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There is mounting empirical evidence that many communities of living organisms display key
features which closely resemble those of physical systems at criticality. We here introduce a minimal
model framework for the dynamics of a community of individuals which undergoes local birth-death,
immigration and local jumps on a regular lattice. We study its properties when the system is close
to its critical point. Even if this model violates detailed balance, within a physically relevant regime
dominated by fluctuations, it is possible to calculate analytically the probability density function
of the number of individuals living in a given volume, which captures the close-to-critical behavior
of the community across spatial scales. We find that the resulting distribution satisfies an equation
where spatial effects are encoded in appropriate functions of space, which we calculate explicitly.
The validity of the analytical formulæ is confirmed by simulations in the expected regimes. We
finally discuss how this model in the critical-like regime is in agreement with several biodiversity
patterns observed in tropical rain forests.

I. INTRODUCTION

Several authors have showed that the parameters of
models which describe biological systems are not located
at random in their parameter space, but are preferably
poised in the vicinity of a point or surface which sepa-
rates regimes of qualitatively different behaviors [1]. In
this sense, stationary states of living systems are not only
far from equilibrium, but bring the hallmark of critical-
ity. Although the connection between underpinning dy-
namics and measurable quantities is sometimes tenuous
and hence conclusions about criticality loose, empirical
examples span a wide range of biological organization,
from gene expression in macrophage dynamics [2], to cell
growth [3], relatively small networks of neurons [4], flocks
of birds [5] and, possibly, tree populations in tropical
forests [6].

In this article, we mainly focus on the spatial patterns
emerging from a minimal model of population dynamics
close to its critical point. This latter is identified as a
singularity in the population size of the system, similarly
to what happens in the theory of branching processes in
the sub-critical regime [7], when the fluctuations play a
crucial role. Therefore, in our model the critical point
does not mark a transition between ordered and disor-
dered phases sensu equilibrium statistical mechanics [8],
although connections in a broader context may certainly
exist. The emergent patterns are not calculated by us-
ing classical size-expansion methods, but introducing a
parameter expansion which appropriately identifies crit-
icality in the parameter space of the model.

The calculation of the probability distribution of large
scale configurations emerging from the microscopic dy-
namics is challenging, even at stationarity [9, 10]. When
stochastic processes violate detailed balance, they have
a generator which is not self-adjoint [11] and differ-
ent states are coupled by probability currents at mi-
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croscopic level [12]. These flows of probability among
microstates break detailed balance, time symmetry and
produce macroscopic non-equilibrium behavior. A com-
mon way to overcome these hurdles is to formulate some
kind of effective Langevin equation which describes the
dynamics of the mesoscopic variables of interest, loos-
ing track, however, of the underlying microscopic dy-
namics [13–15]. Nonetheless, in this paper we study a
model which, despite violating microscopic detailed bal-
ance [16, 17], allows one to study analytically (stationary)
out-of-equilibrium properties of spatial patterns. These
latter emerge mainly because of the large intrinsic fluc-
tuations of the local population sizes. Also, the model’s
mathematical amenability allows us to analyze in detail
those spatial ecological patterns and to compare them
with observation data for ecosystems with large species
richness. The agreement between model predictions and
empirical data highlights the usefulness of the approach
and strengthens the connections between physics and
theoretical ecology.

In this spatial metacommunity model, local communi-
ties (or, equivalently, sites or voxels) are located on a d-
dimensional regular graph (or lattice) where individuals
are treated as well-mixed particles which undergo a birth
and death process with local diffusion and constant colo-
nization. We thoroughly investigate the spatial stochas-
tic dynamics close to criticality and deduce the equation
governing the evolution of the conditional distribution
p(N |V ; t), the probability to find N individuals in a vol-
ume V at time t (in dimension d). Within this regime
we map the equation of p(N |V ) of the out-of-equilibrium
spatial model into an equation of a suitable stochastic
process, which instead satisfies detailed balance. This
model is described by functions of space, which we are
able to calculate exactly. The exact stochastic simula-
tions are always matched by our analytical formulæ in
the expected regimes.

The rest of the paper is organized as follows: in section
II we introduce the master equation of the model; in sec-
tion III we calculate the mean and pairwise correlation;
in section IV we study the generating function of the
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conditional probability density function of N(V ); in sec-
tion V and VI we calculate the population variance and
the conditional pdf of N(V ), respectively, along with a
comparison between simulations and analytical formulæ;
in section VII we present an ecological application of the
model; finally, section VIII includes some discussions and
perspectives about the results.

II. MASTER EQUATION OF THE MODEL

This is a metapopulation model in which individu-
als live in local communities (or sites) located on a d-
dimensional lattice, L, whose linear side is a. If Xi, i ∈ L,
indicates an individual living in site i, the reactions defin-
ing the model’s dynamics can be cast into the form

Xi
bγ−→ 2Xi

Xi

b(1−γ)
2d−−−−→ Xi +Xj

Xi
r−→ ∅

∅ b0−→ Xi

where j indicates a site which is a nearest neighbor of
the site i. In this model, individuals within local com-
munities (or, equivalently, sites or voxels) are treated as
diluted, well-mixed point-like particles which undergo a
minimal stochastic demographic dynamics: each individ-
ual may die at a constant death rate r and give birth
to an offspring at a constant rate b. The newborn indi-
vidual remains in the same community with probability
γ, whereas it may hop onto one of the 2d nearest neigh-
bours with probability 1 − γ. Also, all communities are
colonized by external individuals at a constant immigra-
tion rate b0, which prevents the system to end up into an
absorbing state without individuals [18, 19].

Notice that (for 0 ≤ γ < 1) spatial movement is always
coupled to birth, so that only newborn individuals can
move. This is because we have in mind an application to
spatial ecology, where this model mimics the population
dynamics in species-rich communities of trees, in which
only seeds can move. However, it can be easily modified
to include random walk behaviour or different dispersals
– like those for bacteria or humans – in which the local
birth and the hopping probability are in general decou-
pled. We have indeed verified that the generality of our
final results does not depend on that coupling.

In the language of chemical reaction kinetics, the first
reaction represents an autocatalytic production; this and
the hopping move are responsible for the break of de-
tailed balance as shown in Appendix A. Therefore, sta-
tionary states of this process are non-equilibrium steady
states, albeit the model is defined by linear birth and
death rates.

Indeed, it is worth emphasizing that each “patch” has
not a maximum number of individuals which it can ac-
commodate, but any population size is allowed, albeit

large sizes have an exponentially small probability to oc-
cur. This is because the model has no intrinsic carry-
ing capacity which leads the population to saturation.
A carrying capacity has the advantage to bring in more
realistic features, but it also makes the model mathe-
matically more complicated because of non-linear terms.
Here we show that linear rates of a stochastic model per
se can produce a relevant phenomenology within a sta-
tionary out-of-equilibrium model. Thus, since we wanted
to focus on the regime near criticality, we have preferred
to delve into a relatively simpler system, in which non-
linearities are neglected in a first approximation. More
complicated dynamics are definitely important and will
be studied in future works.

Finally, for the system to avert demographic explosion
we have to assume that b0 > 0 and 0 < b < r, but it turns
out that the most interesting features emerge when b ' r,
i.e., close to its critical point. Indeed, as we will show in
Section VII, for comparable birth and death rates the
model is able to describe several spatial patterns of tree
species in tropical forests [20].

Let us now indicate with ni the number of individu-
als in site i. Assuming that within every site the spa-
tial structure can be neglected and that we have per-
fect mixing, when the configuration of the system is
{n} = {ni : i ∈ L}, the linear birth and death rates
in site i, i.e., W+

i ({n}) and W−i ({n}), read respectively

W+
i ({n}) =

b(1− γ)

2d

∑
j:|j−i|=1

nj + bγni + b0

W−i ({n}) = rni . (1)

Let P ({n}, t) be the probability to find the system in the
configuration {n} at time t. Then the master equation
for P ({n}, t) reads

∂

∂t
P ({n}, t) =

∑
i∈L

{
(2)

W+
i ({..., ni − 1, ...})P ({..., ni − 1, ...}, t)+

−W+
i ({n})P ({n}, t)+

+W−i ({..., ni + 1, ...})P ({..., ni + 1, ...}, t)+

−W−i ({n})P ({n}, t)
}

where the dots represent that all other occupation num-
bers remain as in {n} and it is intended that P (·) = 0
whenever any of the entrances is negative. The spatial
generating function of the process is defined as

ζ({H}, t) =〈e
∑
k∈L nkHk〉 =

=
∑
{n}

e
∑
k∈L nkHkp({n}, t)

where Hi ≤ 0 for every i ∈ L. Multiplying both sides of
eq.(2) by e

∑
k′∈L nk′Hk′ and summing over all configura-

tions of the system, we find that ζ({H}, t) satisfies the
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FIG. 1: Illustration of the model. Individual trees are represented by dark green circles within local communities
which are located on a regular graph (lattice). Each individual may die or give birth to an offspring with constant
per capita rates. New individuals may either remain in the community where they were born with probability γ, or
hop onto one of the 2d nearest neighbours with probability 1− γ. Finally, all communities are colonized by external

individuals at a constant immigration rate b0. The dynamics of the model is therefore defined by the jump rates
defined in eq.(1).

equation

∂

∂t
ζ({H}, t) =

∑
i∈L

{
(eHi − 1)

[b(1− γ)

2d

∑
j:|i−j|=1

∂ζ

∂Hj

(3)

+ bγ
∂ζ

∂Hi
+ b0 ζ

]
+ r(e−Hi − 1)

∂ζ

∂Hi

}
.

