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Abstract

Background: Combining anti-cancer therapies with orthogonal modes of action,
such as direct cytotoxicity and immunostimulatory, hold promise for expanding
clinical benefit to patients with metastatic disease. For instance, a chemotherapy
agent Oxaliplatin (OXP) in combination with Interleukin-12 (IL-12) can eliminate
pre-existing liver metastatic colorectal cancer and protect from relapse in a
murine model. However, the underlying dynamics associated with the targeted
biology and the combinatorial space consisting of possible dosage and timing of
each therapy present challenges for optimizing treatment regimens. To address
some of these challenges, we developed a predictive simulation platform for
optimizing dose and timing of the combination therapy involving
Mifepristone-induced IL-12 and chemotherapy agent OXP.

Methods: A multi-scale mathematical model comprised of impulsive ordinary
differential equations was developed to describe the interaction between the
immune system and tumor cells in response to the combined IL-12 and OXP
therapy. An ensemble of model parameters were calibrated to published
experimental data using a genetic algorithm and used represent three different
phenotypes: responders, partial-responders, and non-responders.

Results: The multi-scale model captures tumor growth patterns of the three
phenotypic responses observed in mice in response to the combination therapy
against a tumor re-challenge and was used to explore changing the dose and
timing of the mixed immune-chemotherapy on tumor growth subjected to a
tumor re-challenge in mice. An increased ratio of CD8+ T effectors to regulatory
T cells during and after treatment was key to improve tumor control in the
responder cohort. Sensitivity analysis indicates that combined OXP and IL-12
therapy worked more efficiently in responders by increased priming of T cells,
enhanced CD8+ T cell-mediated killing, and functional inhibition of regulatory T
cells. In a virtual cohort that mimics non-responders and partial-responders,
simulations show that an increased dose of OXP alone would improve the
response. In addition, enhanced IL-12 expression alone or an increased number of
treatment cycles of the mixed immune-chemotherapy can barely improve tumor
control for non-responders and partial responders.

Conclusions: Overall, this study illustrates how mechanistic models can be used
for in silico screening of the optimal therapeutic dose and timing in combined
cancer treatment strategies.

Keywords: adenoviral vector; combination therapy; mathematical modeling;
impulsive ordinary differential equation; stability analysis
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Background
Carcinomas of the colon or rectum, termed colorectal cancer, are the third most

common cancer diagnosed in both men and women in the United States. The Amer-

ican Cancer Society estimates the number of new cases of colorectal cancer in the

United States for 2019 at 145,600 ([1]). With 60,000 fatalities per year, colorec-

tal cancer is second only to lung cancer as a cause of cancer-related deaths in the

United States. Upon diagnosis, 10%-20% of patients have already developed liver

metastases while 70% of patients with colorectal cancer ultimately develop liver

metastases. Unfortunately, the prognosis for patients with liver metastatic colorec-

tal cancer is poor because hepatectomy, palliative chemotherapy and symptomatic

treatments are the only available options ([2]).

Interleukin-12 (IL-12) is a potent immunostimulatory cytokine that activates the

proliferation and function of key cellular effectors of innate and adaptive immunity

such as T lymphocytes and natural killer (NK) cells ([3], [4], [5]). While toxicity is

a serious obstacle for use of IL-12 as a systemic therapy in humans, an attractive

alternative is to use adenoviral vectors to induce expression in specific tissues. How-

ever, transgene expression tends to be transient and the efficacy of re-administration

is impaired by the rapid emergence of neutralizing antibodies ([3]). To allow a good

control of the strength and duration of IL-12 expression, high-capacity adenoviral

vectors containing a liver-specific, Mifepristone-inducible system for the expression

of murine IL-12 (HC-Ad/RUmIL-12) were recently designed to control primary or

metastatic liver cancer ([6]). Since stand-alone chemo- or radiotherapeutic regimens

are insufficient (with a few notable exceptions) to eradicate neoplastic lesion ([7]),

HC-Ad/RUmIL-12 was combined with chemotherapy agent Oxaliplatin (OXP) to

treat liver-implanted colon cancer cells ([6]). As a consequence of the combination

therapy, pre-existing liver metastases of colorectal cancer were eradicated, and en-

hanced establishment of a protective immune response against tumor rechallenge

and increased overall survival of animals were observed. In addition, a dramatic

increase in the ratio of cytotoxic CD8+ T lymphocytes to immunosuppressive cell

populations was detected in the tumor microenvironment ([3]).

