
Progressive shifts in the gut microbiome reflect prediabetes and diabetes          
development in a treatment-naive Mexican cohort 
Christian Diener1,2, Lourdes Reyes3, Lilia Jimenez3, Mariana Matus4, Claudia Gomez3, Nathaniel D. Chu             
4, Vivian Zhong 4, Elizabeth Tejero 1, Eric Alm4, Osbaldo Resendis-Antonio 1,5*, Rodolfo          
Guardado-Mendoza 3,6*  

 
1Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, México 
2Institute for Systems Biology, Seattle, WA, USA 
3Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato,           
León, Guanajuato, México 
4Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology,          
Cambridge, MA, USA 
5Human Systems Biology Laboratory. Coordinación de la Investigación Científica - Red de Apoyo a la               
Investigación, UNAM. 
6Research Department, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, México 
*Corresponding authors: rguardado@ugto.mx, oresendis@inmegen.gob.mx  

 

 

Abstract 

Type 2 diabetes (T2D) is a global epidemic that affects more than 8% of the world’s population and is a                    

leading cause of death in Mexico. Diet and lifestyle are known to contribute to the onset of T2D.                  

However, the role of the gut microbiome in T2D progression remains uncertain. Associations between              

microbiome composition and diabetes are confounded by medication use, diet, and obesity. Here we              

present data on a treatment-naive cohort of 405 Mexican individuals across varying stages of T2D               

severity. Associations between gut bacteria and more than 200 clinical variables revealed a defined set               

of bacterial genera that were consistent biomarkers of T2D prevalence and risk. Specifically, gradual              

increases in blood glucose levels, beta cell dysfunction, and the accumulation of measured T2D risk               

factors was correlated with the relative abundances of four bacterial genera. In a cohort of 25                

individuals, T2D treatment - predominantly metformin - reliably returned the microbiome to the             

normoglycemic community state. Deep clinical characterization allowed us to broadly control for            

confounding variables, indicating that these microbiome patterns were independent of common T2D            

comorbidities, like obesity or cardiovascular disease. Thus, our work provides the first solid evidence              

for a direct link between the gut microbiome and T2D in a critically high-risk population. Whether or not                  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710152doi: bioRxiv preprint 

mailto:rguardado@ugto.mx
mailto:oresendis@inmegen.gob.mx
https://doi.org/10.1101/710152
http://creativecommons.org/licenses/by-nc/4.0/


these T2D-associated changes in the gut contribute to the etiology of T2D or its comorbidities remains                

to be seen. 

INTRODUCTION 

Type 2 diabetes (T2D) is an acquired multifactorial disease that affects more than 8% of the 

worldwide population and leads to insulin resistance and insufficient insulin production by pancreatic 

islet cells 1–3. Disease onset is driven or modulated by a variety of factors such as lifestyle, diet, and 

genetics 4–7. T2D incidence is progressively increasing in the Mexican population and has become a 

major burden for the national health system and one of the leading causes of death in Mexico 8–10. The 

particular vulnerability of the Mexican population to this disease is driven by common factors such as a 

sedentary lifestyle and diet but is also influenced by risk factors that are specific to the native population 
11. For instance, it has been shown that about half of all native Mexicans carry a SLC16A11 variant that 

increases T2D risk by 20% for each haplotype 12–14. Consequently, there is an urgent need for diagnosis 

and treatment strategies in order to limit the progression of T2D in the Mexican high risk population.  

 

Recently, the gut microbiome has been proposed as an important modulator in the progression of T2D. 

Several studies have shown a wide array of associations between the gut microbiome and diabetes in 

European, American and Chinese cohorts 15,16. Most of those papers have suggested that the diabetic 

microbiome is less efficient in producing short chain fatty acids (SCFA) due to a loss of 

butyrate-producing genera 17–19. However, especially when looking across different populations, the 

bacterial genera associated with diabetes vary 17, which is consistent with findings that the gut 

microbiome composition varies greatly across populations 20. For example, an increase of 

Proteobacteria in T2D was reported for Chinese cohorts but was absent in a European cohort 15,16. 

Finding robust associations between the microbiome and T2D is further confounded by treatment 

effects and comorbidities. Metformin, one of the most common medications T2D, has been shown to 

modify the gut microbiome which may contribute to its mechanism of action 21,22. Indeed, studies 

comparing diabetic treatment naive individuals with diabetic metformin-treated individuals showed that 

most of the associations initially attributed to disease progression were a consequence of the treatment 

alone and absent in individuals without a metformin treatment history 23. Apart from medication, 

changes in lifestyle or diet may also drive changes in the gut microbiome in a disease-independent 

manner  24,25. Thus, two major treatment regimes for T2D, metformin treatment and lifestyle 

intervention, will likely both trigger their own changes in the gut microbiome and need to be accounted 

for. Even when isolating the disease from treatment effects, associations may be confounded by 
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comorbidities. The development of T2D is often linked with obesity, a major risk factor in the 

development of the disease 20,26. Additionally, T2D increases risk for cardiovascular disease, which 

itself has been linked changes in the gut microbiome 27,28. Controlling for all of these factors (disease 

treatment, lifestyle and diet, and comorbidities) might clarify the true associations between the gut 

microbiome and T2D disease progression. This requires deep phenotyping of the study participants 

where one measures not only clinically variables related to the disease of interest but also from other 

groups such as obesity, cardiovascular health, lifestyle and diet. Even though this strategy has been 

shown to successful in healthy individuals29, very few studies have done so in the context of T2D. 