This is the main equation of the model from which we will
calculate the most important results. We were not able
to find the full solution of this equation. However, one
can gain a lot of information about the general properties
of the process by looking into the probability distribution
of the random variable N(V, t) =

∑
i∈V ni(t), where V is

the set of sites in a d-dim volume. Before studying such a
distribution, it is useful to calculate the mean number of
individuals and the spatial correlation between any pair
of sites.

III. MEAN AND PAIR CORRELATION

The equation for the mean number of individuals in the
site k can be obtained by taking the partial derivative of
both sides of eq.(3) with respect to Hk and then setting
{H} = 0:

∂〈nk〉
∂t

=
b(1− γ)

2d
∆k〈nk〉 − µ〈nk〉+ b0

where µ := r−b and ∆k is the discrete Laplace operator,
which is defined as

∆kf(k) =
∑

j:|k−j|=1

(
f(j)− f(k)

)
.

This finite difference equation can be solved in full gen-
erality and at stationarity, i.e. for t→∞, we get simply
〈n〉 = b0

µ , regardless of any spatial location.

The pairwise spatial correlation between sites k and l,
i.e., 〈nknl〉, can also be obtained by taking the partial
derivatives of both sides of eq.(3) with respect to Hk

and Hl, and then setting {H} = 0 (see Appendix B for
details):

∂

∂t
〈nknl〉 =D

(
∆k〈nknl〉+ ∆l〈nknl〉

)
+

−2µ〈nknl〉+ 2b0〈n〉+ (4)

+δk,l

(
2σ2〈n〉+ b0 +D∆k〈nk〉

)
where we have used the notation

D :=
b(1− γ)

2d
and σ2 :=

r + b

2
.

We also introduce

λ :=

√
D

µ
and ρ :=

√
σ2

b0
,

which are dimensionless parameters and provide impor-
tant information about how spatial diffusion intermingles
with demographic dynamics.

In order to solve eq.(4), we introduce a d-dim system
of Cartesian coordinates where the coordinates of each
site are given as a multiple of the lattice side a. Thus,
a vector k indicates the corresponding position of a site.
In this way, we can calculate the stationary solution of
eq.(4) by writing 〈nknl〉 as a Fourier series expansion.
Exploiting translation invariance the final expression of
the solution reads (see Appendix B)

〈nknl〉 = 〈n〉2 + 〈n〉2ρ2
(

1 +
µ

2σ2

)
×

×
( a

2π

)d ∫
C

dp
eip·(k−l)

1 + 2λ2
∑d
i=1(1− cos(pia))

(5)
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where pi is the i-th Cartesian component of the d-dim
vector p and C is the hypercubic primitive unit cell of
size 2π/a. Interestingly, pairs of sites de-correlate for
γ = 1 or b = 0, when at stationarity we obtain 〈nknl〉 −
〈n〉2 = cδk,l, where c is a constant depending only on the
demographic parameters and δk,l is a Kronecker delta.
However, c 6= 〈n〉, pointing out that local fluctuations
are non-Poissonian.

Eq.(5) is amenable to a continuous spatial limit, ob-
tained as a → 0, and provides a closed analytic form
for the pair correlation. Indicating now with n(x) and
n(y) the density of individuals on the sites located at x
and y, respectively, in continuous space (and rescaling
parameters accordingly), we find (see Appendix B)

〈n(x)n(y)〉
〈n〉2

= 1+
ρ̄2

(2πλ̄2)d/2

(
1 +

µ

2σ2

)
× (6)

×
( |x− y|

λ̄

) 2−d
2

K 2−d
2

( |x− y|
λ̄

)
where |x− y| is the distance between the sites located at
x and y, Kν is the modified Bessel function of the second
kind of order ν [21], and we have defined

λ̄ :=

√
D̄

µ
ρ̄ :=

√
σ2

b̄0
,

where D̄ = Da2 and b̄0 = b0/a
d are finite as a → 0. As

the asymptotic behavior of Kν as z → ∞ is Kν(z) ∼
e−z
√

π
2z , λ̄ is the correlation length of the system; ρ̄2

has the dimensions of a d-dim volume and gives the lo-
cal intensity of the correlations. Because eq.(6) is the
continuum limit of eq.(5), this expression of the pair cor-
relation function is a good approximation of the one in
eq.(5) only when |x− y| � a and λ̄� a.

IV. GENERATING FUNCTION CLOSE TO
THE CRITICAL POINT

In this section we introduce the parameters which allow
us to identify a region close to the critical point of the
model. This suggests an expansion which will lead to
simplified equations which, nonetheless, carry a lot of
information about the model.

A simple way to make progress with the master equa-
tion in eq.(2) is the use of a formal Kramers-Moyal ex-
pansion [22]. It is well-known that there are limitations
to this procedure and it has been criticized, because one
cannot always pinpoint a small parameter for the cor-
rect expansion [22, 23]. The system-size expansion solves
these difficulties, but it has to be applied when the size
of the system becomes large [23]. Here, however, it is not
entirely evident what parameter should identify the size
(population size or volume) of the system in the critical
regime. Indeed, the model has no carrying capacity or
maximum population size, and the total volume of the

system could only provide us with the macroscopic equa-
tion, which has no interest in the present case.

In order to make analytical progress, we have there-
fore introduced two dimensionless parameters, ε and η,
which identify a non-trivial region when 0 < b < r, but

b → r. We define ε := 2(r−b)
r+b with the condition that

b0
µ ε = O(1) as ε→ 0+; in this way we obtain a constant

ρ2 = µ/b0ε, which in real systems is large because usu-
ally r/b0 � 1. The parameter ε indicates how close the
system is to the critical point, regardless of spatial diffu-
sion. With the independent parameter η := D

σ2 , instead,
we compare the importance of spatial diffusion with re-
spect to demographic fluctuations. We will assume that
η = O(ε) as ε→ 0+ and hence η/ε = λ2, a new indepen-
dent constant.

When b and r are close to each other, we expect that
population sizes can be well approximated with continu-
ous random variables in each site. In order to understand
when this is possible in relation to the parameters ε and
η, we assumed that the generating function ζ({H}, t) is
analytic at Hi = 0 for any i and the most important
contribution to the equation of ζ({H}, t) comes from a
negative neighborhood of the origin with thickness O(ε).
This is tantamount to introducing the change of variable
Hi = εSi into eq.(3) and to expanding in powers of ε,
assuming Si = O(1) and Si ≤ 0. Up to linear order in η
and ε we obtain

∂

∂t
ζ({S}, t) =

∑
i∈L

σ2Si

{
η∆i

∂ζ

∂Si
− ε ∂ζ

∂Si
+

ε

ρ2
ζ+

+ εSi
∂ζ

∂Si

}
(7)

or

∂

∂T
ζ({S}, t) =

∑
i∈L

Si

{
λ2∆i

∂ζ

∂Si
− ∂ζ

∂Si
+

1

ρ2
ζ+

+ Si
∂ζ

∂Si

}
, (8)

where we have introduced the dimensionless time T := µt
and now ζ, with a slight abuse of notation, indicates the
generating function corresponding to continuous (and di-
mensionless) random variables. Therefore, the evolution
equation for the generating function of the population
sizes becomes

∂ζ

∂T
=
∑
i∈L

Hi

{
λ2∆i

∂ζ

∂Hi
− ∂ζ

∂Hi
+ 〈n〉ζ +

σ2

µ
Hi

∂ζ

∂Hi

}
,

(9)
where Hi is the variable conjugated to the continuous
random variable ni. The parameters also correspond to
this continuum limit and now the population sizes ni
have an exponential cut-off with a (large) characteristic
scale given by σ2/µ. Eq.(9) leads to the following Fokker-
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Planck equation:

∂

∂T
P ({n}, T ) =∑
i∈L

{
− ∂

∂ni

[(
λ2∆ini − ni + 〈n〉

)
P ({n}, T )

]
+

+
σ2

µ

∂2

∂n2
i

[
niP ({n}, T )

]}
, (10)

where now {n} are continuous random variables and
P ({n}, T ) is the corresponding probability density func-
tion. It is interesting to note that this is not ex-
actly equivalent to the näıve Kramers-Moyal expansion
of eq.(2), which would entail additional terms in the dif-
fusive part. Nevertheless it is a diffusive approximation
of the process in the regime identified by the parameters
η and ε.