Mathematical modeling using systems of ordinary differential equations (ODEs)

can improve the design and administration of cancer treatments, especially when ex-

perimental data are incorporated ([8], [9], [10], [11], [12], [13]). In silico screening of

parameter regions that seem most promising for optimal timing and dosage of ther-

apy can be suggested using calibrated mathematical models and clinical trials can

focus on those regions ([13], [14], [15], [16], [17]). For instance, a quantitative systems

pharmacology model in [8] was developed to reproduce experimental data of CT26

tumor size dynamics upon administration of RT and an anti-PD-L1 agent in ([18],

[19]). The calibrated model was further used as an in silico tool to predict the best

treatment combination schedules and sequences. Over the past years, a variety of

ODE-based mathematical models have been developed to better understand cancer

progression and response to immunotherapy (see details in [20],[21],[22], [23], [24],

[25]). In exploring immunotherapy in combination with other treatment modalities,

de Pillis et. al developed an ODE model governing cancer growth on a cell popula-

tion level with a combination of immuno-chemotherapy treatments ([26],[27], [28],

[29]). In addition, Kim and colleagues formulated a mathematical model of therapy
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with oncolytic viruses that simultaneously express immunostimulatory cytokines

and costimulatory molecules ([12]). Inspired by these studies, we developed an im-

pulsive ODE model to represent the interaction between tumor and immune system

in response to the chemotherapy drug OXP combined with liver-specific expression

of IL-12 therapy to explore therapeutic options in the context of liver metastatic

colorectal cancer. The current model extends the impulsive ODE model in [13]

that only considered an immunotherapy initiated by an adenovirus vaccination to

stimulate a tumor-associated antigen-specific T cell response.

The structure of this paper is as follows. First, we present a multi-scale mecha-

nistic model of anti-tumor immunity and tumor growth in response to a combined

immuno-chemotherapy using a set of impulsive ODEs. Second, we describe how

we calibrated the model parameters against published experimental data using a

genetic algorithm. Next we investigate the stability of tumor-free and high tumor

equilibria based on the linearized system. Then we study how alter parameter values

may change the tumor growth dynamics. Finally, we used the simulation platform

to explore potential ways to improve treatment regimes for non-responders and

partial responders.

Methods
Our method was to develop a multi-scale impulsive ODE model based on our un-

derstanding of the corresponding biology, which is described in the following para-

graphs. Numerical solutions of the model were obtained using simulators generated

by C Sharp. The resulting mechanistic mathematical model was calibrated against

existing experimental data.

A genetic algorithm was used to find parameter sets that closely match the experi-

mental data in [6]. Each parameter set was modeled using an individual chromosome

in order to apply the algorithm to search in the parameter space. For each genera-

tion, the impulsive ODE set was solved using the Runge-Kutta method of order four

for each individual or parameter set ([30]). The fitness function value, or variance,

was calculated using the sum of error squared between experimental data and cor-

responding model predictions. To reduce the dependence of our model predictions

about optimal treatment strategies for the combined therapy on any individual cal-

ibrated set of parameter values, we generated an ensemble of 30 parameter sets

for each phenotypic cohort (i.e., responder, partial responder, and non-responder)

that generated similar good fits against the experimental data. The simulation re-

sults using these ensemble of parameter sets were characterized in terms of the

mean, 90th percentile upper, and lower predicted responses. Simulations start on

day 0, which corresponds to the time of tumor implantation. At the initial time

point, we assume that there is no activated tumor specific effector T cells present

in the blood and at the site of the tumor. The calibrated mechanistic model was

then used to investigate the long-term behavior through stability analysis. Details

of model development, parameter calibration, goodness of fit, difference between

major variables of immune response of responder mice, partial responder mice, and

non-responder mice after the combination treatment, and local stability analysis

are discussed in the following subsections.
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Results
A multi-scale model of tumor growth subject to IL-12 and OXP therapy

Our mathematical model is based on the experimental data presented by Manuela

Gonzalez-Aparicio and collaborators in [6] using the MC38Luc1 cell lines for murine

metastatic colorectal cancer. Using this mouse model, OXP and IL-12 combination

therapy eradicated pre-existing liver metastases, established a protective immune

response against tumor rechallenge, and increased overall survival of animals. To

better understand the dynamics of the primary response to adenovirus-mediated

induction of an anti-tumor immune response, we developed a three-compartment

mathematical model to quantify the cytotoxic CD8+ T cell response to IL-12 and

OXP combined therapy and subsequent inhibition of tumor cell growth, as shown

schematically in Figure 1. Among these three compartments, we consider the dy-

namics of fifteen state variables that are regulated by the following governing bio-

logical processes and assumptions:

1). Näıve CD8+ T cells (TN , units: cells per mm3). We assume that näıve

CD8+ T cells are produced at a constant rate c1 from thymus and die naturally

at a rate kd1 · TN ([31]). Näıve T cells are recruited and activated by tumor

antigens presented by APC1 (antigen-presenting cells in lymph node) at a rate

c2 · TN · APC1

APC1+g1
([32], [33], [34]).

dTN
dt

= c1 − kd1 · TN − c2 · TN ·
APC1

APC1 + g1
(1)

2). Effector CD8+ T cells in lymph node (TE1, units: cells per mm3).

