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 52 
Figure S8: Phylogenetic positions of NCLDV PolBs associated with CEE and network-based 53 
predicted eukaryotic host groups. The unrooted maximum likelihood phylogenetic tree 54 
contains environmental (labeled in red if VIP score > 2 and the regression coefficient is 55 
positive, labeled in blue if negative) and reference (labeled in black) sequences of 56 
Prasinovirus and Mimiviridae PolBs. The approximate SH-like local support values are 57 
shown in percentages at nodes, and the scale bar indicates one change per site. Host groups 58 
predicted at nodes are shown with colored circles. The red arrow points to a clade of viruses 59 
predicted to infect Prymnesiales. 60 
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 61 
Figure S9: Phylogenetic position of Piconavirales RdRPs associated with CEE and network-62 
based predicted eukaryotic host groups. The unrooted maximum likelihood phylogenetic tree 63 
contains environmental (labeled in red if VIP score > 2 and the regression coefficient is 64 
positive, labeled in blue if negative) and reference (labeled in black) sequences of 65 
Piconavirales RdRPs. The approximate SH-like local support values are shown in 66 
percentages at nodes, and the scale bar indicates one change per site. Host groups predicted at 67 
nodes are shown with colored circles.  68 
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 69 
Figure S10: Carbon export efficiency (CEE) is correlated with the change in the slope of 70 
particle size distribution (PSD) that occurred from the surface to deep (below the euphotic 71 
zone). Observed PSDs were fitted in the form n = adb, where n is the frequency of particles of 72 
a given size, d is the particle diameter, and a and b are parameters (as described by(Guidi et 73 
al., 2008)). b, the PSD slope, is a proxy for particles size. For example b = -5 indicates 74 
presence of a large proportion of smaller particles, whereas b = -3 indicates a preponderance 75 
of larger particles. A higher b value at deep compared to surface is suggestive of aggregation 76 
or presence of larger organisms at deep compare to surface. The blue line shows the 77 
regression line between CEE and the PSD slope difference between surface and deep. The 78 
shade around the regression line shows the 95% confidence interval. 79 
  80 

ρ = 0.42
P = 8�10−9
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 81 

Supplemental Tables 82 
 83 
Table S1: Viral lineages associated with CEE 84 
Viruses VIPs Positives 

VIPs 
Negative 
VIPs 

N
C

LD
Vs

 Mimiviridae 34 25 9 
Phycodnaviridae 24 18 6 
Iridoviridae 2 0 2 
Other NCLDVs * 0 0 0 

Total 60 43 17 

R
N

A 
vi

ru
se

s 

Picornavirales (ssRNA+) 19 13 6 
Partitiviridae (dsRNA) 1 1 0 
Narnaviridae (ssRNA+) 0 0 0 
Other families 2* 0 2 
Unclassified 0 0 0 
RNA viruses 0 0 0 

Total 22 14 8 

ss
D

N
A 

vi
ru

se
s Circoviridae 1 1 0 

Geminiviridae 0 0 0 
Nanoviridae 0 0 0 
Unclassified  0 0 0 
ssDNA viruses 0 0 0 

Total 1 1 0 
All 83 58 25 

* Two Hepeviridae (ssRNA+). 85 
  86 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2020. ; https://doi.org/10.1101/710228doi: bioRxiv preprint 

https://doi.org/10.1101/710228
http://creativecommons.org/licenses/by-nc/4.0/


 12 

Table S2: Assembly statistics for NCLDV metagenome-assembled genomes and 87 
corresponding VIPs 88 

Metagenome-assembled genome #contigs N50 L50 Min Max Sum VIPs OTUs 
(OM-RGC.v1 ID) 