A. Conditional generating function

Eq.(10) cannot be solved in full generality, but we can
better understand the underlying dynamics by studying
the distribution of the population sizes in arbitrary vol-
umes of space. Let us indicate with V the set of sites be-
longing to a d-dim volume |V| = V , and let us introduce
the random variable N(V, t) =

∑
i∈V ni(t), i.e. the total

number of individuals in V at time t. By indicating with
P (N |V, t) the corresponding probability density function
of N , we define the conditional generating function

Z(h|V, t) = 〈ehN(V,t)〉 =

∫ ∞
0

dN ehNP (N |V, t)

where h ≤ 0. We obtain the corresponding equation for
Z by specifying Hi, i.e.

Hi =

{
h if i ∈ V
0 if i /∈ V

(11)

and substituting this into eq.(9). Thus,

∂

∂T
Z(h|V, T ) = h

[
λ2
∑
i∈V

∆i f(i, h, V, T )− ∂Z

∂h
+ (12)

+〈n〉V Z
]

+
σ2

µ
h2 ∂Z

∂h

where f(i, h, V, T ) = 〈ni(T )ehN(V,T )〉 and we have used
the identity

∑
i∈V
〈niehN 〉 =

∂Z

∂h
(h|V, T ) . (13)

This equation depends on f(i, h, V, T ) which in gen-
eral is unknown. An equation for f can be derived by

differentiating both sides of eq.(9) with respect to Hk.
Assuming as before that k ∈ V, we finally obtain the
following equation for f(k, h, V, T ) (abbreviated f(k, h))

∂

∂T
f(k, h) =λ2∆kf(k, h)− f(k, h)+ (14)

+
b0
µ
Z + h

[
λ2
∑
i∈V

∆i g(i, k, h)+

− ∂

∂h
f(k, h) + 〈n〉V f(k, h)

]
+

+2
σ2

µ
hf(k, h) +

σ2

µ
h2 ∂

∂h
f(k, h)

where g(i, k, h, V, T ) := 〈ni(T )nk(T )ehN(V,T )〉 and where
we have used the identity

∑
i∈V
〈ninkehN 〉 =

∂

∂h
f(k, h, V, T ) . (15)

In eq.(14) the function g is still unknown, but it is
possible to show that ∆ig(i, k, h, T ) = ∆kg(i, k, h, T ) to
leading order as a→ 0 (see Appendix C). This allows us
to obtain a closed equation for f . Indeed, we have∑

i∈V
∆ig(i, k, h, V, T ) =

∂

∂h
∆kf(k, h, V, T )

after using the identity (15).
The spatial continuous limit of eq.(12) as a→ 0 reads

∂

∂T
Z(h|V, T ) = h

[
λ̄2

∫
V

dx ∇2
x f(x, h, T )− ∂Z

∂h
+ (16)

+〈n〉V Z
]

+
σ2

µ
h2 ∂Z

∂h
,

where in 〈n〉 we have substituted b0 with b̄0. This equa-
tion is of crucial importance in what follows. Similarly,
eq.(14) becomes

∂

∂T
f(y, h, V, T ) =λ̄2∇2

y f(y, h)− f(y, h) + 〈n〉Z+ (17)

+h
[
λ̄2 ∂

∂h
∇2
yf(y, h)− ∂

∂h
f(y, h)+

+〈n〉V f(y, h)
]

+
σ2

µ

∂

∂h

[
h2f(y, h)

]
,

where with the continuous coordinates (ni → n(x) and
nk → n(y)), we have also f(x, h, V, T ) = 〈n(x)ehN 〉 and
N(V, t) =

∫
V dx n(x, t). When there are no spatial ef-

fects, i.e., λ̄ = 0, eq.(16) reads

∂

∂T
Z(h|V, T ) = h

[
−
(

1− σ2

µ
h

)
∂Z

∂h
+ 〈n〉V Z

]
, (18)

which has the following solution at stationarity

Z(h|V ) =

(
1− σ2

µ
h

)−µ〈n〉V
σ2

, (19)
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where h ≤ 0 and µ〈n〉V/σ2 = V/ρ̄2. This is the gener-
ating function of a gamma distribution [23] with mean
〈n〉V and variance 〈n〉2V ρ̄2. Also, it is not difficult to
verify that when λ̄ = 0, the solution of eq.(17) is given
by

f(y, h, V, T ) =
1

V

∂Z

∂h
(h|V, T ) . (20)

In the next section we calculate the stationary variance
of the population sizes in a volume V , i.e., of the random
variable N(V ).

(a) (b)

(c) (d)

FIG. 2: Stationary distribution as obtained from
the phenomenological algorithm (d = 1). Panels

(a), (b) and (c) present a comparison between the
simulated model as obtained from the phenomenological

algorithm (histograms) outlined in sec.VI and the
stationary solution as calculated with eq.(35) (blue solid

line). The lattice comprises 500 sites in total and we
carried out 50,000 independent realizations in d = 1

with periodic boundary conditions, where parameters
are D = 30, b0 = 0.5, µ = 0.01 and σ = 10, and hence
λ̄ ≈ 55. Panels show results for segments of different
lengths which include 10, 20 and 60 adjacent sites,
respectively. The size of error bars (black lines) are
twice as much the standard deviation, while the red
solid line represents the mean field solution of the
system (i.e. eq.(35) where Σ = σ2/µ). Panel (d)

presents the comparison between the simulated and the
analytic pair correlation function at stationarity. Red
dots are from simulations, while the blue solid line is

the analytic solution given by eq.(6).

(a) (b)

(c) (d)

FIG. 3: Stationary distribution as obtained from
the phenomenological algorithm (d = 2). Panels

(a), (b) and (c) present a comparison between the
simulated model as obtained from the phenomenological

algorithm (histograms) outlined in sec.VI and the
stationary solution as calculated with eq.(35) (blue solid
line). The square lattice comprises 200× 200 sites. We

carried out 50,000 independent realizations in d = 2
with periodic boundary conditions, with parameters
D = 20, b0 = 0.1, µ = 0.1 and σ = 10, and hence
λ̄ ≈ 15. Panels (a-c) show results for different areas

with radii of length 5, 10 and 20, respectively. The size
of error bars (black lines) are twice as much the

standard deviation, while the red solid line represents
the mean field solution of the system (i.e., eq.(35) where
Σ = σ2/µ). Panel (d) presents the comparison between
the simulated and the analytic pair correlation function
at stationarity. Red dots are from simulations, while the
blue solid line is the analytic solution given by eq.(6).

V. POPULATION VARIANCE

In this section we calculate the stationary variance of
the population size, i.e., N(V ) =

∫
V dxn(x), where V is

a finite volume. This quantity is of pivotal importance
in the approximation that we are going to develop in the
following sections and it is key when introducing spatial
information in the equations. Thus we outline here the
main calculations, leaving to Appendix D further details.

We start from the spatial continuous limit of eq.(4) as
a→ 0, which at stationarity reads
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λ̄2
(
∇2
x〈n(x)n(y)〉+∇2

y〈n(x)n(y)〉
)
− 2〈n(x)n(y)〉+

+ 2〈n〉2 + 2
σ2

µ
〈n〉δ(x− y) = 0 (21)

where δ(x−y) is a Dirac delta and we have included only
the leading terms as ε→ 0. By integrating both sides of
eq.(21) with respect to y ∈ V, we obtain an equation for
〈n(x)N(V )〉. We plan to find an explicit expression for
this quantity, because it plays a key role in the following
when we will calculate Z(h|V ). Henceforth, we will take
V to be a d-dim ball of radius R and we will assume that
the origin of the Cartesian coordinates is at its center.
Thus we indicate with |x| the distance from the origin
of the site located at x in this coordinate system. With
this notation and using the symmetry of 〈n(x)n(y)〉 with
respect to x and y, we obtain at stationarity

λ̄2∇2
x〈n(x)N(R)〉−〈n(x)N(R)〉+ 〈n〉2V+ (22)

+
σ2

µ
〈n〉 Θ

(
R− |x|

)
= 0 .