The increase in the rate of concentration of effector CD8+ T cells in the

lymph node due to activation of näıve CD8+ T cells from the blood stream

is given by c2 · TNVolb
Volln

· APC1

APC1+g1
, where Volb = 1.4 ∗ 103mm3 is the volume

of the blood compartment ([35]) and Volln = 0.25mm3 is the volume of

the lymph node compartment ([36]). We assume that the natural death of

effector T cells in the lymph node is negligible. Effector CD8+ T cells in the

lymph node proliferate at a rate proportional to TE1, a saturable term that

represents antigen presenting cells (APC) and defined by APC1

APC1+g2
, and an

immune checkpoint term defined by α
α+T 2

E1
, where α is the square root of the

saturation constant of TE1 ([37]). We also assume that influx rate of effector T

cells from blood to lymph node is a21 · TE2Volb
Volln

, where TE2 is the concentration

of T effectors in blood, and a12 · TE1 is the efflux rate. We assume that TE1

cells are killed by chemotherapy agent OXP1 (Oxaliplatin in lymph node) at

the rate kd2 · TE1·OXP1

OXP1+g3
.

dTE1

dt
= c2 ·

TNVolb
Volln

· APC1

APC1 + g1
+ kp1 · TE1 ·

APC1

APC1 + g2
· α

α+ T 2
E1

+a21 ·
TE2Volb

Volln
− a12 · TE1 − kd2 ·

TE1 ·OXP1

OXP1 + g3
(2)

3). Antigen Presenting Cells in lymph node (APC1, units: cells per

mm3). We assume that APCs in the lymph node have a natural death rate

of kd3 · APC1 and the influx rate of APCs from tumor to lymph node is
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b31 ·APC3 · Volt
Volln

, where APC3 is the concentration of APCs in tumor, V olt =
ε+C(t)

1−Vi·TE3
(since V olt = ε+C(t)+Vi ·TE3 ·V olt, where TE3 is the concentration

of T effectors in tumor) is the volume of the tumor compartment, ε is a small

positive constant representing a small volume of tissue that excludes tumor

and effector CD8+ T cells in the tumor compartment, where C(t) is the volume

of tumor cells in mm3. The total volume of tumor cells is comprised of the

volumes of major histocompatibility complex (MHC) class I positive tumor

cells (CMHCI+) and MHC class I negative tumor cells (CMHCI−). The average

size of a T effector cell (Vi) is equal to 10−7mm3 ([38]).

dAPC1

dt
= −kd3 ·APC1 + b31 ·APC3 ·

Volt
Volln

(3)

4). Chemotherapy agent Oxaliplatin in lymph node (OXP1, units: mg

per kg). We assume that OXP decays naturally at a rate kd4 ·OXP1 and the

influx rate of Oxaliplatin (OXP) from blood to lymph node is c21 · OXP2Volb
Volln

,

where OXP2 is the concentration of OXP in blood.

dOXP1

dt
= −kd4 ·OXP1 + c21 ·

OXP2Volb
Volln

(4)

5). Effector CD8+ T cells in blood (TE2, units: cells per mm3). We assume

the effector CD8+ T cells die naturally at a rate kd5 ·TE2 in blood. The influx

rate of effector CD8+ T cells from lymph node to blood is equal to a12·TE1Volln
Volb

and the efflux rate of effector CD8+ T cells from blood to lymph node is equal

to a21 · TE2. The influx rate of CD8+ T effectors from the tumor to blood is

a32 ·
CMHCI−
ε+C(t) ·

TE3Volt
Volb

, where TE3 is the concentration of T effectors in tumor

and the efflux rate of CD8+ T effectors from blood to tumor is a23 · TE2.

dTE2

dt
= −kd5 · TE2 + a12 ·

TE1Volln
Volb

− a21 · TE2 − a23 · TE2

+a32 ·
CMHCI−

ε+ C(t)
· TE3Volt

Volb
(5)

6). Antigen Presenting Cells in blood (APC2, units: cells per mm3). A

logistic growth pattern r2 · APC2 ·
(

1 − APC2

K

)
is used for APCs in blood

where r2 is the growth rate constant and K is the carrying capacity. We

assume a b23 ·APC2 efflux rate of APCs from blood to tumor.

dAPC2

dt
= r2 ·APC2 ·

(
1− APC2

K

)
− b23 ·APC2 (6)

7). Chemotherapy agent Oxaliplatin in blood (OXP2, units: mg per

kg). We assume that OXP decays naturally at a rate kd4 · OXP2 and the

efflux rates of OXP from blood to lymph node and from blood to tumor are

c21 · OXP2 and c23 · OXP2, respectively. The source of OXP is provided by

each administration whose dose and time are reflected by the discrete equation
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(17).

dOXP2

dt
= −kd4 ·OXP2 − c21 ·OXP2 − c23 ·OXP2 (7)