TARA_IOS_NCLDV_Bin_127_6 14 21,642 5 8,581 35,822 267,607 PolB 000079111 

TARA_IOS_NCLDV_Bin_173_3 12 12,913 3 2,807 34,517 108,412 PolB 000248170 

TARA_MED_NCLDV_Bin_284_10 34 10,936 10 2,580 29,722 298,760 PolB 000328966 

TARA_MED_NCLDV_Bin_284_14 43 14,837 11 2,756 27,607 439,843 PolB 001175669 

TARA_IOS_NCLDV_Bin_127_4 26 5,734 10 2,560 8,505 133,765 PolB 001064263 
and 010288541 

TARA_AON_NCLDV_Bin_289_4 17 9,468 5 3,044 26,201 153,728 PolB 000200745 
and 002503270 

TARA_MED_NCLDV_Bin_341_10 5 7,800 2 2,534 7,941 30,478 PolB 002682999 

TARA_PON_NCLDV_Bin_65_10 35 13,866 11 3,781 43,080 382,455 PolB 000079078 

TARA_PON_NCLDV_Bin_102_1 53 4,608 18 2,606 11,485 239,832 PolB 000495602 

TARA_AON_NCLDV_Bin_133_8 8 7,204 3 2,686 10,349 51,009 PolB 000240662 

N50: The length of the contigs for which half of the assembly size is contained in contigs with a length greater than N50. 89 
L50: Number of contigs (or scaffolds) with a size greater or equal to N50. 90 
  91 
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Table S3: Host predictions per viral and host group for 83 VIPs based on 92 
phylogeny, co-occurrence analysis, and genomic context 93 
Virus-host relationship Positive VIPs Negative VIPs Total 
NCLDV-Mamiellales 10 4 14 
NCLDV-Prymnesiales 5 1 6 
NCLDV-Pelagophyceae 2 1 3 
NCLDV-No prediction 26 11 37 
RNA virus-Copepoda 7 2 9 
RNA virus-Chaetocerotales 2 0 2 
RNA virus-Labyrinthulomycetes 1 0 1 
RNA virus-No prediction 4 6 10 
ssDNA virus-Copepoda 1 0 1 

Total 58 25 83 
  94 
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Table S4: Host prediction per viral OTU for 83 VIPs based on phylogeny, co-95 
occurrence analysis, and genomic context 96 

 97 
Notes 98 
*1 This virus was located in well-separated clade containing Aurantiochytrium single-stranded RNA virus (AsRNAV) which is 99 
known to infect Labyrinthulomycetes. 100 
*2 These viruses were grouped within Dicistroviridae (known to infect insects) and may therefore infect marine arthropods such 101 
as copepods. 102 
*3 This virus was connected with a copepod, mollusk and Collodaria OTUs in the co-occurrence network reconstructed for the 103 
mesoplankton size. Circoviridae-like viruses are known to infect copepod. 104 

Virus
types Virus OTUs

Direction of
association
with CEE

Classification
(LCA annotation)

