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 3 

Abstract	32	

The biological carbon pump (BCP) is the process by which ocean organisms transfer 33	

carbon from surface waters to the ocean interior and seafloor sediments for sequestration. 34	

Viruses are thought to increase the efficiency of the BCP by fostering primary production 35	

and facilitating the export of carbon-enriched materials in the deep sea (the viral “shunt 36	

and pump”). A prior study using an oligotrophic ocean-dominated dataset from the Tara 37	

Oceans expedition revealed that bacterial dsDNA viruses are better associated with 38	

variation in carbon export than either prokaryotes or eukaryotes, but eukaryotic viruses 39	

were not examined. Because eukaryotes contribute significantly to ocean biomass and net 40	

production (> 40%), their viruses might also play a role in the BCP. Here, we leveraged 41	

deep-sequencing molecular data generated in the framework of Tara Oceans to identify 42	

and quantify diverse lineages of large dsDNA and smaller RNA viruses of eukaryotes. 43	

We found that the abundance of these viruses explained 49% of the variation in carbon 44	

export (compared with 89% by bacterial dsDNA viruses) and also substantially explained 45	

the variation in net primary production (76%) and carbon export efficiency (50%). 46	

Prasinoviruses infecting Mamiellales as well as Mimivirus relatives putatively infecting 47	

haptophytes are among the eukaryotic virus lineages predicted to be the best contributors 48	

to BCP efficiency. These findings collectively provide a first-level window into how 49	

eukaryotic viruses impact the BCP and suggest that the virus-mediated shunt and pump 50	

indeed plays a role.   51	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710228doi: bioRxiv preprint 

https://doi.org/10.1101/710228
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Introduction  52	

The oceanic biological carbon pump (BCP) is an organism-driven process by which 53	

atmospheric carbon (i.e. CO2) is transferred to the ocean interior and seafloor for 54	

sequestration over periods ranging from centuries to those of geological time-scale 55	

durations. Between 15% and 20% of net primary production (NPP) is exported out of the 56	

euphotic zone, with 1% to 3% (ca. 0.2 gigatons) of fixed carbon reaching the seafloor 57	

annually (De La Rocha and Passow 2007; Herndl and Reinthaler 2013; Quéré et al. 2018; 58	

Zhang et al. 2018). 59	

Three components of the BCP, namely, carbon fixation, export and 60	

remineralization, are governed by complex interactions between numerous members of 61	

planktonic communities (Falkowski et al. 1998). Among these organisms, diatoms 62	

(Tréguer et al. 2018) and zooplankton (Turner 2015) have been identified as important 63	

contributors to the BCP in nutrient-replete oceanic regions. In the oligotrophic ocean, 64	

Cyanobacteria and Collodaria (Lomas and Moran 2011), diatoms (Agusti et al. 2015; 65	

Leblanc et al. 2018) and other small (pico- to nano-) plankton (Richardson and Jackson 66	

2007; Lomas and Moran 2011) have been implicated in the BCP. Overall, the 67	

composition of the planktonic community in surface waters, rather than a single species, 68	

is better associated with the intensity of the BCP (Boyd and Newton 1995; Guidi et al. 69	

2009; Guidi et al. 2016). 70	

A recent gene correlation network analysis based on Tara Oceans genomic data, 71	

ranging from viruses to zooplankton, outlined predicted species interactions associated 72	

with carbon export and revealed a remarkably strong association with bacterial dsDNA 73	

viruses relative to either prokaryotes or eukaryotes (Guidi et al. 2016). Cell lysis caused 74	
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by viruses promotes the production of dissolved organic matter and accelerates the 75	

recycling of potentially growth-limiting nutrient elements (i.e. nitrogen and phosphorus) 76	

in the photic zone (the “viral shunt”) (Weinbauer and Peduzzi 1995; Gobler et al. 1997; 77	

Wilhelm and Suttle 1999; Weinbauer 2004; Motegi et al. 2009). This recycling in turn 78	

may increase primary production and carbon export (Brussaard et al. 2008; Weitz et al. 79	

2015). Viruses have also been proposed to drive particle aggregation and transfer into the 80	

deep sea via the release of sticky, carbon-rich viral lysate (the “viral shuttle”) (Proctor 81	

and Fuhrman 1991; Peduzzi and Weinbauer 1993; Shibata et al. 1997; Weinbauer 2004). 82	

The combined effect of these two viral properties, coined “shunt and pump”, is proposed 83	

to enhance the magnitude and efficiency of the BCP (Suttle 2007). A study by Guidi et al. 84	

(2016) revealed that populations of bacterial dsDNA viruses in the sunlit oligotrophic 85	

ocean are strongly associated with variation in the magnitude of the flux of particulate 86	

organic carbon. Although viruses of eukaryotes were not included in the above-87	

mentioned study, the significant contribution of their hosts to ocean biomass and net 88	

production (Li 1995; Nelson et al. 1995; Worden et al. 2004; Liu et al. 2009) and their 89	

observed predominance over prokaryotes in sinking materials of Sargasso Sea 90	

oligotrophic surface waters (Fawcett et al. 2011; Lomas and Moran 2011) suggest that 91	

eukaryotic viruses are responsible for a substantial part of the variation in exported 92	

carbon. Furthermore,	the	mechanisms	causing	this	association	remain	to	be	93	

dissected (Sullivan et al. 2017),	as	such	an	association	might	emerge	through	indirect	94	

correlation	with	other	parameters,	such	as	NPP. 95	

In this study, we explored the association between eukaryotic viruses and the BCP 96	

as well as the viral mechanisms enhancing this process. We exploited comprehensive 97	
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organismal data from the Tara Oceans expedition (Sunagawa et al. 2015; Carradec et al. 98	