This linear ODE has to be solved separately for |x| > R
and |x| < R. The continuity of 〈n(x)N(R)〉 and its first
derivative at the boundary |x| = R provide the solution.
The final results is (see Appendix D)

〈n(x)N(R)〉 =〈n〉2V +
σ2

µ
〈n〉 Ψ

( |x|
λ̄
,
R

λ̄

)
, (23)

where the function Ψ takes the following form for |x| ≤ R

Ψ
( |x|
λ̄
,
R

λ̄

)
= (24)

=1−

(
|x|
R

)1− d2
K d

2

(
R
λ̄

)
I d

2−1

(
|x|
λ̄

)
I d

2−1

(
R
λ̄

)
K d

2

(
R
λ̄

)
+ I d

2

(
R
λ̄

)
K d

2−1

(
R
λ̄

) ,

where Iν(z) and Kν(z) are the modified Bessel functions
of the first and second kind, respectively [21]. Integrating
both sides of eq.(23) with respect to x ∈ V, we obtain the
equation for the second moment of N(R), i.e.

〈N(R)2〉 =〈n〉2V 2 +
σ2

µ
〈n〉V ψ

(R
λ̄

)
(25)

where ψ(R/λ̄) takes the following explicit form in dimen-
sion d (see Appendix D for its behavior):

ψ
(R
λ̄

)
= 1−

dλ̄
R K d

2

(
R
λ̄

)
I d

2

(
R
λ̄

)
I d

2−1

(
R
λ̄

)
K d

2

(
R
λ̄

)
+ I d

2

(
R
λ̄

)
K d

2−1

(
R
λ̄

) .

(26)

These two functions, namely 〈n(x)N(R)〉 in eq.(23) and
〈N(R)〉2 in eq.(25) will be used in the next sections to

calculate a first order approximation of the spatially ex-
plicit probability density function of N(V ) in the vicinity
of the critical point.

Finally, these solutions allow us to write down the an-
alytic form of the variance of N(R) in dimension d, i.e.

Var[N(R)] = 〈N(R)〉Σ(R) , (27)

where 〈N(R)〉 = 〈n〉V = b̄0V/µ and Σ(R) :=
σ2ψ(R/λ̄)/µ. The function Σ(R) is the spatial Fano fac-
tor and quantifies the deviations of the fluctuations from
a Poisson process. Since σ2/µ = O((r − b)−1), when the
system is close to the critical point – for fixed R and λ̄ –
the system has large fluctuations on all scales larger than
the correlation length λ̄. Also, in the regime R/λ̄→ +∞
we obtain µΣ(R)/σ2 = 1 +O[(R/λ̄)−1], thus recovering
the mean-field fluctuations as predicted by eq.(19).

A. The spatial Taylor’s law

Taylor’s law was first observed in ecological commu-
nities [24, 25], where natural populations show some de-
gree of spatial aggregation. This was phenomenologically
captured by assuming a scaling relationship between the
variance and mean of population sizes in different ar-
eas. More generally, and recently, Taylor’s law denotes
any power relation between the variance and the mean of
random variables in complex systems [26, 27]. The law
postulates a relation of the following form

Var[N(R)] = C〈N(R)〉α ,

where C is a positive constant and α typically assumes
values between one and two [25, 27]. The spatial model
which we have introduced can predict the behavior of
this relation across scales without making specific as-
sumptions. If we focus on the two dimensional case and
fix λ̄, we obtain Var[N(R)] = C1〈N(R)〉2 log(〈N(R)〉)
for R � λ̄, while Var[N(R)] = C2〈N(R)〉 for R � λ̄.
This latter situation corresponds to the mean field case
in which C2 = σ2/µ. So for areas of radius much smaller
than the correlation length the model is characterized
by α = 2 with logarithmic corrections, while in the case
of radii much larger than λ̄ we obtain α = 1. This is
in agreement with previous studies [24–26]. It has been
proved that Taylor’s law can emerge in a much more gen-
eral class of stochastic processes, for example when the
dynamical rates of the model are affected by environmen-
tal variability [26, 27]. In the case of this birth-death
spatial model, the cross-over in the scaling exponent α
results from the different roles of dispersal played at dif-
ferent spatial scales.

VI. SOLUTION OF THE CONDITIONAL PDF

The goal of this section is to derive the main result
of the paper. With the spatial population variance ob-
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tained in the previous section along with an appropriate
approximation, we are now able to close and solve eq.(16)
for the conditional generating function Z(h|V ). We will
then invert this latter for the conditional probability den-
sity function P (N |V ), from which several characteristics
of the spatial patterns can be deduced.

In order to calculate the explicit form of Z(h|V, T ) from
eq.(16), we first need to calculate the solution of eq.(17),
which in turn has to satisfy the identity in eq.(13). We
will first make use of this latter in the form

∫
V
f(x, h, V, T ) dx =

∂Z

∂h
(h|V, T ) . (28)

It is not difficult to verify that f can be expressed as

f(x, h, V, T ) =
1

V

∂Z

∂h

[
1 +

∞∑
i=1

hiAi(x, V, T )
]

, (29)

where the functions Ai are such that

∫
V
Ai(x, V, T ) dx = 0 (30)

for any i. One could calculate the explicit form of Ai,
which depends on the spatial position, by substituting
the expression in eq.(29) into eq.(17). However, the
meaning of these functions provides a more efficient way
for the calculation. Because of the definition of f , we
readily obtain f(x, h = 0) = 〈n〉 and

∂mf

∂hm
(x, h)

∣∣∣∣
h=0

= 〈n(x)Nm〉 (31)

for m = 1, 2, . . ., from which we can make explicit the
expression of Ai by using eq.(29). For instance, it is not
difficult to show (see Appendix E) that at stationarity

A1(x) =
1

〈n〉

(
〈n(x)N〉 − 1

V
〈N2〉

)
=

=
σ2

µ

[
Ψ
( | x |
λ̄
,
R

λ̄

)
− ψ

(R
λ̄

)]
where Ψ and ψ have been defined in eqs.(24) and (26), re-
spectively. Similar relations, though more complicated,
hold for i = 2, 3, . . .. Actually, 〈n(x)N i〉 can be calcu-
lated by integrating i times over the volume V the (i+1)-
th spatial correlation function.

Since we are interested in relatively large population
sizes, we retain only the first two terms in the bracket of
eq.(29). These latter provide an accurate approximation
of f also in other important parameter regimes, namely
those of large and small correlation length (λ̄ → 0,∞).
Thus, f at stationarity turns into

f(x, h, V ) =
1

V

∂Z

∂h

[
1 + hA1(x)

]
, (32)

where A1 is the one we have obtained before. It is re-
markable that, when substituting eq.(32) into eq.(16), at
stationarity one obtains (see Appendix E)

(
1− hΣ(R)

)∂Z
∂h

= 〈n〉V Z , (33)

where Σ(R) = σ2ψ(R/λ̄)/µ is the spatial Fano factor de-
fined in the previous section. Therefore, eq.(16) can be
closed when considering terms up to O(h). The form of
eq.(33) and that of eq.(18) at stationarity are the same,
provided we replace σ2/µ with Σ(R). Therefore the so-
lution of eq.(33) is

Z(h|R) =
(

1− Σ(R)h
)− 〈n〉V (R)

Σ(R)

, (34)

which, when inverted for the probability density function,
gives a gamma distribution of the form

P (N |R) =
( 1

Σ(R)

) 〈n〉V (R)
Σ(R) N

〈n〉V (R)
Σ(R)

−1e−
N

Σ(R)

Γ
(
〈n〉V (R)

Σ(R)

) . (35)

Thus, while without spatial effects the characteristic scale
of the population size is ε−1 ' σ2/µ� 1, in this regime
space introduces a space-dependent scale for fluctuations
which is quantified by Σ(R) = ε−1ψ(R/λ̄), where ψ is
the function defined in eq.(26).

As a further insight, if one defines the new process for
the random variable N(R, T ) in the volume V of fixed
radius R by the stochastic differential equation

Ṅ(R) = b̄0V (R)− µN(R) + σ
√
ψ(R/λ̄)N(R)ξ(t) ,

(36)
where ξ(t) is a zero-mean Gaussian white noise and
〈ξ(t)ξ(t′)〉 = 2δ(t−t′), then the stationary pdf of N(V ) is
exactly eq.(35). Notice that space is taken into account
only implicitly through the functions V (R) and ψ(R/λ̄).
Eq.(36) can also be obtained as an ε-limit of a spatially-
implicit master equation along the lines we have showed
in Section IV. This process – unlike the spatial one –
satisfies the detailed balance condition at stationarity as
the flux at N = 0 is set to zero. This result suggests
that there are some families of spatially-explicit processes
which, when restricted to a finite volume, can be well
approximated by spatially-implicit processes. Whilst the
former brakes detailed balance, the latter turns out to be
simpler and satisfies the detailed balance condition. In
this model the region of this approximation is close to
the critical point of the process.