8). Effector CD8+ T cells in tumor microenvironment (TE3, units: cells

per mm3). We assume that effector CD8+ T cells can proliferate locally

upon recognition of the corresponding tumor antigen presented by MHC class

I positive tumor cells upon IL-12 stimulation and subject to suppression from

T regulatory cells at a saturable rate equal to kp2·
CMHCI+
ε+C(t) ·

IL
IL+g4

· TE3

TR+g5
, where

IL is the concentration of IL-12 and TR is the concentration of regulatory T

cells ([39], [40]). The influx rate of effector CD8+ T cells from the blood to

tumor is defined by a23 · TE2Volb
Volt

. The efflux rate of effector CD8+ T cells from

the tumor to blood is a32 ·TE3 ·
CMHCI−
ε+C(t) . Effector T cells have a finite lifespan

and die within the tumor microenvironment at a rate equal to kd6 · TE3. T

effector cells in tumor are assumed to be killed by chemotherapy agent OXP

in tumor (OXP3) at the rate kd2 · TE3 · OXP3

OXP3+g6
.

dTE3

dt
= a23 ·

TE2Volb
Volt

− a32 · TE3 ·
CMHCI−

ε+ C(t)
+ kp2 ·

CMHCI+

ε+ C(t)
· IL

IL + g4

· TE3

TR + g5
− kd6 · TE3 − kd2 · TE3 ·

OXP3

OXP3 + g6
(8)

9). Interferon gamma (IFNγ, units: pg per mm3). We assume that IFNγ

is secreted solely by effector CD8+ T cells within the tumor with stimulation

from IL-12 and inhibition from regulatory T cells ([41]) at a rate of c4 · IL
IL+g7

·
TE3

TR+g8
. While this assumption may not hold in all model systems, the presence

of IFNγ in the tumor was dependent on CD8+ T cell activation [42]. IFNγ

decays at a rate proportional to its concentration with a rate constant kd7.

dIFNγ

dt
= −kd7 · IFNγ + c4 ·

IL

IL + g7
· TE3

TR + g8
(9)

10). Antigen Presenting Cells in tumor (APC3, units: cells per mm3). We

assume that APCs in the tumor microenvironment have a natural death rate

of kd3 ·APC3, the influx rate of APCs from blood to tumor is b23 ·APC2 · Volb
Volt

and APCs take tumor antigen in tumor microenvironment and migrate to the

lymph node to present tumor antigens to T cells at the rate of b31 ·APC3.

dAPC3

dt
= b23 ·APC2 ·

Volb
Volt

− b31 ·APC3 − kd3 ·APC3 (10)

11). Interleukin-12 (IL, units: ng per ml). Interleukin-12 (IL-12) is produced

by APCs at a rate of c5 ·APC3 and decays naturally at a rate of kd8 ·IL. The ex-

tra IL-12 expression obtained through the combined therapy is approximated

using a discrete equation (16).

dIL

dt
= c5 ·APC3 − kd8 · IL (11)
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12). Chemotherapy agent Oxaliplatin in tumor (OXP3, units: mg per

kg). We assume that OXP decays naturally at a rate kd4 · OXP3 and the

influx rate of OXP from blood to tumor is c23 · OXP2·Volb
Volt

.

dOXP3

dt
= −kd4 ·OXP3 + c23 ·

OXP2 ·Volb
Volt

(12)

13). Regulatory T cells (TR, units: cells per mm3). Regulatory T cells are

produced at a constant rate c6 from thymus and die naturally at a rate kd9 ·TR.

We assume that regulatory T cells proliferate at a rate of kp3 ·
CMHCI−
ε+C(t) ·

TE3

TE3+g9
·

TR
IL+g10

([3], [4], [6]).

dTR
dt

= c6 − kd9 · TR + kp3 ·
CMHCI−

ε+ C(t)
· TE3

TE3 + g9
· TR

IL + g10
(13)

14). MHC class I positive tumor cells (CMHCI+ , units: mm3). MHC class

I positive tumor cells are converted from MHC class I negative tumor cells

(CMHCI−) with the assistance of IFNγ at a rate c7 · IFNγ

IFNγ+g11
· CMHCI−

and the rate of effector CD8+ T cell-mediated killing of MHC class I positive

tumor cells is kd11 ·
(

1 + OXP3

OXP3+g12

)
· CMHCI+ε+C(t) ·

TE3

TR+g13
([6], [31]). We assume

that the dilution rate of MHC class I positive tumor cells due to proliferation

is kp4 ·CMHCI+ . The natural death rate of MHC class I positive tumor cells is

assumed to be kd10 ·CMHCI+ and MHC class I positive tumor cells are killed

by chemotherapy agent OXP in tumor at a rate kd2 · CMHCI+ · OXP3

OXP3+g14
.

dCMHCI+

dt
= c7 ·

IFNγ

IFNγ + g11
· CMHCI− − kd10 · CMHCI+

−kd11 ·
CMHCI+

ε+ C(t)
·
(

1 +
OXP3

OXP3 + g12

)
· TE3

TR + g13

−kp4 · CMHCI+ − kd2 · CMHCI+ ·
OXP3

OXP3 + g14
(14)