2018) as well as related measurements of carbon export estimated from particle 99	

concentration and size distributions observed in situ (Guidi et al. 2016). The investigation 100	

of eukaryotic viruses based on environmental genomics has long been difficult because of 101	

their lower concentration in the water column compared with prokaryotic dsDNA viruses 102	

(Hingamp et al. 2013). Deep sequencing of planktonic community DNA and RNA, as 103	

carried out in Tara Oceans, has enabled the identification of marker genes of major viral 104	

groups infecting eukaryotes and begun to reveal that these groups represent a sizeable 105	

fraction of the marine virosphere (Hingamp et al. 2013; Allen et al. 2017; Moniruzzaman 106	

et al. 2017; Carradec et al. 2018; Mihara et al. 2018). In the present study, we identified 107	

several hundred marker-gene sequences of nucleocytoplasmic large DNA viruses 108	

(NCLDVs; so-called “giant viruses”) in the prokaryotic size fraction. We also identified 109	

RNA viruses in meta-transcriptomes of four eukaryotic size fractions. The resulting 110	

profile of viral distributions was compared with the magnitude of carbon export (CE) and 111	

its efficiency (CEE) to identify lineages of viruses predicted to contribute to the BCP. 112	

Results and Discussion 113	

The discovery of diverse NCLDVs and RNA viruses in Tara Oceans gene 114	

catalogs 115	

We used profile hidden Markov model-based homology searching to identify marker-116	

gene sequences of viruses of eukaryotes in two ocean gene catalogs. These catalogs were 117	

previously constructed from environmental shotgun sequence data of samples collected 118	

during the Tara Oceans expedition. The first catalog, the Ocean Microbial Reference 119	
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Gene Catalog (OM-RGC), contains 40 million non-redundant genes predicted from the 120	

assemblies of Tara Oceans viral and microbial metagenomes (Sunagawa et al. 2015). We 121	

searched this catalog for NCLDV DNA polymerase family B (PolB) genes, as dsDNA 122	

viruses may be present in microbial metagenomes because large virions (> 0.2 µm) have 123	

been retained on the filter or viral genomes replicating within picoeukaryotic cells have 124	

been captured. The second gene catalog, the Marine Atlas of Tara Oceans Unigenes 125	

(MATOU), contains 116 million non-redundant genes predicted from meta-126	

transcriptomes of single-cell microeukaryotes and small multicellular zooplankton 127	

(Carradec et al. 2018). We searched this catalog for RNA-dependent RNA polymerase 128	

(RdRP) genes of RNA viruses because transcripts of viruses actively infecting their host 129	

or genomes of RNA viruses have been captured in it. 130	

We identified 3,486 NCLDV PolB sequences and 975 RNA virus RdRP 131	

sequences. All except 17 of the NCLDV PolBs were assigned to the families Mimiviridae 132	

(n = 2,923), Phycodnaviridae (n = 348) and Iridoviridae (n = 198) (Figure 1a). The large 133	

number of PolB sequences assigned to Mimiviridae and Phycodnaviridae compared with 134	

other NCLDV families is consistent with a previous observation based on a smaller 135	

dataset (Hingamp et al. 2013). The divergence between these environmental sequences 136	

and reference sequences from known viral genomes was greater in Mimiviridae than 137	

Phycodnaviridae (Figure 1b, Supplementary Figure 1a). Within Mimiviridae, 83% of the 138	

sequences were most similar to those from algae-infecting Mimivirus relatives. Among 139	

the sequences classified in Phycodnaviridae, 92% were most similar to those in 140	

Prasinovirus, while 5% were closest to Yellowstone lake phycodnavirus, which is closely 141	

related to Prasinovirus. RdRP sequences were assigned mostly to the order 142	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710228doi: bioRxiv preprint 

https://doi.org/10.1101/710228
http://creativecommons.org/licenses/by-nc/4.0/


 8 

Picornavirales (n = 325) followed by the families Partitiviridae (n = 131), Narnaviridae 143	

(n = 95), Tombusviridae (n = 45) and Virgaviridae (n = 33) (Figure 1c), with most 144	

sequences being distant (30% to 40% amino acid identity) from reference viruses (Figure 145	

1d, Supplementary Figure 1b). This result is consistent with previous studies on the 146	

diversity of marine RNA viruses, in which RNA virus sequences were found to 147	

correspond to diverse positive-polarity ssRNA and dsRNA viruses distantly related to 148	

well-characterized viruses (reviewed in Culley [2018]). 149	

 150	

Figure 1: Numerous lineages of nucleocytoplasmic large DNA viruses (NCLDVs) 151	
and RNA viruses were identified in environmental samples collected during the 152	
Tara Oceans expedition (2009-2013). a and c Taxonomic breakdown of environmental 153	
sequences of NCLDV DNA polymerase family B and RNA virus RNA-dependent RNA 154	
polymerase. b and d Unrooted maximum likelihood phylogenetic trees of environmental 155	
(black) and reference (red) viral sequences. 156	
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Eukaryotic viruses linked to carbon export efficiency in the sunlit ocean 157	

Among the PolB and RdRP sequences identified in the Tara Oceans gene catalogs, 37% 158	

and 17% were respectively present in at least five samples and had accompanying carbon 159	

export measurement data (Supplementary Table 1). Using abundance profiles of these 160	

