) in 10 weeks of age. (e) slope of the basin of 2 
attraction of C227 (green) and C253 (yellow) in 60 weeks of age. (f) emulated compositional 3 
dynamics around C253. (g) emulated compositional dynamics around C253. In (f, g) vertical 4 
axis shows the number of species of corresponding time point minus that of the stable state. 5 
 6 
  7 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 17, 2021. ; https://doi.org/10.1101/709956doi: bioRxiv preprint 

https://doi.org/10.1101/709956


45 
 

 1 

 2 

Figure 9. Estimated parameters for a murine gut microbiota. (a) Strength of the net effect of 3 

interspecific relationship (ΣjJijσi
(𝑘𝑘)σj

(𝑘𝑘)), observed environmental factor (response to age) 4 

(giε) and unobserved environmental factors (hi) for each genus i (genus level effects) and 5 

their sum over community members (community level effects), ΣiΣjJijσi
(𝑘𝑘)σj

(𝑘𝑘), Σi𝑔𝑔𝑖𝑖𝜖𝜖σi
(𝑘𝑘) 6 

and Σihiσi
(𝑘𝑘) (shown as ‘total’). σi

(𝑘𝑘) represents membership of each community (Table 3). 7 
For comparison, we set ϵ = 0.5. (b) elements of interspecific relationships (Jij). The value 8 
represents the strength of association between two genera (shown in columns and rows). 9 
There is a positive association between two genera if the value is positive whereas there is 10 
negative association if it is negative. 11 
 12 
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Appendix S1: Parameter fitting 1 
 2 
The maximum likelihood estimate for the model parameters can be obtained by minimizing 3 
the discrepancy between the values of the data’s sufficient statistics and the corresponding 4 
sufficient statistics within the model (Bickel and Doksum 1977, Azaele et al. 2010, Murphy 5 
2012, Harris 2015, Lee and Hastie 2015). 6 
 7 
Gradient descent algorithm- For a dataset without observation on environmental conditions, 8 
i.e., whose energy is given by eq. (4), a gradient descent algorithm can be applied (Watanabe 9 
et al. 2014a,b, Harris 2015, Harris 2016). For a model with parameter ℎ∗ and 𝐽𝐽∗, let the 10 

expected probability of species i be 〈σi〉∗ = 1/2𝐽𝐽 ∑ σi
(k)2𝑆𝑆−1

k=0 𝑝𝑝(σ(k)) and the co-occurrence 11 

be 〈σiσj〉∗ = 1/2𝐽𝐽 ∑ σi
(k)2𝑆𝑆−1

k=1 σj
(k)𝑝𝑝(σ(k)). The parameter ℎ and 𝐽𝐽 can be fitted to the data 12 

by iteratively adjusting 〈σi〉∗ and 〈σiσj〉∗ toward the mean occurrence and co-occurrence 13 
calculated from the observational data, 〈σi〉 and 〈σiσj〉. Here, the parameters are updated as 14 