Clade in phylogenic tree used
for TIM analysis

TIM-based
predicted host MAGs ID Genome-based

predicted host Suggested host Note

polb_000026723 negative Mimiviridae NA NA NA NA NA
polb_000030837 positive Mimiviridae Mimiviridae/Mesomimivirinae Prymnesiales NA NA Prymnesiales
polb_000042601 positive Mimiviridae NA NA NA NA NA
polb_000054135 negative Mimiviridae Mimiviridae/Mesomimivirinae Collodaria NA NA Prymnesiales
polb_000061559 positive Mimiviridae Mimiviridae/Mesomimivirinae Prymnesiales NA NA Prymnesiales
polb_000061999 positive Mimiviridae Mimiviridae NA NA NA NA
polb_000073352 negative Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000073545 negative Mimiviridae Mimiviridae/CroV relative NA NA NA NA
polb_000079078 negative Mimiviridae Mimiviridae/AaV relative NA PON_NCLDV_Bin_65_10 Pelagophyceae Pelagophyceae
polb_000079111 positive Mimiviridae Mimiviridae/AaV relative NA IOS_NCLDV_Bin_127_6 Pelagophyceae Pelagophyceae
polb_000079365 positive Mimiviridae Mimiviridae NA NA NA NA
polb_000110630 negative Mimiviridae Mimiviridae NA NA NA NA
polb_000129518 positive Mimiviridae Mimiviridae/Mesomimivirinae Prymnesiales NA NA Prymnesiales
polb_000159717 positive Phycodnaviridae NA NA NA NA NA
polb_000161220 positive Mimiviridae Mimiviridae/AaV relative NA NA NA Pelagophyceae
polb_000172102 positive Mimiviridae NA NA NA NA NA
polb_000194282 positive Phycodnaviridae Phycodnaviridae/Prasinovirus Mamiellales NA NA Mamiellales
polb_000200745 positive Phycodnaviridae Phycodnaviridae/Prasinovirus Mamiellales AON_NCLDV_Bin_289_4 NA Mamiellales
polb_000229407 positive Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000230224 positive Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000232032 negative Phycodnaviridae NA NA NA NA NA
polb_000236849 negative Phycodnaviridae Phycodnaviridae/Prasinovirus Mamiellales NA NA Mamiellales
polb_000239928 positive Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000240662 negative Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000248170 positive Phycodnaviridae Phycodnaviridae/Prasinovirus Mamiellales IOS_NCLDV_Bin_173_3 NA Mamiellales
polb_000249074 negative Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000249217 positive Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000251540 negative Phycodnaviridae NA NA NA NA NA
polb_000328966 positive Mimiviridae NA NA NCLDV_Bin_284_10 NA NA
polb_000396610 positive Mimiviridae NA NA NA NA NA
polb_000435873 positive Phycodnaviridae Phycodnaviridae/Prasinovirus NA NA NA Mamiellales
polb_000490625 positive Mimiviridae Mimiviridae NA NA NA NA
polb_000495602 negative Iridoviridae NA NA NCLDV_Bin_102_1 NA NA
polb_000503865 positive Phycodnaviridae NA NA NA NA NA
polb_000673383 negative Mimiviridae Mimiviridae NA NA NA NA
polb_000844241 negative Iridoviridae NA NA NA NA NA
polb_000912507 positive Mimiviridae Mimiviridae/Mesomimivirinae Collodaria NA NA Prymnesiales
polb_001064263 positive Phycodnaviridae NA NA IOS_NCLDV_Bin_127_4 Mamiellales Mamiellales
polb_001175669 positive Mimiviridae NA NA MED_NCLDV_Bin_284_14 NA NA
polb_001527691 positive Mimiviridae Mimiviridae/Mesomimivirinae NA NA NA Prymnesiales
polb_002035391 positive Phycodnaviridae NA NA NA NA NA
polb_002503270 positive Phycodnaviridae Phycodnaviridae/Prasinovirus Mamiellales AON_NCLDV_Bin_289_4 NA Mamiellales
polb_002682999 positive Mimiviridae NA NA NA NA NA
polb_003145223 negative Mimiviridae NA NA NA NA NA
polb_003319665 positive Mimiviridae NA NA NA NA NA
polb_003580241 positive Mimiviridae NA NA NA NA NA
polb_004312996 positive Phycodnaviridae NA NA NA NA NA
polb_004775027 negative Mimiviridae NA NA NA NA NA
polb_004804559 positive Mimiviridae NA NA NA NA NA
polb_007102163 positive Mimiviridae NA NA NA NA NA
polb_007423474 negative Mimiviridae NA NA NA NA NA
polb_007503502 positive Mimiviridae NA NA NA NA NA
polb_007771300 positive Phycodnaviridae NA NA NA NA NA
polb_008001141 positive Mimiviridae NA NA NA NA NA
polb_010288541 positive Phycodnaviridae NA NA IOS_NCLDV_Bin_127_4 Mamiellales NA
polb_013294654 positive Phycodnaviridae NA NA NA NA NA
polb_013433452 positive Mimiviridae NA NA NA NA NA
polb_014364115 positive Mimiviridae NA NA NA NA NA
polb_015514497 positive Mimiviridae NA NA NA NA NA
polb_015907472 positive Phycodnaviridae NA NA NA NA NA
rdrp_105714054 negative Picornavirales NA NA NA NA NA
rdrp_107558617 negative Picornavirales Picornavirales/Bacillarnavirus NA NA NA NA
rdrp_30787766 positive Picornavirales NA NA NA NA NA
rdrp_32150057 positive Picornavirales NA NA NA NA NA
rdrp_32150309 positive Picornavirales Picornavirales/Labyrnavirus NA NA NA Labyrinthulomycetes *1
rdrp_32202687 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda
rdrp_33049404 positive Picornavirales Picornavirales/Bacillarnavirus Chaetocerotales NA NA Chaetocerotales
rdrp_35179764 positive Picornavirales Picornavirales/Bacillarnavirus Chaetocerotales NA NA Chaetocerotales
rdrp_35713768 positive Partitiviridae NA NA NA NA NA
rdrp_36496887 positive Picornavirales Picornavirales NA NA NA NA
rdrp_36505302 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_42335229 negative Hepeviridae NA NA NA NA NA
rdrp_49554577 negative Picornavirales Picornavirales NA NA NA NA
rdrp_54294427 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_59731273 negative Picornavirales Picornavirales NA NA NA NA
rdrp_77677770 negative Hepeviridae NA NA NA NA NA
rdrp_77677810 negative Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_84897402 negative Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_8626697 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_8855752 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_9164160 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2
rdrp_9164163 positive Picornavirales Picornavirales/Dicistroviridae NA NA NA Copepoda *2