It remains to understand when the f in the form of
eq.(32) solves eq.(17), i.e. the original equation for f . In
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Appendix E we show that, for a fixed radius R, at sta-
tionarity f is a solution when h is small. Also, eq.(32) is
a good approximation when λ̄ is finite, either very large
or very small compared to R, regardless of the spatial
dimension d. The limits λ̄ → 0 and λ̄ → +∞ of eq.(35)
lead to the mean-field expressions, respectively eq.(18)
and P (N |R) = δ(N − 〈n〉V (R)) at leading order. Thus,
eq.(35) captures the leading behavior of the distribution
of the random variable N(R) in the large population
regime and in the vicinity of the critical point. The sim-
ulations indeed confirm this with very good accuracy as
shown in Figs.(2) and (3).

Because we assumed that A1(x) is at stationarity,
eq.(32) does not give all the correct terms for a time evo-
lution of the process N(R, T ). However, relatively close
to stationarity, even the temporal dynamics is accurately
described by eq.(36). We have checked this idea and com-
pared the exact simulations of the process – as provided
by the Doob-Gillespie algorithm (see also the following
section) – with the corresponding analytic temporal evo-
lution as obtained from solving eq.(36). Assuming that
initially in the volume V there are N0 individuals, we
find the following time-dependent solution (see [28] for
the details of the derivation):

P (N, t|N0, 0) =
( 1

Σ(R)

) b̄0V

µΣ(R)

N
b̄0V

µΣ(R)
−1e−

N
Σ(L)

[(
1

Σ(R)

)2

N0N e−µt
] 1

2−
b̄0V

2µΣ(L)

1− e−µt
(37)

exp
[
−

1
Σ(R) (N +N0)e−µt

1− e−µt
]
I b̄0V

µΣ(R)
−1

[ 2
Σ(R)

√
N0Ne−µt

1− e−µt
]

,

where we used reflecting boundary conditions at N = 0
at any t > 0. This pdf indeed tends to the stationary
solution in eq.(35) as t → ∞. The agreement between
simulations and eq.(37) is showed in Fig.(7) and (8).

Simulations with an efficient algorithm:
the phenomenological algorithm

We have compared our analytic predictions to simu-
lations coming from a range of different parameter sets
and from two different simulation schemes.

The first is the Doob-Gillespie’s algorithm [29] for pro-
ducing exact trajectories of Markovian processes. We
have used periodic boundary conditions in 1-d lattices of
various sizes. Parameters were chosen so that the cor-
relation length of the system was much smaller than the
total size of the lattice. We have analyzed different sets of
parameters and for each one we have run 50,000 indepen-
dent realizations: error bars were calculated by grouping
the results into 50 sets made of 1000 realizations each. In
principle this simulation scheme allows us to obtain the
exact trajectories of the system at any time, from an ini-
tial configuration up to stationarity. However, it is com-
putationally very expensive, and therefore we have been
forced to choose relatively small lattice sizes to inves-
tigate significant changes from the initial configuration.
The results of this are shown in Figs.(7) and (8).

In order to analyze a wider set of parameters and larger
lattices, we have simulated the process by using a new
algorithm which generates the stationary random field
obtained from the stochastic partial differential equation
defined on the lattice. This was introduced in [30], and

modifies a previous scheme that was used for simulat-
ing models of directed percolation [31]. Here we briefly
summarize the main steps of the pseudo-code. From the
definition of the discrete Laplace operator, we split the
term λ2∆ini in eq.(10) into one part depending only on
ni (2d λ2ni) and another one depending on the densities
in the nearest neighboring sites (λ2

∑
j:|i−j|=1 nj). Con-

ditional on the values of nj for j 6= i, the second term is
constant and thus P (ni|nj) can be obtained as a gamma
distribution at stationarity [30]. Starting from a random
initial configuration, at each iteration m, we randomly
select a site i and update the value of nmi in the next
step by sampling from nm+1

i ∼ P (ni|nmj ), conditional on

the values of nmj (i.e. nm+1
j = nmj ). These steps are

repeated until lattice configurations become independent
of initial conditions. While standard stochastic integra-
tion schemes fail to preserve the positivity of {n} at any
step, this algorithm produces non-negative populations
by construction. We have verified that the simulated
distribution thus obtained for N(R) matches the exact
simulations of the Doob-Gillespie’s algorithm in d = 1
and for different lengths, when the comparison was fea-
sible (see Fig.(9)). By means of this algorithm we were
able to study much larger lattice sizes at stationarity, and
compare simulations against the predictions of the ana-
lytic solutions. The agreement was excellent in all the
expected regimes (see Figs.(2) and (3)).

VII. AN ECOLOGICAL APPLICATION

A simple, but far from trivial, application of the math-
ematical model we have previously described is the mod-
elling of spatial patterns in ecosystems with a large num-
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(a) (b)

(c) (d)

FIG. 4: Species abundance distribution from a
lowland tropical forest and prediction from the
model. Panels (a), (b) and (c) present the comparison

between the empirical data of the distribution of
species’ abundances from the lowland tropical forest

inventory of the Pasoh natural reserve (Malaysia) and
the prediction based on the model. Histograms

represent the empirical data while the green lines are
the predictions obtained from the solution of the model,
i.e. from eq.(35). We highlight that these are not best
fits to the empirical data, but genuine predictions that
are formulated from the empirical measures of the pair
correlation function, as described in the main text (see

eq.(6)). The radii of the areas are 15, 70 and 200 meters
as reported on the corresponding panels. In panel (d)

we compare the empirical pair correlation function
(green dots) with the best fit of eq.(6). The correlation
length that is thus calculated is λ̄ ≈ 2.5× 103 meters,

with ρ̄ ≈ 8.9× 103 and 〈n〉 ≈ 6.1× 10−4 trees per
square meter for each species. The total number of

species in the whole 50Ha forest stand is ≈ 900.

ber of species. Examples include the species richness and
abundance distribution of vascular plant species in trop-
ical forest inventories. This model can be used to pre-
dict the abundance distribution of tree-species in a forest
stand from measures of the two-point correlation function
(PFC) and mean abundance per species. Because these
latter descriptors are relatively easy to calculate, it turns
out that we can obtain an estimate of how many rare (or
abundant) species live in a region without surveying the
entire system. Therefore, as well as being theoretically
interesting, this approach has also an important practical
advantage, because it ultimately allows one to infer the
total number of species within a very large spatial region
by utilizing only scattered and small-scale samples of the

region itself. This is a long-lasting problem which has
received a lot of attention recently [6, 15, 20].

Our goal here is not to explain the upscaling method,
but only show to what degree the spatial model is in
agreement with ecological empirical data. The two-point
correlation function (PFC) specifies how similar individ-
uals are as a function of the geographic distance. Usu-
ally, it is more likely that close-by individuals belong to
the same species than individuals that live farther apart.
This translates into a PCF that is always positive, but
decays with distance [32, 33]. A decline in similarity with
increasing geographic distance indicates that the individ-
uals of a community are spatially aggregated. Therefore,
a simple random placement of individuals in space is not
a good approximation of the configurations of the com-
munity as thought in the past [34]. On the contrary, the
stationarity PCF of this model decays with distance, is
always positive (see eq.(6)) and has two free parameters
(λ̄ and ρ̄). When we calculate these latter from a best
fit of the empirical data, we obtain a good agreement as
shown in Fig.(4d).

The mean abundance per species is readily available,
because the total number of species and individuals are
known in this forest plot. Since at stationarity the model
is fully specified by these three parameters (〈n〉, λ̄ and
ρ̄), we are henceforth able to predict all the stationary
patterns that we like to compare with those of the em-
pirical ecosystem. One of them is the probability that a
species has a given number of individuals within a spe-
cific region. In the ecological literature it is often referred
to as species abundance distribution (SAD) [35]. In our
model it is given by eq.(35) and the histograms of this
pattern are reported in Fig.(4a-c) for different radii. The
SAD represents one of the most commonly used static
measures for summarizing information on ecosystem’s di-
versity. Interestingly, the shape of the SAD in tropical
forests has been observed to maintain similar features,
regardless of the geographical location or the details of
species interactions. Indeed, it often displays a unimodal
shape at larger scales and a peak at small abundances
at relatively small spatial scales. Numerous papers have
focused on evaluating the processes that generate and
maintain such observed characteristics [20, 36], but only
few of them considered spatial effects in an explicit frame-
work [19, 37].

The panels in Fig.4 show a comparison between the
empirical data from the forest inventory of Pasoh Natural
reserve in Malaysia (year 2005) and the predicted abun-
dance distribution of species obtained from the model we
have described in the previous sections. It is remarkable
that the predicted curves in the first three panels are gen-
uine inferences obtained from the mean abundance per
species (i.e., 〈n〉) and the PCF (i.e., λ̄ and ρ̄), and not
best fitted curves to empirical SAD.