1,454 marker-gene sequences at 61 sampling sites in the photic zone of 40 Tara Oceans 161	

stations (Figure 2a–c), we tested for associations with estimates of carbon export flux at 162	

150 meters (CE150) and measurements of carbon export efficiency (CEE). PLS regression 163	

model explained 49% (R2 = 49%) of the variation in CE150, with a Pearson correlation 164	

coefficient between observed and predicted values of 0.67 (P < 1 × 10−
4) (Figure 2d); this 165	

result demonstrates that viruses of eukaryotes are associated with the magnitude of 166	

carbon export. A comparison of viral abundances with CEE revealed that viruses are also 167	

strongly associated with CEE (R2 = 50%, r = 0.72, P < 1 × 10−
4) (Figure 2e and 168	

Supplementary Figure 2a; see Supplementary Table 2 for details of PLS models and 169	

Supplementary Figure 2b for details of the permutation tests). In these PLS regression 170	

models, 62 and 26 viruses were considered to be important predictors (i.e. variable 171	

importance in the projection [VIP] score > 2 and regression coefficient > 0) of CE150 and 172	

CEE, respectively, and only two viruses were shared between them. 173	

CE150 was found to be correlated with NPP (r = 0.76, P < 1 × 10−
11), which 174	

suggests that the association of viruses with CE150 is due to a viral shunt effect or to 175	

primary-production enhancement of viral production. In line with this interpretation, we 176	

found that viral abundances can predict NPP variations (R2 = 59%, r = 0.78, P < 1 × 10−
4) 177	

(Figure 2f); in addition, a larger number of shared predictors were obtained under the 178	

PLS model for CE150 (44 viruses) than for CEE (3 viruses) (P = 1.3 × 10−
7). In contrast, 179	
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CEE was not correlated with NPP (r = 0.2, P = 0.1) or CE150 (r = 0.14, P = 0.3). The 180	

association of some viruses with CEE is therefore not an indirect relationship caused by 181	

NPP; instead, viruses of eukaryotes may have a shuttling effect that enhances the 182	

efficiency of carbon export.  183	

 184	

Figure 2: Abundance of nucleocytoplasmic large DNA viruses (NCLDVs) and RNA 185	
viruses is associated with carbon export efficiency and flux at 150m in the global 186	
ocean. a Location of 40 Tara Oceans stations that were the source of 61 prokaryote-187	
enriched metagenomes and 244 eukaryotic meta-transcriptomes (61 sites x 4 organismal 188	
size fractions) from surface and DCM layers and measurements of carbon export. b–c 189	
Relative abundance of NLCVDs and RNA viruses in samples used for association 190	
analyses. d–f Plots showing the correlation between predicted and observed values in a 191	
leave-one-out cross-validation test for carbon export flux at 150 m (d), carbon export 192	
efficiency (e) and net primary production (f). Each PLS regression model was 193	
reconstructed using abundance profiles of 1,454 marker-gene sequences (1,282 PolBs and 194	
172 RdRPs) derived from environmental samples. r, Pearson correlation coefficient; R2, 195	
square of the correlation between measured response values and predicted response 196	
values. R2, which was calculated as 1 – SSE / SST (sum of squares due to error and total), 197	
measures how successful the fit is in explaining the variation of the data. Model 198	
robustness was assessed using a permutation test (n = 10,000). 199	
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Giant viruses of small algae are predicted to enhance CEE 200	

We considered 26 viruses positively associated with CEE with a VIP score > 2 201	

(Supplementary File 1) to be important predictors of CEE in the PLS regression. These 202	

viruses are hereafter referred to as VIPs. Eleven VIPs (nine NCLDVs and two RNA 203	

viruses; red rectangle in Figure 3) were abundant in samples from Eastern India coast 204	

(EAFR) and Benguela current coast (BENG) provinces, with some (e.g. polb 00248170 205	

and 002035391) also relatively abundant in samples from different oceanic provinces 206	

where CEE was also relatively high. This observation suggests that these viruses enhance 207	

the BCP in different regions of the global ocean. 208	

Most VIPs (23 of 26) belonged to Mimiviridae (n = 11) and Phycodnaviridae (n = 209	

12). All the phycodnavirus sequences were most closely related to those of 210	

prasinoviruses, with amino acid sequence identities to reference sequences ranging 211	

between 64% and 88%. The three remaining VIPs were RNA viruses. The closest 212	

homolog of one sequence (rdrp 36496887) was that of an octopus-associated member of 213	

Picornavirales (Beihai picorna-like virus 106), while the other two (90355641 and 214	

58847823) were most similar to that of a crustacean-associated Bunyavirales virus 215	

(Wenling crustacean virus 9). 216	

Taxonomic analysis of genes in genome fragments containing VIP PolBs further 217	

confirmed their identity as Mimiviridae or Phycodnaviridae (Supplementary Figure 3). 218	

One contig (CNJ01018797) was predicted to encode a protein having a high amino-acid 219	

identity (94%) to a gene product from the transcriptome of the diatom Triceratium 220	

dubium (Supplementary Figure 3b). NCLDVs infecting diatoms have not been reported 221	
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so far, but a previous co-abundance analysis has linked diatoms and Mimiviridae 222	