15). MHC class I negative tumor cells (CMHCI− , units: mm3). MHC class

I negative tumor cells are converted to MHC class I positive tumor cells with

the assistance of IFNγ at a rate of c7 · IFNγ

IFNγ+g11
· CMHCI− . We assume that

the proliferation rate of MHC class I positive tumor cells is equal to 2 · kp4 ·
CMHCI+ . As MHC class I positive tumor cells proliferate, they lose MHC

class I expression and become MHC class I negative cells. A logistic growth

pattern is assumed for the number of MHC class I negative tumor cells in

the absence of treatment. We assume that the natural death rate of MHC

class I negative tumor cells is kd10 · CMHCI− and these cells are killed by

chemotherapy agent OXP in tumor at a rate kd2 · CMHCI− · OXP3

OXP3+g15
. The

difference in size of tumor cells caused by tumor rechallenge is described by
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discrete equation (18).

dCMHCI−

dt
= −c7 ·

IFNγ

IFNγ + g11
· CMHCI− − kd10 · CMHCI−

+kp4 · CMHCI− − r1 · C2
MHCI− + 2 · kp4 · CMHCI+

−kd2 · CMHCI− ·
OXP3

OXP3 + g15
(15)

16). We use the following difference equations to reflect the abrupt change of IL-12

concentration and OXP concentration due to therapy and sudden change the

size of MHC class I negative tumor due to tumor rechallenge.

∆IL(t) = ILk1, t = tk1, k1 = 1, 2, · · · , n1 (16)

∆OXP2(t) = {OXP2}k2, t = tk2, k2 = 1, 2, · · · , n2 (17)

∆CMHCI-(t) = Ck3, t = tk3, k3 = 1, 2, · · · , n3 (18)

where ∆IL(t) = IL(t+) − IL(t−) and ∆OXP2(t) = OXP2(t+) − OXP2(t−)

reflect the abrupt changes of IL-12 and oxaliplatin at administration times

tk1 and tk2, while ILk1 and {OXP2}k2 are the dosages of IL-12 and oxali-

platin at the administration times tk1 and tk2 with k1 = 1, 2, · · · , n1 and

k2 = 1, 2, · · · , n2, respectively; ∆CMHCI-(t) = CMHCI-(t
+) − CMHCI-(t

−)

represents the sudden changes in tumor size due to tumor rechallenge with

implantation size Ck3 mm
3 at time tk3 with k3 = 1, 2, · · · , n3.

A schematic diagram summarizing this three compartmental model is shown in

Figure 1. Model parameters and their meaning are listed in Table 1.

Non-negativity of solutions to the model

For any mathematical model that has biological implications, it is important to

make sure that solutions are non-negative all the time. For our model, we can see

that solutions of system comprised of equations 1) - 15) starting from non-negative

initial conditions will remain non-negative because dxi
dt ≥ 0 for xi = 0 and xj ≥ 0

where i, j = 1, 2, · · · , 15 and i 6= j with positive impulsive inputs ILk1, {OXP2}k2,

and Ck3 at impulsive moments tk1, tk2 and tk3.

Model calibration

Therapeutic use of IL-12 requires efficient methods to control the plasma concen-

tration of this potent immuno-stimulatory cytokine in order to avoid toxicity ([6]).

It was determined in an MC38 syngeneic tumor model that a blood concentration

of IL-12 < 20 ng/ml has no anti-tumor effect, while concentrations > 700 ng/ml

are associated with toxicity ([43]). Gonzalez-Aparicio and his colleagues designed a

new induction protocol to keep IL-12 within this therapeutic range ([6]). Once the

liver of a group of C57BL/6 mice was transduced with the vector (typically 2.5*108

IU), a suboptimal amount of Mif (125 µg/kg) is administered for the first 2 days

in order to prevent toxicity. The concentration of IL-12 is measured in serum 10 h

after the first induction, and based on this information, a stepwise increase in Mif is

scheduled to allow several cycles of sustained IL-12 expression in mice treated with
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the HC-Ad/RUmIL-12 vector (Figure 2). Before we start the calibration of model

parameters, we first quantified the IL-12 concentration as a function of time in days

(Fig. 2A) and Mifepristone (Fig. 2B) respectively. Empirical functions were used to

represent the IL-12 as a function of time and as a function of Mifepristone dose.

These calibrated functions are shown in Figure 2, where they are compared against

the experimental data reported in ([6]). Overall, the curves show a good match be-

tween experimental data and model predictions used to describe Mif-induced IL-12

treatment effects. The authors in [6] verified the Mif-induction system is functional

for more than 5 months with a slow decrease in the intensity of expression in each

cycle owing to the non-integrative nature of adenoviral vectors. For simplicity, we

used the same relationships for each Mif-induced treatment cycle.