Such an agreement confirms that abundances of species
are indeed characterized by very large fluctuations and
that local populations appear correlated over very large
spatial scales. This entails that complex ecosystems may
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comprise a large number of rare species, whereas only a
few have large abundances (hyperdominant species). Be-
cause this model does not explicitly include interactions
nor environmental forcing, we cannot single out which
ecological processes bring about this finding. Neverthe-
less, the model is able to explain this separation of pop-
ulation size scales by poising a system close to criticality.

The simplicity and generality of the model make it suit-
able for the description of patterns in other biological
systems. Indeed, numerous recent studies have showed
that spatial bio-geographical patterns emerge in marine
ecosystems [38, 39], microorganisms [40], including bac-
teria [41, 42], archæa, viruses, fungi [43] and eukaryotes
[44, 45]. Future work will include the application of the
current framework to those biological communities.

VIII. CONCLUSIONS

In this paper we have studied a spatial stochastic
model which can be fruitfully used to describe the main
large scale characteristics of species-rich ecosystems. We
have shown how to calculate analytically some of the
most important spatial patterns when the system is close
to criticality, which is the regime where the most impor-
tant features emerge.

The model encapsulates birth, death, immigration and
local hopping of individuals. It describes the dynamics
of point-like and well-mixed individuals living in a meta-
community defined on a d-dimensional regular graph.
The model is also minimal, meaning that, without one of
its components (i.e., birth, death, nearest-neighbor hop-
ping and external immigration), it yields either trivial
or well-known results. Despite its simplicity, however, it
violates detailed balance and generates non-trivial spa-
tial patterns when close to its critical point. These pat-
terns are substantially due to stochastic effects and entail
large fluctuations correlated on large spatial and tempo-
ral scales.

The linearity of the rates is not sufficient to derive a
full solution (in a weak sense) of the model. However,
in applications one is usually interested in the analyt-
ical properties of processes that are much less general
than the spatial random field. Thus we restricted our
analysis to the conditional distribution, p(N |V ), that N
individuals are found in a volume V . This quantity is suf-
ficiently general to describe a wealth of patterns in sev-
eral systems. We have found that in the close-to-critical
regime, p(N |V ) satisfies an aptly derived equation which
has the form of the corresponding mean-field equation of
the process (i.e., without space). This equation includes
functions of V , which we have exactly calculated. Such
spatial redefinition of the parameters introduces strong
deviations from the corresponding mean-field solutions,
as confirmed by the exact stochastic simulations. Also,
this shows that the process that governs the random vari-
able N satisfies detailed balance in a first approximation
and close to the critical point, thus being considerably

simpler than the distribution of the random field.

This result suggests the tantalizing hypothesis that the
conditional distribution, p(N |V ), provided by some fam-
ilies of spatial stochastic processes, is described by much
simpler processes within a specific region of the parame-
ter space. In our model the region of this approximation
is close to the critical point of the process and the distri-
bution of the simpler process holds the same functional
shape across all spatial scales. Of course, the hypothe-
sis requires much more scrutiny, especially when spatial
models include nonlinear terms which can jeopardize the
methods developed here. On the other side, our approach
allows for the analysis of several generalizations, includ-
ing non-local dispersal kernels and different sources of
noise (e.g., environmental noise).

On a more applied side, we have shown that when ap-
plying the model to large ecosystems, species are pre-
dicted to display a broad range of abundances as a con-
sequence of the critical regime. Therefore, many of them
are rare and only a few are very abundant. These large
demographic fluctuations are correlated across large spa-
tial scales as well as over long times, in agreement with
several empirical datasets collected in well-known tropi-
cal forest inventories [6, 30, 46].

Of course, these findings do not prove that these bio-
logical systems are close to criticality, but suggest that it
is worth pursuing that route further. In this article we
have not investigated the reasons why those systems look
nearly critical, nor how they can operate within such tiny
regions of their parameter space. For this, one needs to
look into how inter- and intra-interactions dynamically
lead living systems towards the correct region, in which
states are biologically meaningful – however, see [47–50].
Nonetheless, our results could help understand what key
factors drive such dynamics, and possibly shed light on
the importance and effects of non-linearities among in-
teracting agents.
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Appendix A BROKEN DETAILED BALANCE

We here recall the main general properties of detailed
balance. Let us denote with c the configuration of a
generic stochastic process and indicate with p(c, t|c0, t0)
the probability that the configuration c is seen at time
t, given that the configuration at time t0 was c0 (ab-
breviated p(c, t)). We introduce W(c′|c), which is the
(time-independent) rate to transit from state c to c′. If
we consider Markovian dynamics, the evolution of p(c, t)
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is given by the following master equation (ME) [22, 23]

∂p(c, t)

∂t
=
∑
c′

[
W(c|c′)p(c′, t)−W(c′|c)p(c, t)

]
. (38)

If it happens that W(c|c′)P (c′) − W(c′|c)P (c) = 0 for
all configurations (this is the detailed balance (DB) con-
dition), then the probability distribution P (c) is also a
stationary solution of the ME, as we see from eq.(38).
On the other hand, it is clear that not all stationary dis-
tributions satisfy the detailed balance condition.

FIG. 5: Broken Detailed Balance. The picture
represents a closed path in the space of configurations

of the process which has different probabilities
depending on the direction of the path (see also [17]).
We take two neighboring sites, which initially have n

and m individuals. The rates of jumping into the next
configuration of the path are reported in the image and

the arrows indicate the direction. In this simple case
D = b(1− γ). In the clockwise direction (red arrows)

the total rate is
[bγn+Dm+ b0][bγm+D(n+ 1) + b0][r(n+ 1)][r(m+ 1)].

In the anti-clockwise direction (blue arrows) the total
rate is

[bγm+Dn+ b0][bγn+D(m+ 1) + b0][r(m+ 1)][r(n+ 1)].
These two total rates must be equal for the detailed

balance to hold. However, for any arbitrary
configuration (m 6= n) this is true only when

D(D − bγ)r = 0, i.e. for b = 0, r = 0, γ = 1, 1/2.

It is possible to show [12] that a condition for the valid-
ity of DB is that the probability of following a closed path
in the space of configurations does not depend on the ori-
entation of the path. More precisely, DB is satisfied if and
only if for any choice of a closed path {c1, ..., cm}, with
m an arbitrary number, the following holds

W(c1|c2)W(c2|c3) · · ·W(cm|c1) = (39)

=W(c1|cm)W(cm|cm−1) · · ·W(c2|c1) .

This equation corresponds to microscopic reversibility
and, when it is violated, the system can be found in non-
equilibrium steady states.

Violation of DB is key to living systems and is the sub-
ject of intense recent interest [51, 52]. In fig. (5) we show

with a simple example that for this model the condition
in eq.(39) is not satisfied, hence the detailed balance con-
dition does not hold: it is possible to find a path in the
space of configurations where the total rate does depend
on the orientation of the closed path. Fig. (5) shows one
of such paths. Notice that such counterexample does not
hold when spatial dispersal is switched off (i.e. D = 0
or γ = 1), or when autocatalytic production and spatial
dispersal rates are equal (γ = 1/2).

Appendix B SPATIAL CORRELATION OF THE
BIRTH-DEATH MARKOV PROCESS

In the main text we have defined the spatial generating
function of the model

ζ({H}, t) =〈e
∑
k∈L nkHk〉 =

=
∑
{n}

e
∑
k∈L nkHkp({n}, t) .

From eq.(2), multiplying both sides through by

e
∑
s∈L nsHs and summing over all states, we find eq.(3)

of the main text. If we differentiate by Hk and impose
{H} = 0, we find the equation for the mean number of
individuals 〈nk〉, reported in the main text. Taking an-
other derivative with respect to Hl and setting {H} = 0,
we obtain the equation for the spatial two-point correla-
tion function (PCF) among the sites k and l

∂

∂t
〈nknl〉 = D

(
∆l〈nknl〉+ ∆k〈nknl〉

)
− 2µ〈nknl〉+

+2b0 〈n〉+ δk,l

(
2σ2〈n〉+ b0 +D∆k〈nk〉

)
,

where σ2 := b+r
2 , D := b(1−γ)

2d , δk,l is a Kronecker delta,
and ∆ is the discrete Laplace operator as defined in the
main text.
Considering stationary patterns, because of homogeneity
we have ∆k〈nk〉 = 0 and, introducing Gk,l = 〈nknl〉 −
〈n〉2, we obtain

D(∆kGk,l+∆lGk,l)− 2µGk,l+

+
(

2σ2〈n〉+ b0

)
δk,l = 0 .