(Moniruzzaman et al. 2017). 223	

 224	

Figure 3: Biogeography of viral lineages associated with carbon export efficiency 225	
(CEE). The upper panel shows carbon export efficiency, ( CEdeep – CEsurface ) / CEdeep, for 226	
the 61 sampling sites. Sites with values above and below zero are those where carbon 227	
export flux was respectively higher and lower in deep than in surface waters; hence, they 228	
correspond to sites where the biological carbon pump was higher or lower compared with 229	
other sites. The bottom panel is a map reflecting abundances, expressed as center-log 230	
ratio transformed gene-length normalized read counts, of viruses positively associated 231	
with CEE and having a VIP score > 2. MS, Mediterranean Sea; IO, Indian Ocean; SAO, 232	
South Atlantic Ocean; SPO, South Pacific Ocean; NPO, North Pacific Ocean; NAO, 233	
North Atlantic Ocean. The bottom horizontal axis is labeled with Tara Oceans station 234	
numbers, sampling depth (SRF, surface; DCM, deep chlorophyll maximum) and 235	
abbreviations of biogeographic provinces. 236	
 237	

Because most VIPs were only distantly related to isolated viruses, inferring 238	

characteristics such as host type and infection strategies was not straightforward. We 239	

therefore conducted a phylogeny-guided network-based host prediction analysis (Figure 240	
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4; see Methods). Within the Prasinovirus clade, which contained six VIPs, enrichment 241	

analysis of predicted host groups along the phylogenetic tree uncovered 10 nodes 242	

significantly enriched for five different eukaryotic orders. Mamiellales, the only known 243	

host group of prasinoviruses, was detected at nine different nodes (seven of them had no 244	

parent-to-children relationships), while the other four eukaryotic orders were found at 245	

only one node (or two in the case of Eutreptiales) (Figure 4a). Within Mimiviridae, 246	

significant enrichment was detected for 10 different orders; Collodaria was detected at 15 247	

nodes (2 of them had no parent-to-children relationships) and Prymnesiales at 6 nodes (3 248	

of them had no parent-to-children relationship), while all other orders were present at a 249	

maximum of one node with no parent-to-children relationships. The nodes enriched in 250	

Prymnesiales and Collodaria fell within or were sister to clades containing reference 251	

viruses isolated from Prymnesiales and Phaeocystales (both are haptophytes orders) 252	

species. This placement suggests that environmental PolB sequences in this clade belong 253	

to Mimiviridae viruses that infect Prymnesiales. Interestingly four of these Mimiviridae 254	

viruses were VIP viruses (Figure 4a). The detection of Collodaria may be the result of 255	

indirect associations that reflect a symbiotic relationship with Prymnesiales, as some 256	

acantharians, a lineage of Rhizaria related to Collodaria, are known to host Prymnesiales 257	

species (Mars Brisbin et al. 2018). Nodes enriched in the remaining three other orders fell 258	

within clades that were only distantly related to any reference Mimiviridae. The final 259	

Mimiviridae VIP (polb 000079111) in the tree was a distant relative of Aureococcus 260	

anophagefferens virus (AaV). No host groups were predicted for the clade containing the 261	

Picornavirales VIP (Figure 4b). Overall, this host prediction analysis revealed that 262	



 14 

lineages of prasinoviruses and putative prymnesioviruses are among the viral lineages 263	

best associated with CEE. 264	

 265	

Figure 4: Phylogenetic position of viruses associated with the efficiency of carbon 266	
export. Details of the PLS model and viral global distribution, relative abundance and 267	
putative eukaryotic host group are superimposed on the trees. Phylogenetic trees contain 268	
environmental (labeled in red if VIP > 2) and reference (labeled in black) sequences of 269	
Prasinovirus and Mimiviridae DNA polymerase family B (a) and Picornavirales RdRP 270	
(b). 271	
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Functional traits of eukaryotic organisms interacting with CEE-associated 272	

viruses 273	

The host assignment of Mamiellales, Prymnesiales (Figure 4a) and Chaetocerotales 274	

(Figure 4b) to viral clades containing reference viruses isolated from these organismal 275	

groups suggests that the network-based approach was able to predict virus–host 276	

relationships with a certain level of reliability using our large dataset despite the reported 277	

limitations of similar types of analyses (Coenen and Weitz 2018). This positive signal 278	

prompted us to use these species-association networks to investigate taxonomic and 279	

functional differences between the eukaryotic organisms predicted to interact with viruses 280	

that were either positively or negatively associated with CEE (Figure 5). At the functional 281	

level, viruses positively associated with CEE had a greater number of connections with 282	

chloroplast-bearing eukaryotes (Q = 0.03) and with silicified eukaryotes (Q = 0.05) 283	

compared with viruses negatively associated with CEE (Supplementary Table 4); this 284	

suggests that these virus–host systems contribute to CEE. This result also supports the 285	

proposed idea that viral lysis enhances the effect of the BCP; that is, lysis of autotrophs is 286	

expected to release growth-limiting nutrients (Gobler et al. 1997) that are recycled to 287	

grow new cells, while carbon-rich cell debris, potentially ballasted with silica, tends to 288	

aggregate and sink (Suttle 2007). 289	
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 290	