We then calibrated model parameters in system described by equations 1) - 15)

using two sets of experimental data from the paper ([6]). The first sets of data are

listed below:

• Total volume of MC38Luc1 tumor cells was calibrated against data shown in

Figures 2(B), 2(C), 3 (IL-12 + OXP group).

• Concentration of Interferon gamma was obtained from Figure 4(B) (IL-12 +

OXP group).

• The ratio between CD8+ T lymphocytes and T regulatory cells was obtained

from Figure 5(B) (experimental results for IL-12 + OXP group in tumor).

The model was calibrated to these data to reflect the effects of one cycle of Mif-

induced IL-12 production combined with chemotherapy drug OXP injection to treat

the primary injection of 5× 105 MC38Luc1 tumor cells into the liver as well as the

immunological protection against cancer cells treated with the IL-12 plus OXP

combined therapy after a tumor rechallenge with 106 MC38Luc1 tumor cells about

35 days after the completion of the previous combined treatment. Calibration re-

sults, including the median (solid blue curve), 90th percentile upper (dashed purple

curve), and 90th percentile lower responses (dashed green curve) of 30 good fits, are

included in Figure 3A), where CMHCI−(0) = 1mm3 since t0 = 0 is the day that

5×105 cells/mouse MC38Luc1 tumor cells were inoculated in the liver of C57BL/6

mice ([44, 45]), TN (0) = 0.0714 cells per mm3 (= 100
1.4∗103 as we assume that the

number of näıve CD8+ T cells in a mouse is 100 and the volume of the blood sys-

tem of a mature mouse is 1.4 ∗ 103mm3), APC2(0) = 214.2857 (= 3∗105

1.4∗103 ) cells

per mm3 according to [46]. Other initial values are zero: TEi(0) = CMHCI+(0) =

OXPi(0) = IFNγ(0) = APC1(0) = APC3(0) = TR(0) = IL(0) = 0 for i = 1, 2, 3.

∆CMHCI−(57) = 2mm3, ∆OXP2(s) = 5 mg/ kg with s = 10, 34, 100; ∆IL(t)

follows f(t) = 13.6127∗(t−12)2+0.8606∗(t−12)+1
0.313∗(t−12)2−0.6216∗(t−12)+1 for 12 ≤ t ≤ 21 (see details in Fig. 2A).

The parameter values used in the simulations are listed in Table 2 with biological

meanings of each parameter listed in Table 1.

To show the long-term management of colorectal cancer using the combined ther-

apy, tumor growth of a group of mice subjected to one cycle of treatment was

calibrated to data from Figure 7(D) in [6]. In the combined therapy, 5 mg/kg OXP

on day 100 and 10-day IL-12 induction starting day 103, which follows the adjusted

protocol as described in Figure 2, were administered after a tumor rechallenge

on day 75. This treatment occurred about two weeks after the mice survived two

cycles of combined treatments with 10-day Mif-induced IL-12 (induction started
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on days 13 and 37) and OXP treatments (5mg/kg on days 10 and 34), which in

turn started about two weeks after the initial implantation of MC38Luc1 tumor

cells on day 0. The experimental results were split into responders (Fig. 3B), par-

tial responders (Fig. 3C) and non-responders (Fig. 3D) groups. The mathematical

model was calibrated separately to these different response groups. Figures 3B - 3D

with the median (solid blue curve), 90th percentile upper (dashed purple curve),

and 90th percentile lower responses (dashed green curve) of 30 good fits illustrate

the results of our simulations compared with the corresponding experimental data.

Here, we have ∆CMHCI−(75) = 2mm3, ∆OXP2(9) = 5 mg/kg; ∆IL(t) follows

IL(t) = 13.6127∗(t−a)2+0.8606∗(t−a)+1
0.313∗(t−a)2−0.6216∗(t−a)+1 for a ≤ t ≤ a + 9 with a = 13, 37, 103. A

sample set of parameter values for each of the response groups of mice used in the

simulations are listed in Table 2.

Difference in treatment efficacy: non-responders versus responders While both the

responders and non-responders survived two cycles of combination therapy treat-

ment before tumor rechallenge and then underwent the third cycle following the

tumor rechallenge on day 75, the simulations in Figs. 3B - 3D suggest that the non-

responders show near zero concentration of IFNγ and near zero ratio of T effectors

to regulatory T cells in the tumor all the time comparing to a stable concentration

of IFNγ and ratio of T effectors to regulatory T cells in the tumor (at least 103

cells per mm3 after the combination therapy treatment) in responders and par-

tial responders. The simulations also indicate that whether the immune system can

maintain a high ratio of T effectors to regulatory T cells in the tumor as well as

generating a moderate but stable concentration of IFNγ might be crucial to control

tumor growth. This finding is consistent with results from experimental studies (

[7], [47]).