 

To address these concerns and explore the relationship between the microbiome and T2D in an 

understudied population, we present a controlled study in a Mexican cohort from a distinct geographical 

region which was specifically designed to avoid those shortcomings. Except for a small control group, 

all participants in the study were treatment naive and had never received a prior prediabetes or 

diabetes diagnosis. We also combined a large array of clinical variables related to diabetes with 

additional phenotype measurements characterizing the lifestyle, diet, obesity prevalence, and 

cardiovascular health of each individual. This strategy provided a set of more than 200 clinical variables 

for each individual, allowing us to control for lifestyle and comorbidities and tease out associations 

specific to different stages of T2D progression. As a result, we identified a set of four bacterial genera 

that associated consistently with T2D development. Our work establishes a set of gut microbiome 

markers for type 2 disease progression in a Mexican population independent of treatment effects or 

secondary phenotypes.  

 

 

RESULTS 

The microbiome of treatment-naive individuals associates with a wide range of clinical variables 

We recruited a cohort of treatment-naive subjects from the Guanajuato region of Mexico as part of the                 

CARE-In-DEEP Study (Cardiometabolic Risk Evaluation and Interdisciplinary Diabetes Education and          

Early Prevention) of the University of Guanajuato. This cohort consisted of 405 individuals with no               

previous diabetes diagnosis and a control group of 25 subjects with previously diagnosed T2D or a                

history of metformin treatment (see Fig. 1A). Each of the participants in the study underwent extensive                

clinical characterization consisting of direct measurements as well as a set of validated questionnaires,              
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forming a data set of 226 clinical variables spanning the areas of diabetes, obesity, general health,                

lifestyle and diet (Fig. 1B). Based on an oral-glucose tolerance test, subjects were stratified into five                

metabolic groups ranging from normoglycemia and normal glucose tolerance (NG), to different types of              

prediabetes (impaired fasting glucose, IFG, impaired glucose tolerance IGT, and IFG+IGT), and T2D             

(see Methods and Fig. 1C). As shown in Table 1, clinical phenotype varied widely between metabolic                

groups, with a progressive increase in weight, body fat, glycated hemoglobin (HbA1c), glucose levels,              

and deteriorating insulin sensitivity and pancreatic beta cell function from the NG group to the T2D                

group (see Fig. S1 A-C).  

 

 
Figure 1. Study design. (A) 405 Individuals were recruited from Guanajuato state and classified in to                

normoglycemic (NG), impaired fasting glucose (IFG), impaired glucose tolerance (IGT), impaired fasting            

glucose and impaired glucose tolerance (IFG+IGT), and type 2 diabetes (T2D). 25 individuals under              

treatment for a previous T2D diagnosis or with previous metformin history were added as controls (T2D                

treated). (B) Correlations between bacterial genera in the study (intra-microbiome) are shown in the left               

correlation matrix whereas correlations between clinical variables are shown in the right correlation             

matrix. (C) Blood glucose curves for all individuals in the study colored by classification. (D)               

Receiver-Operator curves for predictions from a Random Forest model. Individual cross-validation           

curves are shown along with the mean trend and standard deviations. 

 

 

To identify links between the microbiome and the progression of T2D, we sequenced the 16S rDNA                

gene from stool samples from this cohort. Sequencing data was analyzed using DADA2 which              
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identified 17,059 exact amplicon sequence variants across all samples (see Methods). These sequence             

variants mapped to 378 bacteria genera, however only 629 sequence variants and 125 genera were               

appreciably frequent across samples (>10% of individuals).  

 

 

 

Figure 2. Associations between the microbiome and phenotype. (A) Number of significant associations             

between microbiome and clinical variables grouped by category (FDR corrected p<0.05). Positive test             

rate denotes the significant tests / total tests for the category. (B) Significant tests per genus (FDR                 

corrected p<0.05). Color denotes the category of clinical variable the genus associates with. (C)              

Significant associations (FDR < 0.05) between bacterial genera and alpha diversity (Shannon). Points             

denote the log fold change (DESeq2 coefficient) of a genus when the diversity increases by one                

standard deviation. Error bars denote the standard error of the coefficient. Fill color denotes mean no.                

of normalized reads across all samples. 

 

 

Previous studies have found metformin treatment to lower Intestinibacter abundances and to increase             

Escherichia abundances 23. We found similar trends in our data, albeit not significant (Mann-Whitney              

p=0.05 and 0.07 for Instestinibacter and Escherichia, see Fig. S1D). In general, T2D could only be                

weakly predicted from microbiome composition (Random Forest area under ROC = 0.69, see Fig. 1D). 

 

We identified potential links between the microbiome by exhaustive testing of all combinations between              

bacterial genera and clinical variables, including alpha diversity (Shannon index). Associations between            

the microbiome and clinical variables were identified by a robust testing strategy based on DESeq2               

(see Materials and Methods). Of the 30,780 tests, 208 were deemed significant under an FDR cutoff of                 

0.05 (Fig. 2A-B). Clinical measurements related to obesity had the most significant associations with              

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710152doi: bioRxiv preprint 

https://paperpile.com/c/rXvxYy/hXY5
https://doi.org/10.1101/710152
http://creativecommons.org/licenses/by-nc/4.0/


microbiome features, while diet-related variables were the least likely to yield a significant association              

(Fig. 2A). The relative paucity of associations between the microbiome and diet may be a consequence                

of the heterogeneity of dietary questionnaire data. The genera associating with the most clinical              

variables was the facultative anaerobe Escherichia and the obligate anaerobe Veillonella, which had 36              

and 23 significant associations respectively (Fig. 2B). Escherichia associated mostly with variables            

related to diabetes and obesity whereas Veillonella associated with variables from many all categories.              