ssDNA
viruses rep_38177659 positive Circoviridae NA NA NA NA Copepoda *3

NCLDVs

RNA
viruses
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Table S5: Statistics for the FlashWeave co-occurrence graphs 105 
Viral marker 
gene 

Planktonic size 
fraction* #Samples #Viral OTUs #Eukaryotic 

OTUs 
#Edges in 
graph 

#Virus-to-
eukaryote 
edges 

#Viruses 
connected to a 
eukaryote (%) 

NCLDVs 
PolB Piconano 99 2269 4936 20934 3594 1735 (76) 

Nano 51 1775 1872 6704 1027 721 (41) 

Micro 92 2205 2524 12189 2101 1299 (59) 

Meso 95 2238 2250 11624 1796 1126 (50) 

RNA viruses 
RdRP Piconano 60 125 4484 10754 446 122 (98) 

Nano 36 53 1768 2659 124 46 (87) 

Micro 62 124 2407 5351 367 117 (94) 

Meso 62 48 2100 4329 116 42 (88) 

ssDNA 
viruses Rep Piconano 60 64 4484 10577 205 63 (98%) 

Nano 36 1 1768 2563 2 1 (100%) 

Micro 62 4 2407 5086 9 4 (100%) 

Meso 62 8 2100 4242 24 8 (100%) 

* Pico: 0.8 to 5 μm, Nano: 5 to 20 μm, Micro: 20 to 180 μm, Meso: 180 to 2000 μm 106 
  107 
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Table S6: Functional differences between eukaryotes found to be best connected to 108 
VIPs and non-VIPs 109 

Functional trait 
Positive VIPs (n = 50) Non-VIPs (n = 983) 

P-value 
(Fisher’s exact 

test, two 
sided) 

Adjusted P- 
value (BH) (Q) 

Presence Absence Presence Absence 

Chloroplast 20 30 276 690 0.109 0.164 

Silicification 11 39 60 920 0.000 0.001 

Calcification 1 49 30 950 1.000 1.000 

Functional trait 
Negative VIPs (n = 21) Non-VIPs (n = 983) P-value 

(Fisher’s exact 
test, two 
sided) 

Adjusted P- 
value (BH) (Q) 

Presence Absence Presence Absence 

Chloroplast 3 17 276 690 0.218 0.655 

Silicification 0 21 60 920 0.632 0.947 

Calcification 0 21 30 950 1.000 1.000 

  110 
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Table S7: Functional differences between eukaryotes found to be best connected to 111 
positive and negative VIPs 112 