Goodness of fit

Descriptions of model parameters are shown in Table 1. A couple of sample sets of

estimated values of parameters obtained through fitting predictions of the impulsive

ODE model 1) - 18) to data from a group of experiments in [6] are listed in Table

2. Figure 3A illustrates the comparison between model solutions and experimental

measurements on tumor control and immunological protection against cancer cells

in animals treated with IL-12 plus OXP. Experimental results for long-term man-

agement of colorectal cancer by observing cooperation of IL-12 and OXP for the

control of experimental relapses in distant locations are compared against model

predictions in Figures 3B, 3C, and 3D for responders, partial-responders and non-

responders, respectively. Trajectories of tumor growth, IFNγ and ratio of TE3 to

TR arising from the model are extremely close to corresponding data from the ex-

periments. For each calibration, an excess of data points (57, 65, 58, 84 for Figures

3A - 3D, respectively) relative to the number of parameters (48) suggests that the

model is identifiable in theory.

Model stability analysis
In this section, we discuss local stability of equilibria of the model using linearized

system evaluated at these points. We found that system comprised of equations (1)

- (15) has a tumor-free equilibrium ~X0, a second tumor free equilibrium ~X1 when
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APC2 growth rate is larger than the rate constant for APC2 flowing from blood to

tumor (i.e., r2 > b23), and a high tumor equilibrium ~X2 when proliferation rate of

tumor cells is higher than natural death rate of tumor cells (i.e., kp4 > kd10).

By setting the right hand sides of the equation system (1) - (15) to zero and

solving the equations simultaneously, we obtain

~X0 = ( TN , TE1, APC1, OXP1, TE2, APC2, OXP2, TE3, IFNγ ,APC3, IL,

OXP3, TR, C
+
MHCI , C

−
MHCI )T

= ( c1
kd1

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, c6
kd9

, 0, 0 )T ,

~X1 = ( TN , TE1, APC1, OXP1, TE2, APC2, OXP2, TE3, IFNγ , APC3, IL,

OXP3, TR, C
+
MHCI , C

−
MHCI)

T

= (TN , TE1 ,
b23VolbK(r2−b23)

r2kd3Volln
, 0, TE2,

K(r2−b23)
r2

, 0, TE3, IFNγ , APC3, IL,

0, c6
kd9

, 0, 0)T ,

where TE1 satisfies the following polynomial equation

a12kd5
a21+kd5

T 3
E1 + Volb

Volln
(kd1TN − c1)T 2

E1 + α( a12kd5
a21+kd5

− kp1 APC1

APC1+g2
)TE1

+α Volb
Volln

(kd1TN − c1) = 0,

(Based on the Descartes’ rule, there is only one positive solution from the equation),

TE2 = a12VollnTE1

(kd5+a21)Volb
, TE3 satisfies the following quadratic equation

kd6ViT
2
E3 + kd6εTE3 − a23VolbTE2 = 0

which has only one positive solution TE3 =
−εkd6+

√
(εkd6)2+4a23Vikd6VolbTE2

2Vikd6
, IFNγ =

c4TE3IL
kd7(IL+g7)(TR+g8) , APC3 = b23APC2Volb

(kd3+b31)Volt
, IL = c5APC3

kd8
, and

~X2 = (TN , TE1, APC1, OXP1, TE2, APC2, OXP2, TE3, IFNγ , APC3, IL,

OXP3, TR, C
+
MHCI , C

−
MHCI)

T

= ( c1kd1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, c6
kd9

, 0,
kp4−kd10

r1
)T .

By simple calculation, thirteen of the fifteen eigenvalues of the Jacobian matrix of

linearized system at the equilibrium ~X0 are listed below

{−kd1,−kd3,−kd4,−kd4, −b23 + r2,−kd4 − c21 − c23,−kd6,−kd7,

−b31 − kd3,−kd8,−kd9,−kd10 − kp4,−kd10 + kp4}

The rest of the eigenvalues are obtained from solving the following quadratic equa-

tion:

λ2 + (kd5 + a12 + a21 + a23)λ+ a12(kd5 + a23) = 0.

It is easy to see that both eigenvalues are in the left half of the complex plane for a

wide range of the parameters. Thus the first tumor free equilibrium ~X0 is stable if

both r2 < b23 (i.e., APC2 growth rate is smaller than the rate constant for APC2
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flowing from blood to tumor) and kp4 < kd10 (i.e., tumor proliferation rate is less

than tumor natural death rate), otherwise it is unstable.

The second tumor free equilibrium ~X1 exists when r2 > b23 (i.e., APC2 growth

rate is larger than the rate constant for APC2 flowing from blood to tumor). Similar

to the previous case, most of the eigenvalues of the Jacobian matrix at ~X1 are in the

left-half of the complex plane. It is easy to see that twelve of the fifteen eigenvalues

are negative. With respect to the remaining three, one is b23 − r2, and the other

two satisfies the following quadratic equation

λ2 + (
c7IFNγ
IFNγ+g11

+ kd11TE3

ε(TR+g13) + 2kd10)λ+ (−kd10 − kp4 − kd11TE3

ε(TR+g13) )

×(−kd10 + kp4 − c7IFNγ
IFNγ+g11

)− 2kp4
c7IFNγ
IFNγ+g11

= 0.