ℎinew ← ℎiold + α log〈σi〉/〈σi〉∗ 15 
𝐽𝐽ijnew ← 𝐽𝐽ijold + αlog〈σiσj〉/〈σiσj〉∗ 16 

at each step. We set the learning rate α = 0.25 and the maximum number of iterations 𝑇𝑇 =17 
5000, according to the preliminary analysis where we checked the convergence of model 18 
parameters. 19 
 20 
Stochastic approximation- The likelihood function of the pairwise maximum entropy model 21 
becomes computationally intractable when we need to include environmental condition (as in 22 
eq. (2)), because it requires repeating the above computations independently for every 23 
sample. Therefore, it calls for a different model-fitting algorithm. Here, following Harris 24 
(2015), we introduce a stochastic approximation (Robbins and Monro 1951, Salakhutdinov 25 
and Hinton 2012) for this purpose. This algorithm replaces the intractable computations with 26 
tractable Monte Carlo estimates of the same quantities. Despite the sampling error introduced 27 
by this substitution, stochastic approximation provides strong guarantees for eventual 28 
convergence to the maximum likelihood estimate (Younes 1999, Salakhutdinov and Hinton 29 
2012). 30 
 31 
Stochastic approximation (Robbins and Monro 1951, Salakhutdinov and Hinton 2012) 32 
estimates the expected values of the sufficient statistics by averaging over a more manageable 33 
number of simulated assemblages during each model-fitting iteration, while still retaining 34 
maximum likelihood convergence. The advantage of this algorithm is that 𝑍𝑍 (eq. (3)) does 35 
not have to be calculated at each step, which significantly improves computational efficiency. 36 
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This is due to the use of a heat-bath algorithm that only requires calculating energy of two 1 
adjacent community compositions. The procedure iterates the following steps: 2 
 3 
1. Set 𝑑𝑑 = 0, initial learning rate α0 = 0.1, logistic priors as 𝑝𝑝ℎ = −tanh (ℎ/2/2)/2, 𝑝𝑝𝑔𝑔 =4 
−tanh (𝑔𝑔/2/2)/2 and 𝑝𝑝𝐽𝐽 = −tanh (𝐽𝐽/0.5/2)/2 and initialize parameter values for ℎ, 𝐽𝐽,𝑔𝑔, 5 
and the expected sample states X∗(0) = X. We set Y∗ = Y throughout the calculation. 6 
 7 
2. Calculate learning rate α as: 8 

α = α0
5000

4999 + 𝑑𝑑
, 9 

momentum 𝑚𝑚 as: 10 

𝑚𝑚 = 0.9 �1 −
1

0.1𝑑𝑑 + 2
�. 11 

 12 
3. For xi∗(𝑑𝑑) from i = 1 to 𝑁𝑁, run one step heat-bath algorithm based on current 13 
parameters (ℎ, 𝐽𝐽 and 𝑔𝑔): transition from the current community composition σ(k) to one of 14 
its 𝑆𝑆 adjacent community composition σ�k′�, selected with probability 1/𝑆𝑆, was attempted 15 
(σ(k) and σ�k′� differs only with respect to the presence/absence status of one of S species). 16 

The transition to the selected state took place with probability e−𝐸𝐸�σ
�k′�|ℇ(i)�/(e−𝐸𝐸(σ(k)|ℇ(i)) +17 

e−𝐸𝐸(σ�k
′�|ℇ(i)

)). Here, (e−𝐸𝐸(σ(k)|ℇ(i)) and e−𝐸𝐸(σ�k
′�|ℇ(i)) are given by eq. (4). If transition 18 

occurs, the sample state is updated as xi∗(t) ← σ�k′�. 19 
 20 
4. Subtract the simulated sufficient statistics from the observed ones to calculate the 21 
approximate likelihood gradient. Sufficient statistics are calculated as, SS1∗ = X∗(X∗)t (here, 22 
(X∗)t is the transpose of X∗), and SS2∗ = (X∗)tY∗. Then, we obtain the difference of 23 
sufficient statistics as: 24 

∆SS1 = SS1 − SS1∗, 25 
and 26 

∆SS2 = SS2 − SS2∗ . 27 
Here, SS1 and SS2 is the corresponding sufficient statistics calculated from actual data (i.e., 28 
SS1 = XXt and SS2 = XtY). 29 
 30 
5. Adjust the model parameters to climb the approximate gradient, using a schedule of step 31 
sizes as: 32 

ℎnew ← ℎold + ∆ℎnew, 33 
𝐽𝐽new ← 𝐽𝐽old + ∆𝐽𝐽new, 34 
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𝑔𝑔new ← 𝑔𝑔old + ∆𝑔𝑔new. 1 
Here, 2 