Ruminococcaceae genera were the most positively correlated with alpha diversity (Shannon index)            

whereas Fusobacterium, Flavonifractor and Parasutterella were the most negatively associated with           

alpha diversity (Shannon index, Fig. 2C).  

 

 

 

Figure 3. Associations between the microbiome and disease progression. (A) Significant associations            

(FDR < 0.1) between bacterial genera and T2D clinical variables. White boxes denote lack of significant                

associations and fill denotes coefficient of association between genus and variable (log2 fold change in               

genus abundance if the variable is increased by one standard deviation). (B) Associations between              

disease state and selected bacterial genera. Blue lines indicate regression lines and light gray bands               

denote the standard error of the regression. (C) Overall T2D risk was evaluated by the number of T2D                  

risk factors which associated with the same genera as observed earlier. This relationship was gradual               

across the number of risk factors. 

 

 

The gut microbiome of the treatment-naive cohort associated widely with T2D-related clinical variables.             

A set of 14 bacterial genera associated at least weakly with 25 of the 31 diabetes-related measures                 
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(FDR-corrected p-value < 0.05). However, we observed large differences in how those associations             

distributed across genera (Fig. 3A). Whereas some genera associated with a wide array of T2D               

measures (for instance Escherichia/Shigella) other associated only with a single measure (e. g.             

Ezakiella with T2D family history) or exclusively with glucose-related measures, but not insulin-related             

measures (e. g. Romboutsia, Fig. 3A). In general, we observed more associations with glucose              

metabolism than insulin levels, suggesting that the microbiome in our cohort was linked more to               

glucose than insulin levels. Escherichia showed by far the most associations with T2D measures and               

notably associated with all glucose measures included in the study. Given the observed genus-specific              

patterns of association with T2D this raised the question how one could identify a subset of genera that                  

were consistent markers of overall disease progression. 

 

A group of distinct bacteria mark the gradual progression of type 2 diabetes 

To identify bacterial genera that were strong markers for disease progression we asked whether some 

of the 18 genera associating with diabetes measures would do so in a gradual manner across disease 

progression and risk. Disease progression was quantified by ordering the metabolic groups by severity 

ranging from normoglycemic (NG) to fully developed T2D. Disease risk was assessed by a set of 

manually chosen binary indicators (absent/present) for known risk factors and counting their 

occurrences for each individual (see Materials and Fig. S2). Thus, an individual with 8 risk factors 

would be considered at higher general risk for developing T2D than an individual with only 2 risk 

factors. Metabolic groups and the number of risk factors did only moderately correlate with each other 

(Spearman rho=0.45), confirming that they described different aspects of the disease. Treating the 

metabolic groups as well as the number of risk factors as continuous descriptors we identified a set of 4 

bacterial genera that associated at least weakly with both of them (Escherichia, Veillonella, Blautia and 

Anaerostipes, FDR-corrected p<0.1).  

We found that Escherichia and Veillonella were positively associated with diabetic state, increasing in 

abundance with disease progression from normal to T2D (Fig. 3B). Conversely, Blautia and 

Anaerostipes abundances declined with disease progression (Fig. 3B). Whereas Escherichia and 

Veillonella are both associated negatively with alpha diversity (Shannon index), Anaerostipes and 

Blautia did not (compare Fig. 2C). Therefore the protective association between these genera and T2D 

cannot be explained by an increased diversity alone. Intriguingly, more than 99% of the Anaerostipes 

sequence variants with unique species assignments belonged to the species Anaerostipes hadrus, a 
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known butyrate producer. The 4 identified genera genera showed a continuously increasing or 

decreasing trend with disease progression, with only the prediabetes group (IGT) showing some 

deviation from this trend (Fig. 3B).  

For all of the identified genera the number of risk factors aligned linearly with the log-transformed 

counts. Median Escherichia levels increased by almost 2 orders of magnitude between individuals with 

2 and 8 risk factors respectively and Anaerostipes decreased by one order of magnitude (Fig. 3C). 

Notably, individual binary risk factors did show only very few associations with the identified genera 

(Fig. S4). Thus, the accumulation of T2D risk factors across the entire cohort, including healthy 

individuals, itself is gradually linked to changes in the microbiome.  

 

 

Figure 4. Associations between bacterial genera and the primary T2D-related clinical measurements.            