We will now consider the Fourier series expansion of
Gk,l, which we will write as

Gk,l =
( a

2π

)d ∫
C

dp Ĝ(p)eip·(k−l) ,

where k, l are the Cartesian coordinates of the locations
of sites on the lattice (in a units), p is a vector with
d components which belongs to C, the hypercubic d-
dimensional primitive unit cell of size 2π/a. Upon sub-
stituting Gk,l in the stationary equation, we get an ex-

pression for Ĝ(p), which is

Ĝ(p) =
(σ2

µ
〈n〉+

b0
2µ

) 1

1 + 2D
µ

∑d
i=1(1− cos(pia))

,
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where pi is the i-th component of p. Therefore

Gk,l =
( a

2π

)d ∫
C

dp

(
σ2

µ 〈n〉+ b0
2µ

)
eip·(k−l)

1 + 2D
µ

∑d
i=1(1− cos(pia))

.

We can obtain a good deal of simplification by taking
a continuous spatial limit (a → 0). Renaming p → p,
k → x and l → y (now continuous variables in Rd), and
appropriately rescaling the constants as explained in the
main text, we arrive at the expression for the pairwise
spatial correlation in dim d, i.e.

G(x, y) =
ρ̄2〈n〉2

(2π)d

(
1 +

µ

2σ2

)∫
dp

eip·(x−y)

1 + λ̄2p2
,

where we have replaced b0 with b̄0 in 〈n〉 and used the
definitions of ρ̄, λ̄ given in the main text. Actually, the d-
dim integral in the previous expression can be calculated

∫
dp

eip·(x−y)

1 + λ̄2p2
=

∫ ∞
0

ds

∫
dp eip·(x−y)−(1+λ̄2p2)s

=

∫ ∞
0

ds
(π
s

) d
2

e−
|x−y|2

4λ̄2s
−s

=
(2π)d/2

λ̄d

( | x− y |
λ̄

) 2−d
2

K 2−d
2

( | x− y |
λ̄

)
where Ka(z) is the modified Bessel function of the sec-
ond kind and in the last step we used 9.6.24 from [53].
Eventually, the PCF is

G(x, y) =
ρ̄2〈n〉2

(2πλ̄2)d/2

(
1 +

µ

2σ2

)
× (40)

×
( | x− y |

λ̄

) 2−d
2

K 2−d
2

( | x− y |
λ̄

)
.

Because Ka(z) decays exponentially for large z regard-
less of a, λ̄ plays the role of a correlation length of the
spatial system. Instead, ρ̄2 has dimensions of a d-dim
volume and provides a characteristic volume of local de-
mographic fluctuations.

Appendix C APPROXIMATING g(i, j, h, t) IN
THE CONTINUOUS SPATIAL LIMIT

Equation (14) shows that the evolution of f(k, h, t)
is not closed, being coupled to the generating function
Z and to the function g(i, k, h, t) = 〈ninkehN(V )〉. In
this section we want to show that, at leading order in
the limit a → 0, the value of ∆ig(i, k, h, t) approaches
∆kg(i, k, h, t). This makes the equation for f(k, h, t)
much simpler, basically decoupling it with the other
quantities. For simplicity we will only consider the one
dimensional case, but this claim holds true in higher di-
mensions as well. Thus V will be an interval of length 2R

FIG. 6: Behavior of the function ψ(x). The figure
shows the behavior of ψ(x) as defined in eq.(26) in dim
d = 1 (blue solid curve), d = 2 (yellow solid curve),
d = 3 (green solid curve) and d = 4 (red solid curve).

and the origin of the coordinate system will be located
at its center. By changing slightly the notation, we will
now indicate N(V ) = N(−R,R), thus making explicit
that V extends from site −R to R. Since the system is
spatially homogeneous, we can write

〈ni−ankehN(−R,R)〉 =

= 〈nink+ae
hN(−R+a,R+a)〉

As a → 0 and at leading order, we can neglect a in the
argument of N(−R,R), thus obtaining

g(i− a, k, h, t) =〈ni−ankehN(−R,R)〉 =

=〈nink+ae
hN(−R,R)〉 =

=g(i, k + a, h, t)

Similarly 〈ni+ankehN(−R,R)〉 = 〈nink−aehN(−R,R)〉.
Thus, as a→ 0 at leading order we can write

∆ig(i, k) =g(i+ a, k) + g(i− a, k)− 2g(i, k) =

=g(i, k − a) + g(i, k + a)− 2g(i, k)

=∆kg(i, k) .

This approximation makes it possible to obtain eq.(17)
in the continuous limit.

Appendix D MULTIDIMENSIONAL VARIANCE

In the main text we have outlined how to calculate
the second moment of the random variable N(V ). Here
we provide some more details. We will take V to be a
d-dimensional ball with the origin of the Cartesian co-
ordinates in its center. By integrating 〈n(x)n(y)〉 over
y ∈ V in eq.(21) and using the symmetry of 〈n(x)n(y)〉
in x and y, we obtain an equation for 〈nxN(V )〉, which
at stationarity reads
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(a) (b)

(c) (d)

FIG. 7: Time evolution with the Doob-Gillespie
algorithm. Panels (a), (b) and (c) present a

comparison between the simulated model as obtained
from the Doob-Gillespie algorithm (histograms), the
analytic prediction as defined in eq.(37) (blue solid

line), and the mean field solution (red line). Simulations
were carried out in d = 1 with periodic boundary

conditions, where each site initially contained exactly
100 individuals, with a total number of 200 lattice sites;
L comprises 10 adjacent sites and time t is expressed in
units of µ−1. The size of error bars are twice as much
the standard deviation. Results in panel (d) are from
the same set of simulated data (red dots, with error
bars) and compares simulations to the analytic curve

(blue line) of the pair correlation function at large times
(t = 20). Parameters in these simulations are b = 600,

r = 601, with γ = 0.5 and b0 = 5 (λ ≈ 12).

D̄

µ
∇2
x〈n(x)N(V )〉 − 〈n(x)N(V )〉+

b̄0
µ

b̄0V

µ
+

+
σ2

µ

b̄0
µ

Θ(R− |x|) = 0 , (41)

where Θ(z) is the Heaviside step function and V is the
d-dim volume

V =
πd/2

Γ
(
d
2 + 1

) Rd

with radius R. Eq.(41) must be solved for R < |x| and
R > |x| separately. Boundary conditions for 〈n(x)N(V )〉
and its first derivative will fix the values of the integrating
constants. For |x| < R we obtain

〈n(x)N(V )〉 =
( b̄0
µ

) b̄0V
µ

+
σ2

µ

b̄0
µ

+

+A
( |x|
λ̄

)1− d2
I d

2−1

( |x|
λ̄

)
while for |x| > R instead

〈n(x)N(V )〉 = B
( |x|
λ̄

)1− d2
K d

2−1

( |x|
λ̄

)
+
( b̄0
µ

) b̄0V
µ

.

The constants A and B will be fixed using the aforemen-
tioned continuity conditions. Upon explicit calculation,
for |x| ≤ R we obtain

〈n(x)N(V )〉 =
( b̄0
µ

)2

V+
σ2

µ

b̄0
µ

[
1−

( |x|
R

)1− d2 K d
2

(
R
λ̄

)
I d

2−1

(
|x|
λ̄

)
I d

2−1

(
R
λ̄

)
K d

2

(
R
λ̄

)
+ I d

2

(
R
λ̄

)
K d

2−1

(
R
λ̄

)]

=
( b̄0
µ

)2

V+
σ2

µ

b̄0
µ

Ψ
( |x|
λ̄
,
R

λ̄

)
, (42)

where Ψ(a, b) was defined in eq.(24) of the main text and Iν(z) and Kν(z) are the modified Bessel functions of the
first and second kind, respectively [21]. Integrating with respect to x ∈ V and using the properties of Iν(z), we can
readily obtain the explicit form of the second moment of N(V ), i.e.

〈N(V )2〉 =
( b̄0V
µ

)2

+
σ2

µ

b̄0V

µ

[
1−d λ̄

R

K d
2

(
R
λ̄

)
I d

2

(
R
λ̄

)
I d

2−1

(
R
λ̄

)
K d

2

(
R
λ̄

)
+ I d

2

(
R
λ̄

)
K d

2−1

(
R
λ̄

)] , (43)
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where we can read off the explicit expression for ψ(R/λ), also reported in eq.(26). Finally, since Var(N(V )) =
〈N(V )2〉 − 〈N(V )〉2 we can explicitly write down the variance of N(V ), which takes the form

Var(N(V )) =
b̄0V

µ

σ2

µ

[
1− d λ̄

R

K d
2

(
R
λ̄

)
I d

2

(
R
λ̄

)
I d

2−1

(
R
λ̄

)
K d

2

(
R
λ̄

)
+ I d

2

(
R
λ̄

)
K d

2−1

(
R
λ̄

)] = 〈N(V )〉Σ(R) ,

where Σ(R/λ̄) = σ2ψ(R/λ̄)/µ. Σ(R/λ̄) is the spatial Fano factor and quantifies the relative importance of fluctuations
in the system. Finally, Fig.(6) shows the behavior of ψ(x).