∆ℎnew = α𝐺𝐺ℎ  + 𝑚𝑚∆ℎold, 3 
∆𝐽𝐽new = α𝐺𝐺𝐽𝐽 + 𝑚𝑚∆𝐽𝐽old, 4 
∆𝑔𝑔new = α𝐺𝐺𝑔𝑔 + 𝑚𝑚∆𝑔𝑔old, 5 

and, 6 

𝐺𝐺ℎ =
diag(∆SS1) + 𝑝𝑝ℎ

𝑁𝑁
, 7 

𝐺𝐺𝐽𝐽 =
∆SS1 + 𝑝𝑝𝐽𝐽

𝑁𝑁
|𝐼𝐼(𝑆𝑆) − 1|, 8 

𝐺𝐺𝑔𝑔 =
∆SS2 + 𝑝𝑝𝑔𝑔

𝑁𝑁
, 9 

are the approximated likelihood gradients. Here, 𝐼𝐼(𝑆𝑆) is a 𝑆𝑆 × 𝑆𝑆 identity matrix. 10 
 11 
6. Set ℎnew, 𝐽𝐽new, 𝑔𝑔new, ∆ℎnew, ∆𝐽𝐽new and ∆𝑔𝑔new as ℎold, 𝐽𝐽old, 𝑔𝑔old, ∆ℎold, ∆𝐽𝐽old 12 
and ∆𝑔𝑔old, respectively. If 𝑑𝑑 < 𝑇𝑇, increment t by 1 and back to 2, else terminate the loop. 13 
 14 
The simulations in Step 3 use a one step heat-bath algorithm (Gibbs sampling) to generate a 15 
community composition distribution based on the model’s current parameter estimates. While 16 
the subsequent community compositions produced by Gibbs sampling are autocorrelated, this 17 
does not prevent convergence to the maximum likelihood estimates (Younes 1999, 18 
Salakhutdinov and Hinton 2012). Approximated likelihood gradients in Step 5 match those of 19 
gradient descent, except that they are averaged over a set of Monte Carlo samples rather than 20 
over all possible community composition. These gradients were augmented with a 21 
momentum term (Hinton 2012) and by regularizers based on a logistic prior with location 0 22 
and scale 2.0 (for environmental responses) or 0.5 (for pairwise relationships). We set 23 
hyperparameters in this algorithm, including a maximum number of iteration steps 𝑇𝑇 =24 
50000, according to the preliminary analysis where we checked the convergence of model 25 
parameters. 26 
 27 
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Appendix S2: Parameter values and models used to generate data sets 1 
 2 
The interaction matrix used to generate a data set in Analysis of a competitive Lotka-Volterra 3 
system, Energy landscape of the LV system, Emulating community assembly dynamics, are in 4 
Table S1. 5 
 6 
The response vector b in Energy landscape across environmental gradient is: 7 
𝑏𝑏8 
= (0.26,−0.39,0.16,0.36,0,−0.43,0.28,0.02,−0.45,−0.46,−0.32,−0.41,0.14,0.18,−0.01) 9 
 10 
In Benchmarking, the interaction matrix A was generated so that the connectance 𝑐𝑐𝐴𝐴 = 0.5, 11 
and its non-zero diagonal elements (interspecific competition) were drawn from a normal 12 
distribution with a mean 𝜇𝜇𝐴𝐴 = 0.6 and variance σ𝐴𝐴 = 0.2. We fixed the diagonal elements 13 
(intraspecific interaction) as 𝑎𝑎ii = 1. To obtain the result under type II functional response 14 
(G in Fig. 7), we extended the eq.(5) as 15 