(A) The identified genera associated with the area under the glucose curve (AUC glucose). AUC values                

were rank-transformed in order to make the regression independent of outliers. The blue line denotes a                

linear model between log-transformed normalized counts and rank transformed AUC values. (B)            

Bacterial abundances stratified by beta cell function (“affected” meaning beta cell function was             

negatively affected). Normal beta cell function was identified by a beta cell disposition index larger than                

2 (see Fig. S1B). (C) T2D treatment restored some of the altered bacterial genera (Anaerostipes,               

Blautia, Escherichia, Veillonella) to their normal levels but this was not true for all of them (Romboutsia                 

remained at low levels). Mann-Whitney p-values <0.02 for all NG vs. T2D comparisons and >0.4 for all                 

T2D vs. T2D treated comparisons except Romboutsia (p = 0.07). 
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All of the 4 presented genera also associated with the primary clinical indicators for T2D. Higher levels 

of Escherichia and Veillonella accompanied higher area under the glucose curve, diminished beta cell 

function and lower insulin levels (Fig. 4). However, Escherichia was the only genus that significantly 

associated with glycated hemoglobin (log2 fold change 0.5, FDR-adjusted p=0.04). Higher levels of 

Blautia and Anaerostipes on the other hand associated with lower area under the glucose curve, 

normal beta cell function and higher insulin levels (Fig. 4). Thus, the associations with markers of 

metabolic health were consistent with the results from oral-glucose tolerance tests.  

We then asked whether the patterns of these 4 microbiome markers of disease might be reversed by 

treatment. In a control group of subjects that had already received T2D treatment, we noted that type 2 

diabetes treatment (mostly metformin alone or in combination with other drugs) led to an approximate 

return of the 4 genera to normal levels (Mann-Whitney p values between 0.4 - 0.9, see Fig. 4C). This 

behavior was not observed for all genera. For instance, Romboutsia levels were not affected as 

strongly by diabetes treatment (p=0.07, Fig. 4C). Thus, anti-hyperglycemic treatment for glucose control 

was sufficient to return the identified genera close to normal levels and this is not the case for all 

bacterial genera. 

 

A confounder analysis across variable classes identifies diabetes-specific associations 

As mentioned before, T2D shows comorbidity with many other clinical conditions such as obesity and 

cardiovascular disease. For instance, we observed correlations of the major glucose metabolism 

measurements such as the area under the glucose curve and insulin sensitivity with obesity related 

variables such as BMI, visceral fat and waist-to-hip ratio (see Figure 1D). Thus, there was a possibility 

that our observed changes across disease progression were driven by other covariates. For instance, 

the association between a bacterial genus and glucose metabolism might actually be a consequence of 

obesity which itself is associated with higher glucose levels. This is commonly known as confounding 

and obesity would be the confounder in that case. 

To assess those putative confounding effects, we selected three groups of primary clinical variables 

which were available for the majority of the samples for T2D, obesity, and cardiovascular health, 

respectively (see Materials and Methods). Representative clinical variables were chosen by considering 

only variables measured for the majority of individuals (not all individuals provided information on all 
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measures) and that showed the strongest association with bacterial abundances by themselves. For 

each of the previously identified bacterial genera and each variable in the 3 groups we then ran 

association tests with either only sex as the confounder (“without”) or with sex and all major variables 

from the other groups as confounders (“with”). The strength of confounding was evaluated by looking 

for changes in the regression coefficient for the association between the bacterial abundance and the 

respective clinical variable. If the coefficients were stable across the non-confounded (“without”) and 

(“with”) group we judged the association robust, whereas a coefficient closer to zero in the confounded 

setting (“with”) would indicate a diminished association when correcting for additional covariates and, 

thus, a spurious association.  

 

Figure 5. Adding prominent confounders from other classes of clinical variables did not influence effect               

size for diabetes related clinical response variables but did abolish associations in obesity and some               

cardiovascular responses. Clinical variables are grouped into T2D, obesity, and cardiovascular disease            

and association tests between each bacterial genus and variable are either not confounded with              

additional variables (without confounding) or confounded with all variables from the other groups (with              
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confounding). Points denote the coefficient associated with the response variables under the DESeq2             

model (log fold change associated with an increase of one standard deviation in the clinical variable)                

and error bars denote the standard errors of the model coefficient. Colors denote bacterial genera. 

 

 

Coefficients for the diabetes related clinical variables were not significantly impacted by the introduction 

of the additional confounders (see Fig. 5), whereas the coefficients for obesity related variables were 

almost completely abolished by adding the additional confounders. This means that the associations 

between the four identified bacterial genera and obesity-related clinical variables were essentially lost 

when correcting for diabetes status. Thus, diabetes measures explained most of the associations 

between bacterial abundances and obesity but not vice versa. Cardiovascular health was also 

confounded heavily by the T2D-related variables. In particular, we observed that association 

coefficients between the tested microbial genera and BMI, body fat, or diastolic pressure changed sign 

when correcting for secondary clinical variables (Fig. 5). This indicates that non-corrected associations 

can misinterpret the isolated effect of those clinical variables. Those spurious associations with obesity 

or cardiovascular disease could be observed with all of the 4 genera identified in our previous analysis. 

Here, only Veillonella showed residual associations with body fat and blood pressure after correction for 

some of the clinical variables (body fat and blood pressure) which led us to hypothesize that Veillonella 

seems to associate unspecifically with a variety of “bad health” markers.  