Functional trait 
Positive VIPs (n = 50) Negative VIPs (n = 21) P-value 

(Fisher extact 
test, two 
sided) 

Adjusted P- 
value (BH) (Q) 

Presence Absence Presence Absence 

Chloroplast 20 30 3 17 0.053 0.079 

Silicification 11 39 0 21 0.027 0.079 

Calcification 1 49 0 21 1.000 1.000 

  113 
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Transparent Methods 114 

Data context 115 

We used publicly available data generated in the framework of the Tara Oceans expedition. 116 

Single-copy marker-gene sequences for NCLDVs and RNA viruses were identified from two 117 

gene catalogs: the Ocean Microbial Reference Gene Catalog (OM-RGC) and the Marine Atlas 118 

of Tara Oceans Unigenes (MATOU). The viral marker-gene read count profiles used in our 119 

study are as previously reported for prokaryotic-sized metagenomes (size fraction 0.2–3 µm) 120 

(Sunagawa et al., 2015) and eukaryotic-sized metatranscriptomes (Carradec et al., 2018). 121 

Eukaryotic plankton samples (the same samples were used for metatranscriptomes, 122 

metagenomes and 18S rRNA V9-meta-barcodes) were filtered for categorization into the 123 

following size classes: piconano (0.8–5 µm), nano (5–20 µm), micro (20–180 µm), and meso 124 

(180–2,000 µm). For eukaryotic 18S rRNA V9 OTUs (de Vargas et al., 2015), we used an 125 

updated version of the data that included functional trait annotations (chloroplast-bearing, 126 

silicified, and calcified organisms) of V9 OTUs. Occurrence profiles are compositional 127 

matrices in which gene occurrence are expressed as unnormalized (V9 meta-barcode data) or 128 

gene-length normalized (shotgun data) read counts. Indirect measurements of carbon export 129 

(mg m-2 d-1) in 5-m increments from the surface to a 1,000-m depth were taken from Guidi et 130 

al. (Guidi et al., 2016) The original measurements were derived from the distribution of 131 

particle sizes and abundances collected using an underwater vision profiler. These raw data 132 

are available from PANGEA (Picheral et al., 2014). Net primary production (NPP) data were 133 

extracted and averaged from 8-day composites of the vertically generalized production model 134 

(VGPM) (Behrenfeld and Falkowski, 1997) for the week of sampling. Thus, in this study, the 135 

comparisons between NPP and other parameters were not made at the same time point. This 136 
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might have affected the results of the regression analysis, especially if there were any short-137 

term massive bloom events, although there was no bloom signal during the sampling period. 138 

Carbon export, carbon export efficiency, and particle size distribution 139 

Carbon flux profiles (mg m-2 d-1) were estimated based on particle size distributions and 140 

abundances. The method used for carbon flux estimation was previously calibrated comparing 141 

sediment trap measurement and data from imaging instruments (Guidi et al., 2008). Carbon 142 

flux values from depths of 30 to 970 meters were divided into 20-m bins, each obtained by 143 

averaging the carbon flux values from the designated 20 m in profiles gathered during 144 

biological sampling within a 25-km radius over 24 h when less than 50% of data were missing 145 

(Figure S5). Carbon export (CE) was defined as the carbon flux at 150 m (Guidi et al., 2016). 146 

Carbon export efficiency was calculated as follows: CEE = CEdeep/CEsurface (Buesseler and 147 

Boyd, 2009). To compare stations with different water column structures, we defined CEsurface 148 

as the maximum CE (in a 20 m window) within the first 150 m. CEdeep is the average CE (also 149 

in a 20 m window) 200 m below this maximum. The 150 m limit serves as a reference point 150 

to automatize the calculation of CEsurface and CEdeep. The 150m-depth layer was selected 151 

because often used as a reference depth for drifting sediment trap and because most of the 152 

deep chlorophyll maximum (DCM) were shallower except at two (stations 98 (175 m) and 153 