Figure 5: Functional traits and taxonomy of putative hosts of viruses associated with 291	
the efficiency of carbon export. “Putative hosts” refers to eukaryotic V9-OTUs with the 292	
highest absolute edge weight in FlashWeave interaction networks. Taxa correspond to 293	
higher rank classification of the V9-OTU. Black squares indicate the presence of a 294	
functional trait for the V9-OTU best connected to the virus.  295	
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polb_OM.RGC.v1.001386278 0.064 Dinophyceae n
polb_OM.RGC.v1.000070861 0.063 Collodaria
polb_OM.RGC.v1.000042601 0.062 Dinophyceae n
polb_OM.RGC.v1.001743853 0.057 Trachymedusae
polb_OM.RGC.v1.001175669 0.056 Rotaliida n
polb_OM.RGC.v1.000129518 0.055 Dinophyceae n
polb_OM.RGC.v1.000611300 0.047 Ulvophyceae n
polb_OM.RGC.v1.000194282 0.047 Gymnodiniales n
rdrp_36496887 0.038 Poecilostomatoida
polb_OM.RGC.v1.010288541 0.038 Bacillariophyta n n
polb_OM.RGC.v1.000230224 0.033 Arthra_Symphy_F1
polb_OM.RGC.v1.000079111 0.032 Cephaloidophorida
polb_OM.RGC.v1.000968766 0.032 Calanoida
polb_OM.RGC.v1.000248170 0.028 Beroida
polb_OM.RGC.v1.007771300 0.027 Dinophyceae
polb_OM.RGC.v1.015907472 0.024 Coscinodiscophytina n n
polb_OM.RGC.v1.000232032 0.013 Gregarinomorphea
polb_OM.RGC.v1.000073352 0.012 Mamiellophyceae n
polb_OM.RGC.v1.000249074 0.010 Dinophysiales
polb_OM.RGC.v1.002035391 0.010 Coscinodiscophytina n n
polb_OM.RGC.v1.004312996 0.009 Coscinodiscophytina n n
polb_OM.RGC.v1.000912507 0.009 Acanthoecida
polb_OM.RGC.v1.000062429 -0.009 Peridiniales
polb_OM.RGC.v1.000239928 -0.018 Dinophyceae n
polb_OM.RGC.v1.001445888 -0.026 Copepoda
polb_OM.RGC.v1.001897164 -0.035 Copepoda
polb_OM.RGC.v1.001883961 -0.043 Ostracoda
polb_OM.RGC.v1.000844241 -0.043 Peridiniales
polb_OM.RGC.v1.000673383 -0.043 Calanoida
polb_OM.RGC.v1.000072166 -0.043 Labyrinthulida
polb_OM.RGC.v1.000274868 -0.045 Chlorophyceae n
polb_OM.RGC.v1.001561949 -0.048 Ostracoda
polb_OM.RGC.v1.000205020 -0.048 Collodaria
polb_OM.RGC.v1.004472615 -0.049 Calanoida
polb_OM.RGC.v1.000228894 -0.051 Variosea
polb_OM.RGC.v1.009636901 -0.051 Collodaria
polb_OM.RGC.v1.000495602 -0.056 MAST_3-12
polb_OM.RGC.v1.000074398 -0.061 Ichthyosporea
polb_OM.RGC.v1.015629864 -0.062 Peridiniales
polb_OM.RGC.v1.000287835 -0.064 Collodaria
polb_OM.RGC.v1.000471455 -0.065 Collodaria
polb_OM.RGC.v1.000110630 -0.073 Acantharea
polb_OM.RGC.v1.002652025 -0.075 Dinophyceae n
rdrp_89802927 -0.075 Calanoida
rdrp_89802926 -0.075 Insecta
polb_OM.RGC.v1.002767869 -0.078 Collodaria
rdrp_103795290 -0.082 Collodaria
polb_OM.RGC.v1.000017697 -0.083 Calanoida
rdrp_77677810 -0.099 Leptothecata
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Integrating previous observations to model a virus-driven BCP 296	

Our PLS models revealed that viruses of eukaryotes are associated not only with the 297	

magnitude of carbon export, but also with the export efficiency of particles. This finding 298	

suggests that viruses contribute to BCP enhancement by promoting aggregate formation 299	

and subsequent sedimentation. Consistent with this view, prasinoviruses and putative 300	

prymnesioviruses were found to be among the viruses best associated with the efficiency 301	

of carbon export under our PLS model for CEE. Several prasinoviruses (fourteen with an 302	

available genome sequence) have been isolated for three genera of green microalgae, 303	

namely Micromonas, Ostreococcus and Bathycoccus. These genera belong to the order 304	

Mamiellales, which are bacterial-sized phytoplankton common in coastal and oceanic 305	

environments and considered to be influential actors in oceanic systems (Not et al. 2012; 306	

Weynberg et al. 2017). Chrysochromulina ericina virus, Prymnesium parvum DNA virus, 307	

Prymnesium kappa virus-RF02 and Haptolina ericina virus are Mimiviridae viruses 308	

isolated from Prymnesiales (Haptophyta) cultures (Figure 4). They are closely related to 309	

Phaeocystis globosa virus (PgV) and Phaeocystis poutcheti virus isolated from 310	

Phaeocystales (Haptophyta) cultures. Both Prymnesiales and Phaeocystales species have 311	

non-calcifying organic scales and some species can form blooms and colonies. The 312	

detection of several putative prymnesioviruses in samples containing small cells is 313	

consistent with the observation of diverse and abundant noncalcifying haptophytes in 314	

open oceans (Liu et al. 2009; Endo et al. 2018). According to the estimates of Liu et al 315	

(2009), these noncalcifying haptophytes contribute twice as much as diatoms or 316	

prokaryotes to photosynthetic production, thereby highlighting their importance in the 317	