Appendix E EVALUATION OF THE REGIMES
OF ACCURACY OF THE METHOD

In this section we show that the truncation of f(x, V, h)
as in eq.(32) yields an accurate approximation for the
conditional probability distribution of the model. By
retaining the first two terms in the square brackets of
eq.(29), at stationarity we are left with the following

f(x, V, h) =
1

V

∂Z

∂h

[
1 + hA1(x,R)

]
, (44)

where Z(h) is the conditional generating function at sta-
tionarity. By taking the derivative with respect to h of
both sides of eq.(44) and setting h = 0, we obtain

∂f

∂h

∣∣∣
h=0

= 〈nxN(V )〉 =
1

V
〈N(V )2〉+ 〈n〉A1(x,R)

which gives

A1(x, V ) =
1

〈n〉

(
〈n(x)N(V )〉 − 1

V
〈N2
V〉
)

.

Because in Appendix D we have already calculated
〈n(x)N(V )〉 and 〈N(V )2〉 (see eqs.(42) and (43)),
A1(x, V ) is known explicitly. Substituting f(x, V, h) in
eq.(44) with A1(x, V ) obtained before into eq.(16) at sta-
tionarity, we get

h

〈n〉V
∂Z

∂h
λ̄2

∫
V
dx ∇2

x〈n(x)N(V )〉 − ∂Z

∂h
+

+〈n〉V Z +
σ2

µ
h
∂Z

∂h
= 0 .

Now we can readily simplify the term λ̄2∇2
x〈n(x)N(V )〉

by making use of eq.(41). Integrating this latter with
respect to x in V, since 〈N(R)〉 = 〈n〉V and Σ(R) =
(〈N(R)2〉 − 〈N(R)〉2)/〈N(R)〉 (see Appendix D), we are
therefore left with the following equation(

1− h Σ(R)
)∂Z
∂h

= 〈n〉V Z , (45)

which therefore provides the equation for the generating
function of N(R) up to terms O(h).

Similarly to what we have done so far, we can get fur-
ther insight into the evolution of f(x, V, h). We substi-
tute f(x, V, h) from eq.(44) into eq.(17) and use eq.(41) to

obtain λ̄2∇2
x〈nxN(V )〉. Eventually, at stationarity this

yields

∂

∂h

{
h
[
−
(

1− hΣ(R)
)∂Z
∂h

+ 〈n〉L Z
]}

+ (46)

+A1(x,R)
{ ∂

∂h

[σ2

µ
h3 ∂Z

∂h

]
+ h2 〈n〉V ∂Z

∂h

}
= 0 .

The first addend of eq.(46) is zero because of eq.(45), and
the remaining terms are O(h2), so f solves eq.(17) up to
terms O(h).

On the other hand eq.(46) shows that f(x, V, h) is
a good approximation of the solution of eq.(17) when
A1(x,R) approaches zero. Fixing the values of |x|, R
and σ2/µ, we can calculate explicitly the regimes of λ̄
where this condition is verified. From eqs.(24) and (26)
in the main text it is easy to rewrite A1(x,R)

A1(x,R) =
σ2

µ

[
Ψ
( |x|
λ̄
,
R

λ̄

)
− ψ

(R
λ̄

)]
The asymptotic expansion of the modified Bessel func-
tions is [21]

Iν(z) =
ez√
2πz

(
1 +O[1/z]

)
Kν(z) = e−z

√
π

2z

(
1 +O[1/z]

)
when z → ∞. From this it is not difficult to verify that
as λ̄→ 0 we have

Ψ
( | x |
λ̄
,
R

λ̄

)
= 1 +O

[
e−

R−|x|
λ̄

( | x |
R

)1−d]
ψ
(R
λ̄

)
= 1 +O

( λ̄
R

)
and so for |x| < R indeed A1(x,R)→ 0.
The case of λ̄ → ∞ is more elaborate. Let’s call z =
R/λ. After some lengthy but otherwise straightforward
calculations we can verify that as z → 0 we can write

ψ(z) =


z +O(z2) for d = 1

− z
2

2 log(z) +O(z2) for d = 2
2z2

5 +O(z3) for d = 3

and at leading order ψ(z) is proportional to z2 for d ≥ 3.
For the case of Ψ let us write zx = |x|/λ. We can verify
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that

Ψ(zx, z) =


z +O(z2, z2

x) for d = 1

− z
2

2 log(z) +O(z3, z2
x) for d = 2

z2

3 +O(z3, z2
x) for d = 3

and at leading order Ψ is proportional to z2 for d ≥ 3.
Thus again A1(x,R) → 0. These findings follow from
that f goes into mean-field regimes as λ̄ → 0,∞ and
hence all spatial terms go to zero.
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Equilibrium Phase Transitions: Volume 1: Absorbing
Phase Transitions. Springer Science & Business Media,

2008.
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Chave, John Terborgh, Robin B Foster, Percy Núnez, Sa-
lomón Aguilar, Renato Valencia, Gorky Villa, et al. Beta-
diversity in tropical forest trees. Science, 295(5555):666–
669, 2002.
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Miguel A Muñoz. Stochastic spatial models in ecol-
ogy: a statistical physics approach. Journal of Statistical
Physics, 172(1):44–73, 2018.

[38] Andrea Rinaldo, Amos Maritan, Kent K Cavender-Bares,
and Sallie W Chisholm. Cross–scale ecological dynamics
and microbial size spectra in marine ecosystems. Proceed-
ings of the Royal Society of London. Series B: Biological
Sciences, 269(1504):2051–2059, 2002.

[39] Enrico Ser-Giacomi, Lucie Zinger, Shruti Malviya,
Colomban De Vargas, Eric Karsenti, Chris Bowler, and
Silvia De Monte. Ubiquitous abundance distribution of
non-dominant plankton across the global ocean. Nature
ecology & evolution, 2(8):1243, 2018.

[40] Stephen Woodcock, Christopher J Van Der Gast,
Thomas Bell, Mary Lunn, Thomas P Curtis, Ian M Head,
and William T Sloan. Neutral assembly of bacterial
communities. FEMS microbiology ecology, 62(2):171–180,
2007.

[41] Andrea Giometto, Andrea Rinaldo, Francesco Carrara,
and Florian Altermatt. Emerging predictable features of
replicated biological invasion fronts. Proceedings of the
National Academy of Sciences, 111(1):297–301, 2014.

[42] Andrea Giometto, Marco Formentin, Andrea Rinaldo,
Joel E Cohen, and Amos Maritan. Sample and popu-
lation exponents of generalized taylors law. Proceedings
of the National Academy of Sciences, 112(25):7755–7760,
2015.

[43] China A Hanson, Jed A Fuhrman, M Claire Horner-
Devine, and Jennifer BH Martiny. Beyond biogeographic
patterns: processes shaping the microbial landscape. Na-
ture Reviews Microbiology, 10(7):497, 2012.

[44] Florian Altermatt, Emanuel A Fronhofer, Aurelie Gar-
nier, Andrea Giometto, Frederik Hammes, Jan Klecka,
Delphine Legrand, Elvira Mächler, Thomas M Massie,
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FIG. 8: Time comparison for different areas and
different times in one dimension. Simulations were
carried out in d = 1 with periodic boundary conditions,

where each site initially contained exactly 100
individuals, with a total number of 200 lattice sites;

parameters are the same as in Fig.(7). The three panels
show comparisons of simulated data from the

Doob-Gillespie algorithm and the analytic formula
presented in eq.(37). The three panels show different

segment lengths (20, 40 and 60 sites, respectively), and
each presents three plots referring to different times T

(T = 0.05 for red histograms, T = 0.5 for green
histograms and T = 2 for blue histograms, units of

µ−1). Histograms represent data from simulations, solid
lines are the analytic predictions and error bars have
length twice as much the standard deviation. Initially

predictions and simulated data differ, as expected.
However, as we approach stationarity regimes they
improve significantly, and already at T = 0.5 the

analytical and simulated distribution match very well.
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FIG. 9: Comparison between Gillespie and
Phenomenological simulation scheme. The four

plots show the conditional pdf, P (N |L), simulated with
the same set of parameters and on lattices of the same
size, but using different algorithms at stationarity and
in one dimension. Blue dots represent data from the

phenomenological scheme (and blue lines are the
respective error bars), while red dots are from

Doob-Gillespie algorithm (with respective error bars).
Black solid lines are the analytic predictions from

eq.(35). The parameters are b = 600, d = 601, γ = 0.5,
b0 = 5 (D = 150) and hence λ ≈ 12. The lattices have
200 total sites and periodic boundary conditions have

been used.
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