100 (180 m)). The maximum CEsurface for these two stations was above 150 m. The sampling 154 

strategy of Tara Oceans was designed to study a variety of marine ecosystems and to target 155 

well-defined meso- to large-scale features (based on remote-sensing data). Therefore, this 156 

strategy avoided sampling water with important lateral inputs. Nevertheless, the possibility of 157 

having locations with potential lateral transport cannot be excluded. 158 

We obtained the particle size distribution (PSD) profiles generated by the Tara Oceans 159 

expedition and computed the PSD slope at each depth for all profiles. The slope value 160 

(denoted “b”) is used as the descriptor of the particle size distribution as defined in a previous 161 
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work (Guidi et al., 2009). For example, b = −5 indicates the presence of a large proportion of 162 

smaller particles, whereas b = −3 indicates a preponderance of larger particles. We averaged 163 

the slope values at each sampling site in the same way as for carbon export flux. 164 

Identification of viral marker genes from ocean gene catalogs 165 

Viral genes were collected from two gene catalogs: OM-RGC version 1 and MATOU. 166 

Sequences in these two gene catalogs are representatives of clusters of environmental 167 

sequences (clustered at 95% nucleotide identity). The OM-RGC data were taxonomically re-168 

annotated, with the NCBI reference tree used to determine the last common ancestor modified 169 

to reflect the current classification of NCLDVs (Carradec et al., 2018). We automatically 170 

classified viral gene sequences as eukaryotic or prokaryotic according to their best BLAST 171 

score against viral sequences in the Virus-Host Database (Mihara et al., 2016). DNA 172 

polymerase B (PolB), RNA-dependent RNA polymerase (RdRP), and replication-associated 173 

protein (Rep) genes were used as markers for NCLDVs, RNA viruses, and ssDNA viruses, 174 

respectively. For PolB, reference proteins from the NCLDV orthologous gene cluster 175 

NCVOG0038 (Yutin et al., 2009) were aligned using MAFFT-linsi (Katoh and Standley, 176 

2013). A hidden Markov model (HMM) profile was constructed from the resulting alignment 177 

using hmmbuild (Eddy, 2011). This PolB HMM profile was searched against OM-RGC amino 178 

acid sequences and translated MATOU sequences annotated as NCLDVs, and sequences 179 

longer than 200 amino acids that had hits with E-values < 1 ´ 10-5 were selected as putative 180 

PolBs. RdRP sequences were chosen from the MATOU catalog as follows: sequences 181 

assigned to Pfam profiles PF00680, PF00946, PF00972, PF00978, PF00998, PF02123, 182 

PF04196, PF04197, or PF05919 and annotated as RNA viruses were retained as RdRPs. For 183 

Rep, we reconstructed an HMM profile using a comprehensive set of reference sequences 184 

(Kazlauskas et al., 2018) and searched this profile against the translated MATOU sequences 185 
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annotated as ssDNA viruses. We kept sequences that had hits with E-values < 1 ´ 10-5 and 186 

removed those that contained frameshifts.  187 

The procedure above identified 3,486 PolB sequences in the metagenomic samples and 188 

respectively 975, 388, and 299 RdRP, PolB, and Rep sequences in the metranscriptomes. 189 

Testing for associations between viruses with CEE, CE150, and NPP 190 

To test for associations between occurrence of viral marker genes and CEE, CE150, and NPP, 191 

we proceeded as follows. Samples with CEE values greater than one and with Z-score greater 192 

than two were considered as outliers and removed (this removed the two samples from station 193 

68). Only marker genes represented by at least two reads in five or more samples were 194 

retained (lowering this minimal number of required samples down to three or four did not 195 

improve the PLS regression model). To cope with the sparsity and composition of the data, 196 

gene-length normalized read count matrices were center log-ratio transformed, separately for 197 

ssDNA viruses, RNA viruses and NCLDVs. We next selected genes with Spearman 198 

correlation coefficients with CEE, CE150 or NPP greater than 0.2 or smaller than −0.2 (zero 199 

values were removed). To assess the association between these marker genes and CEE, we 200 

used partial least square (PLS) regression analysis. The number of components selected for 201 

the PLS model was chosen to minimize the root mean square error of prediction (Figure S6). 202 