 

DISCUSSION 

 

One of the challenges in studying the connections between the gut microbiome and T2D is the strong 

effect of medication on the gut microbiota. Metformin in particular has been shown to induce changes in 

the microbiome that may themselves alleviate some of the symptoms of T2D either directly or indirectly 
22. Consequently, T2D medication with metformin may mask T2D-specific changes in microbial 

composition. We confirm this in our study and avoided those treatment-specific effects by concentrating 

on a large treatment naive cohort. This allowed us to identify a set of four bacterial genera that are 

closely connected to T2D disease progression and risk in treatment naive individuals of a high risk 

population. Notably, all of the four identified genera returned to near normal levels in treated individuals. 
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Consequently we found that metformin does not only affect more taxa in the gut microbiome than 

suggested previously, but may also completely disguise microbial changes induced by T2D (Fig. 4A). It 

is unclear whether this medication-induced restoration of the gut microbiome is a consequence of 

alleviated symptoms such as the regulation of blood glucose levels or a direct interaction between 

drugs and the microbiome. However, our observation that metformin treatment counteracts microbial 

changes associated with T2D but not other bacteria seems to suggest that this happens in a 

disease-dependent manner. 

Additionally, the inclusion of a complete characterization of individual phenotypes uncovered the 

complex pattern of connections between microbial taxa and T2D. Most (25/31) of the diabetes-related 

covariates included in the study did associate with at least one microbial taxa. However, individual taxa 

would usually associate with a specific set of clinical measurements. For instance, even though 

Escherichia and Veillonella both increased with disease progression, Escherichia preferably associated 

with measures of blood glucose whereas Veillonella associated with more insulin-related measures 

(Fig. 3A). Additionally, we also found that Blautia and Anaerostipes did not only decrease with disease 

progression but also associated with improved beta cell function and insulin efficiency, which is to our 

knowledge the first time this connection has been described.  

We also studied the relationship between the identified bacterial genera and T2D risk based on several 

established T2D risk factors. Here, we found a clear pattern of microbial shift associated with the 

accumulation of risk factors. This complements, previous studies have described a connection between 

the microbiome and the coincidence of T2D diabetes but not on T2D risk itself 23. We observed that this 

association was stable even in individuals with a low number of risk factors. This is consistent with the 

pathophysiology of T2D and shows that  T2D-specific changes in the microbiome may precede 

observable symptoms 30,31. 

Deep clinical phenotyping also allowed us to control for many of the known comorbidities of T2D and 

confirm the robustness of our findings. For instance, we show that the strongest associations between 

the microbiome and obesity-related clinical indicators (BMI and visceral fat) are completely confounded 

by diabetes covariates and can not be maintained when controlling for diabetes status. The implications 

of this observation go beyond this study and demonstrate a potential for extensive confounding in 

microbiome-obesity studies.  As we have shown, this can be avoided by extensive phenotyping of the 

study subjects and can help to identify effects that are specific to the studied condition and not a 

secondary effect of another phenotype. In particular we feel that the combination of correcting for 

additional phenotypes combined with studying microbial changes that are reversed by treatment are a 
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feasible strategy to constrain the number of associations and identify connections between disease and 

the microbiome that are good candidates for causal relationships. 

On a coarse level our study is in agreement with previous T2D microbiome studies which mostly report                 

a depletion of butyrate producers. On a fine level however, we find that the identified genera in our                  

study differ from what has been found in previous studies. For instance we do not find a depletion of the                    

butyrate-producing Roseburia, Faecalibacterium or Eubacterium 18 but rather observe a decrease in            

Anaerostipes hadrus, another known butyrate-producer 32. Some studies have also reported an            

increase of E. coli 15,16, however we do not observe an increase in Lactobacillus or Streptococcus.                

Consistent with previous findings in treatment naive subpopulations, we found that T2D could only be               

weakly predicted from microbiome composition when correcting for metformin treatment 23.           

Hyperglycemia itself has been shown to increase the risk for enteric infection by driving intestinal               

barrier permeability which is consistent with the tight association we observe between Escherichia             

abundance and blood glucose levels 33. Functionally, many of the observed associations point towards              

gut inflammation. Blooms of proteobacteria, like E. coli, have been associated previously with an              

inflamed gut and are often observed in irritable bowel disease 34,35. Loss of Blautia has also been                 

associated with an inflamed gut in Crohn's disease and other clinical conditions 36,37. Additionally,              

alterations in solute carrier expression as present in the Mexican population 12 have been observed in                

the development of irritable bowel disease and have been linked to inflammation 38,39. 

  

Though there is some evidence that gut inflammation may be modulated by the microbiome, it is still                 

unclear whether one could potentially target T2D via altering the gut microbiome 40,41. However, the               

observed compositional changes consistent with inflammation might be useful as markers for long-term             

effects of diabetes-induced phenotypes. For instance, the gut microbiome may help to identify diabetes              

patients with a high risk for irritable bowel disease or colorectal cancer 42–44. In the end, additional                 

studies will be required to elucidate the causal connections between the gut microbiome and T2D.  
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MATERIAL AND METHODS 

Study Population 

A cross-sectional analysis was performed in patients from Guanajuato, México, from January 2015 to              

December 2016, as part of the University Cohort Project CARE-In-DEEP Study (Cardiometabolic Risk             

Evaluation and Interdisciplinary Diabetes Education and Early Prevention). For this particular study 470             

participants who had anthropometric, nutritional, biochemical and metabolic evaluation, as well as a             

stool sample collection, were included; at the end we had complete data and microbiome composition               

only for 427. Based on the oral glucose tolerance test, individuals were stratified into normal glucose                

metabolism (NG, fasting glucose less than 100 mg/dl and 2h post-OGTT glucose less than 140 mg/dl),                

isolated impaired fasting glucose (iIFG, fasting glucose 100-125 mg/dl and 2h post-OGTT glucose less              

than 140 mg/dl), isolated impaired glucose tolerance (iIGT, fasting glucose less than 100 mg/dl and 2h                

post-OGTT glucose between 140-199 mg/dl), impaired fasting glucose plus impaired glucose tolerance            

(IFG+IGT , fasting glucose between 100-125 mg/dl and 2h post-OGTT glucose between 140-199            

mg/dl), and T2D (T2D, fasting glucose more than 125 mg/dl and/or 2h post-OGTT glucose higher than                

199 mg/dl). A survey was applied to collect general information about use of medications, family               

history, risk factors and previous diseases. The University Research Council evaluated and approved             

the study protocol. All participants signed an informed consent.  