BCP. Prymnesiales are an important mixotrophic group in oligotrophic ocean (Unrein et 318	
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al. 2014) and mixotrophy is proposed to increase vertical carbon flux by enabling the 319	

uptake organic forms of nutrients (Ward and Follows 2016). Viral infection of such 320	

organisms may thus help increase BCP efficiency.  321	

As most other cultured algal viruses, prasinoviruses and prymnesioviruses are 322	

lytic. Viral lysis not only generates the cellular debris used to build aggregates; it also 323	

facilitates the process of aggregation (Weinbauer 2004) via viral-induced production of 324	

agglomerative compounds, such as transparent exopolymer particles (TEPs). Lønborg et 325	

al. (2013) proposed that the increased DOC and TEP production observed in cultures of 326	

Micromonas pusilla infected with prasinoviruses (compared with non-infected cultures) 327	

could stimulate particle aggregation and thus carbon export out of the photic zone. Some 328	

prasinoviruses encode glycosyltransferases of the GT2 family. Similar to the a098r gene 329	

(GT2) in Paramecium bursaria Chlorella virus 1, the expression of GT2 family members 330	

during infection possibly leads to the production of a dense fibrous hyaluronan network at 331	

the surface of infected cells. Such a network may trigger the aggregation of host cells, 332	

facilitate viral propagation (Van Etten et al. 2017) and increase the cell wall C:N ratio. 333	

PgV, closely related to prymnesioviruses (Figure 4), has been linked with increased TEP 334	

production and aggregate formation during the termination of Phaeocystis bloom 335	

(Brussaard et al. 2007). 336	

Other previous experimental and in situ studies have linked viruses and viral 337	

activity to vertical carbon flux, cell sinking, and aggregate formation. Several laboratory 338	

experiments have revealed associations between viruses and sinking cells or between 339	

viruses and aggregate formation. For example, sinking rates of the toxic bloom former 340	

Heterosigma akashiwo are elevated following viral infection (Lawrence and Suttle 2004). 341	
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As early as 1993, an experimental study revealed increased particle aggregation and 342	

primary productivity upon addition of virally enriched material to seawater samples 343	

(Peduzzi and Weinbauer 1993). More recently, cultures of the diatom Chaetoceros 344	

tenuissimus infected with a DNA virus (CtenDNAV type II) have been shown to produce 345	

higher levels of large-sized particles (50 to 400 µm) compared with non-infected cultures 346	

(Yamada et al. 2018). In situ studies have uncovered vertical transport of viruses between 347	

photic and aphotic zones in the Pacific Ocean (Hurwitz et al. 2015) and in Tara Oceans 348	

samples (Brum et al. 2015), which suggests their association with sinking material. In 349	

addition, the level of active Emiliania huxleyi virus (EhV) infection in a coccolithophore 350	

bloom has been found to be correlated with water column depth, which suggests that 351	

infected cells are exported from the surface to deeper waters in aggregate form (Sheyn et 352	

al. 2018). EhVs infecting E. huxleyi have also been found to facilitate particle 353	

aggregation and downward vertical flux of both particulate organic and particulate 354	

inorganic carbon in the North Atlantic (Laber et al. 2018). No Phycodnaviridae PolB had 355	

their best hits to EhVs in our study, which is probably because of sampling regions and 356	

periods. These previous observations come as potential mechanistic explanations that 357	

provide support for our results suggesting eukaryotic viruses have a “shuttle effect” that 358	

enhance carbon export. 359	

Viruses versus hosts as key markers of CE and CEE variations 360	

Our analysis used similar data and analytical methods as those of Guidi et al. (2016), who 361	

explored the link between planktonic networks and the BCP. Those authors reported that 362	

bacterial viruses are better associated with CE150 than are cellular organisms. In their 363	

study, host lineages for prasinoviruses (Mamiellales) and prymnesioviruses 364	
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(Prymnesiales) were not found to be associated with CE150. The fact that we detected 365	

these viruses as predictors of CEE may mean that viruses are better predictors than their 366	

hosts, most likely because viruses may better reflect the overall process and mechanisms 367	

by which carbon is exported. Viral infection causes lysis and aggregation of cells, 368	

enhances sinking rates and increases the export of organic carbon out of the sunlit ocean. 369	

Among the eukaryotic organisms studied by Guidi et al. (2016), collodarians, 370	

dinoflagellates and copepods were reported to be important contributors to CE150. Some 371	

of the viral taxa we found to be associated with CEE were connected with collodarians 372	

and dinoflagellates in our host prediction analysis, although not as clearly as with 373	

Mamiellales and Prymnesiales. Known copepod viruses have a ssDNA genome and 374	

hence were not captured in our data. Only one genome sequence of a ssRNA virus and 375	

one PolB sequence of a NCLDV are available for dinoflagellates viruses, and none have 376	

been reported for collodarians. Viruses infecting these organisms may be among those we 377	

found to be associated with CEE, but the lack of reference viruses hampered their 378	

identification from the environmental samples. 379	

Conclusions 380	

In this study, we identified associations between CEE and diverse groups of planktonic 381	

eukaryotic viruses collected in the photic ocean from 61 sampling sites during the Tara 382	

Oceans expedition. Two lineages were predicted to be important groups facilitating 383	

carbon export in the global ocean: prasinoviruses infecting tiny green algae of the order 384	

Mamiellales, and Mimivirus relatives putatively infecting haptophytes of the order 385	