We assessed the strength of the association between carbon export (the response variable) and 203 

viral marker genes occurrence (the explanatory variable) by correlating leave-one-out cross-204 

validation predicted values with the measured carbon export values. We tested the 205 

significance of the correlation by comparing the original Pearson coefficients between 206 

explanatory and response variables with the distribution of Pearson coefficients obtained from 207 

PLS models reconstructed based on permutated data (10,000 iterations). We estimated the 208 

contribution of each gene (predictor) according to its variable importance in the projection 209 

(VIP) score derived from the PLS regression model using all samples. The VIP score of a 210 
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predictor estimates its contribution in the PLS regression. Predictors with high VIP scores (> 211 

2) were assumed to be important for the PLS prediction of the response variable. 212 

Phylogenetic analysis 213 

Environmental PolB sequences annotated as NCLDVs were searched against reference 214 

NCLDV PolB sequences using BLAST. Environmental sequences with hits to a reference 215 

sequence that had > 40% identity and an alignment length greater than 400 amino acids were 216 

kept and aligned with reference sequences using MAFFT-linsi. Environmental RdRP 217 

sequences annotated as were translated into six frames of amino acid sequences, and reference 218 

RNA viruses RdRP sequences collected from the Virus-Host Database were searched against 219 

the Conserved Domain Database (CDD) using rpsBLAST. The resulting alignment was used 220 

to trim reference and environmental RdRP sequences to the conserved part corresponding to 221 

the domain, CDD: 279070, before alignment with MAFFT-linsi. Rep sequences annotated as 222 

ssDNA viruses were treated similarly. PolB, RdRP, and Rep multiple sequence alignments 223 

were manually curated to discard poorly aligned sequences. Phylogenetic trees were 224 

reconstructed using the the build function of ETE3 (Huerta-Cepas et al., 2016) of the 225 

GenomeNet TREE tool (https://www.genome.jp/tools-bin/ete). Columns were automatically 226 

trimmed using trimAl (Capella-Gutiérrez et al., 2009), and trees were constructed using 227 

FastTree with default settings (Price et al., 2009). 228 

A similar procedure was applied for the trees used in the hosts prediction analysis albeit 229 

selecting sequences for the Phycodnaviridae/Mimiviridae (Figure S8) and the Picornavirales 230 

(Figure S9) and removing the ones occurring in fewer than 10 samples, to reduce the size of 231 

the tree. 232 
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Virus–eukaryote co-occurrence analysis 233 

We used FlashWeave (Tackmann et al., 2019) with Julia 1.2.0 to predict virus–host 234 

interactions based on their co-occurrence patterns. Read count matrices for the 3,486 PolBs, 235 

975 RdRPs, 299 Reps, and 18S rRNA V9 DNA barcodes obtained from samples collected at 236 

the same location were fed into FlashWeave. The 18S rRNA V9 data were filtered to retain 237 

OTUs with an informative taxonomic annotation. The 18S rRNAV9 OTUs and viral marker 238 

sequences were further filtered to conserve only those present in at least five samples. 239 

FlashWeave networks were learned for each of the four eukaryotic size fractions with the 240 

parameters ‘heterogenous’ = false and ‘sensitive’ = true, and edges receiving a weight > 0.2 241 

and a Q-value < 0.01 (the default) were retained. The number of samples per size fraction 242 

ranged between 51 and 99 for NCLDVs and between 36 and 62 for RNA and ssDNA viruses. 243 

The number of retained OTUs per size fraction varied between 1,775 and 2,269 for NCLDVs 244 

and between 48 and 125 for RNA viruses (Table S5). 245 

Mapping of putative hosts onto viral phylogenies 246 

In our association networks, individual viral sequences were often associated with multiple 247 