 

Anthropometric Measurements 

Weight was measured while participants were barefoot and wearing minimal clothing. Height was             

obtained while the participants were standing barefoot with their shoulders in a normal position. BMI               

(kg/m2) was obtained from standardized measurements of weight and height and was computed as a               

ratio of weight (kg):height squared (m2), defining normal weight when BMI was between 18.5 – 24.9                

kg/m2, overweight when BMI was between 25-29.9 kg/m2, and obesity when BMI was ≥30 kg/m2.               

Waist circumference was measured at the high point of the iliac crest at the end of normal expiration to                   

the nearest 0.1 cm. Body composition was assessed with electrical bioimpedance through a Tanita              

Scale SC-240. All measurements were performed by personnel trained to use standardized procedures             

and reproducibility was evaluated, resulting in concordance coefficients between 0.88 and 0.94.  
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Nutritional and Physical Activity Evaluation 

A validated semi-quantitative food frequency questionnaire (FFQ) was applied to evaluate dietary            

intake 45. This questionnaire included data regarding the consumption of 116 food items. For each food,                

a commonly used portion size (e.g. 1 slice of bread or 1 cup of coffee) was specified on the FFQ and                     

participants reported their frequency of consumption of each specific food over the previous year. The               

PA level of participants was assessed using a self-administered questionnaire that was verified when              

the patient assist for the metabolic evaluation. The questionnaire has a validated Spanish translation 46,               

which has been adapted for use in the Mexican population. The questionnaire is self-administered and               

estimates the minutes devoted to the practice of different recreational physical activities during a typical               

week in the last year (including walking, running, cycling, aerobics, dancing, and swimming as well as                

playing football, volleyball, basketball, tennis, fronton, baseball, softball, and squash, among other            

activities). Each item includes time intervals that allow participants to detail the exact number of               

minutes or hours they dedicate to each form of recreational PA, as well as the intensity of each PA                   

(light, moderate, vigorous). The total duration of each recreational PA was expressed in minutes per               

day. We calculated the number of hours per week devoted to each activity, which were then multiplied                 

by the intensity of each activity, defined as multiples of the metabolic equivalent (MET) of sitting quietly.               

We used the Compendium of Physical Activities to assign METs to each activity 47.  

 

Metabolic evaluation and oral glucose tolerance test (OGTT) 

All subjects were admitted to the Metabolic Research Laboratory of the Department of Medicine and               

Nutrition, Division of Health Sciences at the University of Guanajuato the day of the study between 7                 

and 8 AM, and a catheter was placed into an antecubital vein for all blood withdrawal. Subjects will not                   

be allowed to eat or drink anything after 10 PM on the night before, until the study is completed. After                    

the intravenous catheter was placed and the first blood sample was drawn, the patients ingested 75                

grams of glucose. Plasma samples for glucose measurement were drawn at -15, and 0 minutes and                

every 30 minutes thereafter for two hours, glucose was measured by colorimetric glucose oxidase.              

Lipid levels were measured by dry chemistry with colorimetric method (Vitros 5600; Ortho Clinical              

Diagnostics)). According to the glucose levels at fasting and at 2 h during the OGTT, patients were                 

classified as following: NG = fasting glucose <100mg/dl and 2h glucose <140mg/dl, IFG = fasting               

glucose between 100-125mg/dl and a 2h glucose <140mg/dl, IGT = fasting glucose <100mg/dl and 2h               
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glucose between 140-199mg/dl, IFG+ITG = fasting glucose between 100-125mg/dl and 2h glucose            

between 140-199mg/dl, T2D = fasting glucose >125mg/dl and/or 2h glucose >200mg/dl, and treated             

T2D = previous diagnose of T2D confirmed by the medical record of the patients, consumption of                

hypoglycemic drugs and fasting glucose >125mg/dl and/or 2h glucose >200mg/dl. HbA1c was            

measured according to the international guidelines by HPLC in a subset of 182 patients. 

Insulin during the OGTT was measured by a solid-phase, enzyme-labeled chemiluminescent           

immunometric assay (IMMULITE 1000 Siemens Healthcare Diagnostics Products Ltd). Area under the            

glucose and insulin curve were calculate by the trapezoidal rule. 

Insulin resistance was calculated by the homeostasis model assessment (HOMA_IR) and insulin            

sensitivity (Matsuda Index) was derived from the insulin and glucose measurements from the OGTT as               

previously described 48. Insulin secretion was calculated dividing AUCinsulin_OGTT by the           

AUCglucose_OGTT, acute insulin response (AIR) was calculated dividing the insulin change from 0 to              

30 minutes by the glucose change from 0 to 30 minutes during the OGTT; pancreatic beta cell function                  

was estimated by the disposition index derived from the OGTT 49. 