Prymnesiales. This finding suggests that these eukaryotic viruses, like cyanophages 386	
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previously reported to be strongly associated with carbon export, are important factors in 387	

the BCP. This idea is in agreement with observations that their hosts, despite being one to 388	

two orders of magnitude less abundant than cyanobacteria, likely dominate carbon 389	

biomass and net production in the ocean. The global-scale association between eukaryotic 390	

viruses and CEE is empirical evidence supporting the shunt and pump hypothesis, 391	

namely, that viruses enhance carbon pump efficiency by increasing the relative amount of 392	

organic carbon exported from the surface to the deeper sea. 393	

Methods 394	

Data context 395	

We used publicly available data generated in the framework of the Tara Oceans 396	

expedition (Karsenti et al. 2011). Single-copy marker-gene sequences for NCLDVs and 397	

RNA viruses were identified from two gene catalogs: the Ocean Microbial Reference 398	

Gene Catalog (OM-RGC) and the Marine Atlas of Tara Oceans Unigenes (MATOU). 399	

The viral marker-gene abundance profiles used in our study for prokaryotic-sized 400	

metagenomes and eukaryotic-sized meta-transcriptomes were from Sunagawa et al. 401	

(2015) and Carradec et al. (2018), respectively. For eukaryotic 18S rDNA V9 OTUs, we 402	

used an updated version of the data of de Vargas et al. (2015) that included functional 403	

trait annotations (chloroplast-bearing, silicified and calcified organisms) of V9-OTUs. 404	

Abundance profiles are compositional matrices in which gene abundances are expressed 405	

as unnormalized (V9 barcode data) or gene-length normalized (shotgun data) read counts. 406	

Eukaryotic plankton samples were filtered for categorization into the following size 407	

classes: piconano (0.8–5 µm), nano (5–20 µm), micro (20–180 µm) and meso (180–2000 408	
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µm) (Pesant et al. 2015). Indirect measurements of carbon export (mg−
1 m−

2 d−
1) in 5-m 409	

increments from the surface to a 1000-m depth were taken from Guidi et al. (2016). The 410	

original measurements were derived from the distribution of particle sizes and 411	

abundances collected using an underwater vision profiler (Picheral et al. 2010). These 412	

raw data are available from PANGEA (Picheral et al. 2014). Net primary production 413	

(NPP) data were extracted from 8-day composites of the vertically generalized production 414	

model (VGPM) (Behrenfeld and Falkowski 1997) at the week of sampling. 415	

Carbon export and carbon export efficiency 416	

Carbon flux profiles (mg−
1 m−

2 d−
1) based on particle size distribution and abundances 417	

were estimated according to Guidi et al. (2008). Carbon flux values from depths of 30 to 418	

970 m were divided into 20-m bins, each obtained by averaging the carbon flux values 419	

from the designated 20 m from profiles gathered during biological sampling within a 25-420	

km radius during 24 h and having less than 50% missing data (Supplementary Figure 4). 421	

For compatibility with Guidi et al. (2016), carbon export was defined as the carbon flux 422	

at 150 m. Carbon export efficiency was calculated as follows: CEE = (CEdeep − 423	

CEsurface)/CEdeep (Sarmiento 2013) and CEEʹ = CEdeep/CEsurface (Francois et al. 2002). In 424	

these formulas, CEsurface is the maximum average carbon flux within the first 150 m (the 425	

maximum layer depth varied between 20 to 130 m in this dataset), and CEdeep is the 426	

average carbon flux 200 m below this maximum. 427	

Acquisition of viral marker genes from ocean gene catalogs 428	

Viral genes were collected from two gene catalogs: OM-RGC version 1 (Sunagawa et al. 429	

2015) and MATOU (Carradec et al. 2018). The OM-RGC data were taxonomically re-430	
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annotated as in Carradec et al. (2018). Importantly, the NCBI reference tree used to 431	

determine the last common ancestor was modified to reflect the current NCLDVs 432	

classification (see Carradec et al. [2018] for details). We classified viral gene sequences 433	

as eukaryotic or prokaryotic according to their best BLAST score against viral sequences 434	

in the Virus-Host DB (Mihara et al. 2016). DNA polymerase B (PolB) and RNA-435	

dependent RNA polymerase (RdRP) genes were used as markers for NCLDVs and RNA 436	

viruses, respectively. For PolB, reference proteins from the NCLDV orthologous gene 437	

cluster NCVOG0038 (Yutin et al. 2009) were aligned using linsi (Katoh and Standley 438	

2013). A HMM profile was constructed from the resulting alignment using hmmbuild 439	

(Eddy 1998). This PolB HMM profile was searched against OM-RGC amino acid 440	

sequences annotated as NCLDVs, and sequences longer than 200 amino acids and having 441	

hits with E-values < 1 × 10−
5 were selected as putative PolBs. RdRP sequences were 442	

chosen from the MATOU catalog as follows: sequences assigned to Pfam profiles 443	

PF00680, PF00946, PF00972, PF00978, PF00998, PF02123, PF04196, PF04197 or 444	

PF05919 and annotated as RNA viruses were retained as RdRPs. The resulting 3,486 445	

PolB sequences and 975 RdRP sequences were used along with their abundance matrices 446	

for PLS regression analyses, co-abundance network reconstructions and to build 447	

phylogenies. 448	

Testing for associations of viral abundance with CE150 and CEE 449	

To test for an association between the abundance of viral marker genes and CEE, we 450	

proceeded as follows. Only marker genes represented by at least two reads in five or 451	

more samples were retained. To cope with the sparsity and composition of the data, gene-452	

length normalized read-count matrices were center-log transformed separately for RNA 453	
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viruses and NCLDVs. We next selected genes with a Spearman correlation coefficient to 454	