18S rRNA V9 OTUs belonging to drastically different eukaryotic groups, a situation that can 248 

reflect interactions among multiple organisms but also noise associated with this type of 249 

analysis (Coenen and Weitz, 2018). To extract meaningful information from these networks, 250 

we reasoned as follows. We assumed that evolutionarily related viruses infect evolutionarily 251 

related organisms, similar to the case of phycodnaviruses (Clasen and Suttle, 2009). In the 252 

interaction networks, the number of connections between viruses in a given clade and the 253 

associated eukaryotic host group should accordingly be enriched compared with the number 254 

of connections with non-host organisms arising by chance. Following this reasoning, we 255 

assigned the most likely eukaryotic host group as follows. The tree constructed from viral 256 

marker-gene sequences (PolB, RdRP or Rep) was traversed from root to tips to visit every 257 
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node. We counted how many connections existed between leaves of each node and the V9-258 

OTUs of a given eukaryotic group (order level). We then tested whether the node was 259 

enriched compared with the rest of the tree using Fischer’s exact test and applied the 260 

Benjamini–Hochberg procedure to control the false discovery rate among comparisons of 261 

each eukaryotic taxon (order level). To avoid the appearance of significant associations driven 262 

by a few highly connected leaves, we required half of the leaves within a node to be 263 

connected to a given eukaryotic group. Significant enrichment of connections between a virus 264 

clade and a eukaryotic order was considered to be indicative of a possible virus–host 265 

relationship. We refer to the above approach, in which taxon interactions are mapped onto a 266 

phylogenetic tree of a target group using the organism’s associations predicted from a species 267 

co-occurrence-based network, as TIM, for Taxon Interaction Mapper. This tool is available at 268 

https://github.com/RomainBlancMathieu/TIM. This approach can be extended to interactions 269 

other than virus–host relationships. 270 

Assembly of NCLDV metagenome-assembled genomes (MAGs) 271 

NCLDV metagenome-assembled genomes (MAGs) were assembled from Tara Oceans 272 

metagenomes corresponding to size fractions > 0.8 µm. Metagenomes were first organized 273 

into 11 ‘metagenomic sets’ based upon their geographic coordinates, and each set was co-274 

assembled using MEGAHIT (Li et al., 2015) v.1.1.1. For each set, scaffolds longer than 2.5 275 

kbp were processed within the bioinformatics platform anvi’o (Eren et al., 2015) v.6.1 276 

following methodology described previously for genome-resolved metagenomics (Delmont et 277 

al., 2018). Briefly, we used the automatic binning algorithm CONCOCT (Alneberg et al., 278 

2014) to identify large clusters of contigs using both sequence composition and differential 279 

coverage across metagenomes within the set. We then used HMMER (Eddy, 2011) v3.1b2 to 280 

search for a collection of eight NCLDV gene markers (Guglielmini et al., 2019), and 281 

identified NCLDV MAGs by manually binning CONCOCT clusters of interest using the 282 
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anvi’o interactive interface. The interface displayed hits for the eight gene markers alongside 283 

coverage values across metagenomes and GC-content. Finally, NCLDV MAGs were 284 

manually curated using the same interface, to minimize contamination as described previously 285 

(Delmont and Eren, 2016). 286 

Taxonomic composition of genes predicted in NCLDV genomes of VIPs 287 

VIP’s PolB sequences were searched (using BLAST) against MAGs reconstructed from the 288 

metagenomes of the eukaryotic size fraction (> 0.8 µm) and against contigs used to produce 289 

OM-RGCv1. Genome fragments covering 95% of the length of PolB VIPs with > 95% 290 

nucleotide identity were considered as originating from a same viral OTUs. Genes were 291 

predicted and annotated taxonomically with the same procedure described above 292 

(identification of viral marker genes). Genes contained in viral genome fragments and 293 

annotated as cellular organisms with amino acid identities > 60% were manually inspected 294 

(Supplemental Data 2). 295 

Statistical test 296 

All the statistical significance assessments were performed with two-sided test. 297 
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