 

FAECAL SAMPLE COLLECTION 

Faecal samples were collected from volunteers in a sterile container, each sample was homogenized              

and three aliquotes placed in sterile 1 ml screw-cap tubes which were stored at -80 oC prior to DNA                  

extraction.  

 

DNA EXTRACTION 

DNA extraction was performed using MoBio PowerSoil DNA Isolation kit (Mo Bio Laboratories, Inc.              

Carlsbad, USA) according to the manufacturer’s instructions with the following modifications. After add             

the C1 solution and mix, 25 µL of proteinase K solution were added and mixed by vortex. Samples                  

were incubated at 65 oC for 10 minutes, during the incubation tubes were mixed by inversion each three                 

minutes. Tubes were secured horizontally in a vortex adapter tube holder, and vortexed at 3000 rpm for                 

15 minutes. Samples were incubated at 95 oC for 10 minutes, during this time samples were mixed as                 

mentioned above. Total DNA was eluted in 100 µL of sterile water. DNA concentration was quantified                

spectrophotometrically with a Qubit (Thermo Scientific, USA) and validated by Nanodrop (ND 2000,             

Thermo Scientific, USA). 
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16S rRNA gene amplification and sequencing 

DNA templates were used in a two-step PCR method to sequence the V4 hypervariable region of the                 

bacterial 16S rRNA gene. Fusion primers contained a sequence complementary for the v4 region, as               

well as Nextera Illumina adapter sequences to allow multiplexing of pooled libraries. 

 

In the initial PCR we employing primers that were comprised of partial Nextera adapter and the V4                 

targeting forward or reverse primer sequence in agree with 50. 

NEXT_16S_V4_U515_F 

5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3′ 

NEXT_16S_V4_E786_R 

5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT-3′ 

For each sample, we used approximately equal amounts of DNA template (up to 12.5 ng per reaction)                 

and the reactions were carried out with a 3 minute denature step at 94ºC, followed by 25 cycles of                   

denature at 94ºC for 45 seconds, annealing at 50ºC for 60 seconds and extension at 72ºC for 90                  

seconds, with a final extension at 72ºC for 10 minutes. In all reactions were used 2x KAPA HiFi                  

HotStart ReadyMix to generate the amplicons. 

The amplicons were purified using Agencourt Ampure XP beads (Beckman Coulter) with a proportion              

1.25x (v/v). The PCR products were checked using electrophoresis in 2 % (w/v) agarose gels in TAE                 

buffer (Tris- acetate-EDTA) stained with SYBR Gold and visualized under UV light. 

For each amplicon, a second PCR was carried out with a 3 minute denature step at 95ºC, followed by 8                    

cycles of denature at 95ºC for 30 seconds, annealing at 55ºC for 30 seconds and extension at 72ºC for                   

30 seconds, with a final extension at 72ºC for 5 minutes with 5 ul of previous purified DNA template and                    

using primers that attaches dual indices and Illumina sequencing adapters employing the Nextera XT              

kit. The PCR products were also purified equal to first PCR reactions and the DNA concentration of                 

each PCR product was determined using a Qubit® 2.0 Broad Range Assay (Life Technologies™). An               

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710152doi: bioRxiv preprint 

https://paperpile.com/c/rXvxYy/fBDW
https://doi.org/10.1101/710152
http://creativecommons.org/licenses/by-nc/4.0/


Agilent TapeStation (Agilent, Santa Clara, CA) with DNA High Sensitivity kit was used to verify the size                 

of the PCR product only to 23 amplicons. 

All samples were random distributed in similar proportions in five pools and then mixed in equal                

amounts (to 10 nM). The final concentration of each pool was again determined using a Qubit® 2.0. 

Pools were diluted to a concentration of 9 pM for sequencing using 2x250 bp paired end sequencing                 

chemistry v2 on an Illumina MiSeq platform. All samples were distributed according to the consecutive               

number assigned by the experimental laboratory in similar proportions in five pools and then mixed in                

equal amounts (to 10 nM). The final concentration of each pool was again determined using a Qubit®                 

2.0. Amplicons were denatured with 0.2 N NaOH and further diluted according to the MiSeq user guide,                 

then combined with denatured PhiX control library. PhiX was spiked into the amplicon pool at 10%                

relative concentration. Image processing and base calling was performed on the BaseSpace cloud from              

Illumina (http://basespace.illumina.com). 

Processing of 16S sequencing data 

Demultiplexed MiSeq FASTQ files were analyzed using the DADA2 workflow 51. High read quality was 

ensured by filtering and trimming the reads prior to further processing. In brief, the first 5’ 10bp of all 

reads were trimmed and reads were truncated on 3’ to maximum length of 240 and 200 bp for forward 

and reverse reads respectively as a dip in sequence quality was observed after that length. 

Furthermore, all reads with more than 2 expected errors under Illumina base model were removed as 

well. The filtered and trimmed reads were grouped by sequencing run and error model was fit for each 

run separately using the DADA2 default parameters. Sequence variants were obtained for each run 

separately using the previously calculated error models and the dereplicated input sequences. The 

sequence variants and counts were then joined across all runs in a complete sequence table and de 

novo bimera removal was run on the entire table.  

 

Taxonomy for the final sequence variants was called using DADAs’s RDP classifier and using the 

SILVA database (version 132) 52. Species were identified separately by exact sequence matches where 

possible (again using SILVA version 132). The final data set was joined with clinical metadata and 

saved in a phyloseq object for all downstream analysis 53.  