𝑑𝑑𝑥𝑥i/𝑑𝑑𝑑𝑑 = 𝑥𝑥i �1 − Σi
𝑎𝑎ij𝑥𝑥i

0.5 + Σj𝑎𝑎ij𝑥𝑥i
 + Σ𝑏𝑏i𝜀𝜀∗�, 16 

and to obtain data set with noise (H in Fig. 7), we used, 17 

𝑑𝑑𝑥𝑥i/𝑑𝑑𝑑𝑑 = 𝑥𝑥i �1 − Σi
𝑎𝑎ij𝑥𝑥i

0.5 + Σj𝑎𝑎ij𝑥𝑥i
 + ηi�. 18 

Here, ηi is assumed to be the i.i.d noise drawn from a normal distribution of mean 0 and s.d. 19 
0.1. 20 
 21 
  22 
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 1 
Table S1. Elements of matrix A. 2 
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Glossary of terms. 1 
 2 
Actual features - features characterizing the stability landscape and is calculated by LV data 3 
set; these features are comparable to the features of an energy landscape. 4 
 5 
Basin of attraction - in an energy landscape, defined as a set of community compositions that 6 
reach one distinct stable state when assembly processes are completely deterministic; in LV 7 
data set, it is identified by a stable state to which a community composition most frequently 8 
converged (if there is more than one such state, it belongs to all of them). 9 
 10 
Effective boundary - community compositions in emulated compositional dynamics having 11 
the highest energy during the transition from one stable state to another. 12 
 13 
Empirical probability - one of actual features; the ratio of the number of observations of σ(k) 14 
to the total number of observations. 15 
 16 
Emulated compositional dynamics – compositional dynamics constrained by an energy 17 
landscape; it is generated by using the heat-bath (also known as Gibbs sampling) method. 18 
 19 
Energy barrier - the energy level that need to go up during the transition from one stable state 20 
to another. 21 
 22 
Energy landscape - a weighted network whose nodes represent unique community 23 
compositions and links represent transition path between them; nodes are weighted according 24 
to energy E given by eq.(2) or (4); an energy landscape is the approximation of a stability 25 
landscape based on the maximum entropy principle given observational data; energy landscape 26 
analysis is the analysis of topological and connection attributes of an energy landscape. 27 
 28 
Energy minima - community compositions having the lowest energy compared to all 29 
neighboring compositions, and thus constitute end-points when assembly processes are 30 
completely deterministic (i.e., when transition of community compositions always go down the 31 
energy landscape); we identify energy minima of an energy landscape as stable states of a 32 
stability landscape. 33 
 34 
Extended pairwise maximum entropy model - an extension of the pairwise maximum 35 
entropy model (Markov network) including a term representing environmental effects. We 36 
referred the two models as the pairwise maximum entropy models all together. 37 
 38 
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Imbalance score (IS) - one of actual features; quantifies how stable states to which a 1 
community composition in LV data set converges are uniquely determined. 2 
 3 
LV data set - a data set generated by the LV competition model; it is used to calculate actual 4 
features. 5 
 6 
Relative convergence time (RCT) - one of actual features; the average number of different 7 
community compositions that a community composition undergoes before converging to a 8 
stable state; it is normalized to have a value between 0 and 1 and indicates distance from a 9 
community composition to a stable state to which it converges. 10 
 11 
Rescaled energy - the energy of a community composition normalized to take 0 at a stable 12 
state and 1 at the community composition that has the highest energy within an attractive basin; 13 
for σ(k) it is calculated as, E�k = (Ek − ESS)/(Emax − ESS) where Ek is the energy of σ(k), 14 
ESS is the energy of stable state to which basin σ(k) belongs, and Emax is the energy of a 15 
community composition that is the highest within the basin of attraction. 16 
 17 
Stable state – given a fixed set of species, a community composition that can be an end state 18 
of assembly sequences. 19 
 20 
Stability landscape - a structure that governs the overall compositional stability of an 21 
ecological community; it can be represented as a graph with a set of community compositions 22 
and transition paths between them (Figure 1). 23 
 24 
Tipping point – the community composition located at the lowest part of the ridge between 25 
two basins of attraction. 26 
 27 
Transition channels - a fraction of effective boundary that mediates most of the transition 28 
between stable states. 29 
 30 
 31 
 32 
 33 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 17, 2021. ; https://doi.org/10.1101/709956doi: bioRxiv preprint 

https://doi.org/10.1101/709956