CE150 or CEE greater	than	0.2	or	smaller	than	-0.2	(zero values were removed). To 455	

assess the association between these marker genes and CEE, we used partial least square 456	

(PLS) regression analysis as described in Guidi et al. (2016). The number of components 457	

selected for the PLS model was chosen to minimize the root mean square error of 458	

prediction (Supplementary Table 2). We assessed the strength of the association between 459	

carbon export (the response variable) and viral abundance (the explanatory variable) by 460	

correlating leave-one-out cross-validation predicted values with the measured carbon 461	

export values. We tested the significance of the correlation by comparing the original 462	

Pearson coefficient between explanatory and response variables with the distribution of 463	

Pearson coefficients obtained from PLS models reconstructed on permutated data (10,000 464	

iterations). We estimated the contribution of each gene (predictor) according to its 465	

variable importance in the projection (VIP) (Chong and Jun 2005). The VIP measure of a 466	

predictor estimates its contribution in the PLS regression. Predictors having high VIP 467	

values (> 2) are assumed to be important for the PLS prediction of the response variable. 468	

Phylogenetic analysis 469	

Environmental PolB sequences annotated as Phycodnaviridae or Mimiviridae were 470	

searched against reference PolB sequences using BLAST. Environmental sequences with 471	

hits to a reference sequence having >40% identity and an alignment length greater than 472	

400 amino acids were kept and aligned with reference sequences using linsi (Katoh and 473	

Standley 2013). We further removed sequences that occurred in fewer than 10 samples to 474	

reduce the size of the tree. Environmental RdRP sequences annotated as Picornavirales 475	

were translated into six frames of amino acid sequences, and reference Picornavirales 476	
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RdRP sequences collected from the Virus-Host DB (Mihara et al. 2016) were searched 477	

against the CDD database (Marchler-Bauer et al. 2015) using rpsBLAST. The resulting 478	

alignment was used to trim reference and environmental RdRP sequences to the 479	

conserved part corresponding to the domain, CDD: 279070, before alignment with linsi. 480	

PolB and RdRP multiple sequence alignments were manually curated to discard poorly 481	

aligned sequences. Trees were constructed using the build function of ETE3 (Huerta-482	

Cepas et al. 2016) as implemented at GenomeNet (https://www.genome.jp/tools-bin/ete). 483	

Columns were automatically trimmed using trimAl (Capella-Gutiérrez et al. 2009), and 484	

trees were constructed using FastTree with default settings (Price et al. 2009). 485	

Virus–eukaryote co-occurrence analysis 486	

We used FlashWeave (Tackmann et al. 2018) with Julia 1.0 to detect virus–host 487	

associations on the basis of their co-abundance patterns. Read count matrices for the 488	

3,486 PolB, 975 RdRP and 18S V9 DNA barcodes obtained from samples collected at the 489	

same location were fed into FlashWeave. 18S-V9 data were filtered to retain OTUs with 490	

an informative taxonomic annotation. 18S-V9 OTUs and viral marker sequences were 491	

further filtered to conserve only those present in at least five samples. FlashWeave 492	

analyses were run separately for each of the four eukaryotic size fractions. The number of 493	

samples per size fraction ranged between 51 and 99 for NCLDVs and between 36 and 62 494	

for RNA viruses. The number of retained OTUs per size fraction varied between 1,775 495	

and 2,269 for NCLDVs and between 48 and 125 for RNA viruses (Supplementary Table 496	

3). FlashWeave was run under the settings heterogenous = false and sensitive = true, and 497	

PolB/RdRP-V9-OTU edges receiving a weight > 0.2 and a Q-value < 0.01(the default) 498	

were retained. 499	
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Mapping of putative hosts onto viral phylogenies 500	

In our association networks, individual viral sequences were often associated with 501	

multiple 18S-V9 OTUs belonging to drastically different eukaryotic groups, a situation 502	

that can reflect interactions among multiple organisms but also noise associated with this 503	

type of analysis (Coenen and Weitz 2018). To extract meaningful information from these 504	

networks we reasoned as follow: We assumed that evolutionarily related viruses infect 505	

evolutionary related organisms, similar to the case of phycodnaviruses (Clasen and Suttle 506	

2009). In the interaction networks, the number of connections between viruses in a given 507	

clade and its eukaryotic host group should accordingly be enriched compared with the 508	

number of connections with non-host organisms arising by chance. Following this 509	

reasoning, we assigned the most likely eukaryotic host group as follows. The tree 510	

constructed from viral marker-gene sequences (PolB or RdRP) was traversed from root to 511	

tips to visit every node. We counted how many connections existed between leaves of 512	

each node and the V9-OTUs of a given eukaryotic group (order level). We then tested 513	

whether the node was enriched compared with the rest of the tree using Fischer’s exact 514	

test and applied the Benjamini-Hochberg procedure to control the FDR among 515	

comparisons of each eukaryotic taxon (order level). To avoid the appearance of 516	

significant associations driven by a few highly connected leaves, we required half of the 517	

leaves within a node to be connected to a given eukaryotic group. Significant enrichment 518	

of connections between a virus clade and a eukaryotic order was considered to be 519	

indicative of a possible virus–host relationship. We refer to the above approach, in which 520	

taxon interactions are mapped onto a phylogenetic tree of a target group using the 521	

organism’s associations predicted from a species co-abundance-based network, as TIM, 522	
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for Taxon Interaction Mapper. The script is available upon request. This approach can be 523	

extended to interactions other than virus–host relationships. 524	
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