 

In order to identify additional biases or batch effects. We checked whether particular sequence variant 

read counts were associated with DNA extraction order, DNA extraction date or the scientist that 
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extracted the sample. We could not identify any bias visually and the distribution of correlations 

between the extraction date and individual sequence variant abundances was similar to one obtained 

from a random Poisson model. Finally, we also verified that there were no run batch effects by PCoA 

plots were we observed no particular separation of samples by sequencing run. a notebook for those 

quality control steps can be found in the study repository as described in “Data availability”. 

 

Association tests 

Association tests were run using DESeq2 with some custom adjustments 54. First, the input count 

matrix was filtered by a “rule of 10” where we only tested those taxa with an average count of at least 

10 reads and which appeared at least in 10% of all samples. This was necessary to avoid bimodal p 

value distributions in the multiple tests. The count matrix was normalized across samples using the 

DESeq2 size factors and the “poscounts” correction for zero read counts. All continuous clinical 

variables were standardized (subtraction of mean and division by standard deviation). All tests used 

sex as a confounding variable. Age did not show major associations with any clinical variables in this 

study and including it as a confounder did not have any effect. Consequently,  we did not include age 

as a default confounder in our analysis.  

 

Association tests were then run for all combinations between taxa and clinical variable and only for 

those individuals with non-missing measurements. All associations discussed in detail in this 

manuscript were validated manually in order to confirm the lack of extreme outliers in the scatter plots. 

P-values were adjusted for false discovery rate using independent hypothesis weighting in order to 

avoid biases for tests with low abundance taxa 55.  

 

Data availability 

 

Raw sequencing data is provided on the sequence read archive (SRA) under the Bioproject PRJNA541332 . All                 

additional primary input files as well as intermediate files and R notebooks in order to reproduce the analysis                  

and figures is provided at https://github.com/resendislab/mext2d . More complex functions that could be            

potentially useful in the analysis of other data sets are furthermore provided along with documentation in their                 

own R package at https://github.com/resendislab/mbtools .   
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TABLES 

 

Variable NG IFG IGT IFG+IGT new T2D treated T2D p value 

(n=430) (n=214) (n=52) (n=42) (n=57) (n=48) (n=17) 

Age (y) 38 ± 14 45 ± 14a 45 ± 12 49 ± 12a 51 ± 9a 55 ± 11a <0.001 

PP(mmHg) 38 ± 9 41 ± 10 42 ± 8 45 ± 11a 45 ± 12a 44 ± 12 <0.001 

Weight (kg) 70 ± 15  77 ± 17 76 ± 15 85 ± 17a 85 ± 20a 74 ± 23 <0.001 

BMI 26.5±5.4 28.2±5.1 29.3±5.3a 32.4±6.2ab  32.5±7.0ab 31.0±9.0a <0.001 

Body fat% 33 ± 8 32 ± 7 35 ± 8 39 ± 8ab 39 ± 10ab 37 ± 9 <0.001 

Visceral fat % 6.6 ± 4.1 9.3 ± 3.9a 9.3 ± 3.9a 11.8 ± 4.3a 12.2 ± 5.6a 10.3 ± 4.2 <0.001 

WC (cm) 84.7 ±13.4 90.3±11.2 92.0±10.3a 98.4±13.3a 97.7±18.5a 95.4±10.5 <0.001 

HbA1c % 5.3±0.3 5.4±0.3 5.4±0.4 5.6±0.4 6.6±1.6abcd 7.5±1.2abcd ˂0.001 

Total 

cholesterol 

(mg/dl) 

181 ± 37 189 ± 36 190 ± 32 196 ± 42 188 ± 30 218 ± 30a <0.001 

TG (mg/dl) 131 ± 62 173 ± 93a 171 ± 78a 181 ± 80a 200 ± 85a 202 ± 66a <0.001 

 

Table 1.  Cohort characteristics. P value column denotes p values of ANOVA with Bonferroni correction. 

Superscript letters denote the following: (a) p<0.01 vs NG (b) p<0.01 vs IFG (c) p<0.01 vs IGT (d) p<0.01 vs 

IFG+IGT (e) p<0.01 vs treatment naive T2D  
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SUPPLEMENTARY FIGURES 

 
 

 

 

Figure S1: (A) Increment of the area under the glucose curve by metabolic group. “nT2D” denotes new                 

(treatment naive) T2D and pT2D denotes previous (treated) T2D. Bars denote standard error of the               

mean. (B) Insulin sensitivity over the metabolic groups. Bars denote standard error of the mean. (C)                

Beta cell disposition index by metabolic group. The dashed line denotes the cutoff value 2 that was                 

used to separate functional from non-functional beta cells. (D) Abundances of Escherichia and             

Intestinbacter stratified by metformin history. Superscripts denote the following: * - p < 0.01 vs. NG                

group, ** - p < 0.01 vs. NG and IFG groups, † - p < 0.01 vs all groups. 
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Figure S2: Binary risk factors used to calculate overall risk. Shown are bacterial abundances stratified               

by individual risk factors. Absence is denoted by zero and presence by 1. The following 3 risk factors                  

were summarized into a single one (any of the 3 present) when calculating overall risk: polycistic ovary                 

syndrome, cardiovascular disease, baby born with more than 4kg of weight (macrosomic). Reads were              

normalized across samples as described in Methods.  
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