It is found that both eigenvalues are in the left-half of the complex plane if kp4 <

kd10. Hence this tumor-free equilibrium point is locally stable if r2 > b23 and kp4 <

kd10; otherwise it is unstable.

The high tumor equilibrium ~X2 exists when kp4 > kd10. Twelve of the fifteen

eigenvalues of the Jacobian matrix are found as

{−kd1, − kd3, − kd4, − kd4, − b23 + r2, − kd4 − c21 − c23, − kd7,

−b31 − kd3, − kd8, − kd9, − kd10 − kp4, kd10 − kp4}.

The other three eigenvalues are the roots of the polynomial p(λ) = λ3 + α1λ
2 +

α2λ+ α3, where

α1 = a12 + a21 + a23 + kd5 + kd6 +
a32(kp4−kd10)
r1ε+kp4−kd10 ,

α2 = kd6(kd5 + a12 + a21 + a23) + a12(kd5 + a23) + (kd5 + a12 + a21)
a32(kp4−kd10)
r1ε+kp4−kd10 ,

α3 = a12kd5kd6 + a12a23kd6 + kd5a12
a32(kp4−kd10)
r1ε+kp4−kd10 .

Based on the list of the first twelve eigenvalues, the high-tumor equilibrium is un-

stable if either r2 > b23 or kd10 > kp4 is satisfied. Suppose r2 < b23 and kd10 < kp4,

it is easy to see that αi > 0, i = 1, 2, 3. According to the Routh-Hurwitz criterion,

p(λ) is a Hurwitz polynomial if and only if α1α2−α3 > 0, which is indeed the case

after simplifying the expression. Therefore, the high-tumor equilibrium is stable if

r2 < b23 (i.e., APC2 growth rate is smaller than the rate constant for APC2 flowing

from blood to tumor) and kd10 < kp4 (i.e., tumor proliferation rate is larger than

tumor natural death rate), otherwise it is unstable.

The stability conditions for tumor free equilibrium ~X0 indicate that small tumors

may not grow into a threatening size when tumor proliferation rate is less than

tumor natural death rate (kp4 < kd10) without any treatment (r2 < b23 with all the

APCi, OXPi, IL and TEi, i = 1, 2, 3 in ~X0 be to zero). Under the combined IL-12

and OXP treatment, MHC class I positive tumor cells will ultimately be eliminated.

Depending on effects of the combined treatment (reflected by the remaining level

of APCi and TEi, i = 1, 2, 3 and whether r2 > b23), MHCI negative tumor cells

(CMHCI−) will either be completely removed in which case solutions of this dynamic

approach the second tumor-free equilibrium ~X1 or the MHC class I negative tumor

cells eventually approach the carrying capacity. This can occur when MHC class I
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positive tumor cells are all killed by tumor infiltrating lymphocytes, which results

in the exhaustion of effector CD8+ T cells and cytokines while näıve T cells and

MHC class I negative tumor cells remaining at constant levels.

Sensitivity of parameters
To test the impact of how the change of a certain parameter value (e.g. α) would

affect tumor growth pattern for responders, partial-responders, and non-responders,

normalized differences of tumor sizes yi = |ŷi−ȳi|
ȳi

, (i = 1, 2, · · · , 30) on day 120

(8 days post the second treatment cycle of the combination therapy after tumor

rechallenge) were used to draw the violin plots ([48]) in Figure 4 for each of the

48 parameters for all three patient groups, where ŷi is the predicted tumor size in

mm3 using 0.1 × αi and other parameters in the ith calibrated parameter set and

ȳi is the predicted tumor size in mm3 using αi and other parameters in the ith

calibrated parameter set and αi is the calibrated value for parameter α in the ith

calibrated parameter set.

In general, we found that changing the value of each of the 48 parameters barely

affected the tumor growth for non-responders. In addition, there are 10 (out of

48) parameters whose value changes greatly affect tumor size of responders but

not the size of non-responders and partial-responders. These potentially OXP and

IL-12 treatment important parameters include c23 (OXP flow rate from blood to

tumor), K (APC carrying capacity), c4 - c6 (IFNγ , IL-12, and TR production rate

constants, respectively), g10 - g14 (IL-12, IFNγ , OXP3, TR, and C+
MHCI killing by

OXP3 saturation rate constants, respectively). In addition, changes in the value of

the following 7 parameters cause from zero for non-responders to increasing changes

in normalized tumor size from partial-responders to responders: T cell flow rates

from blood to lymph node and from tumor to blood, a21 and a32, respectively;

APC flow rates from tumor to lymph node b31; production rate constant of naive

T cells c1; transfer rate constant of naive T cell to T effector cell in lymph node

c2; IL-12 natural death rate constant kd8, and APC growth rate constant r2. We

also note that no change in tumor size for all three mice group (non-responders,

partial-responders, and responders) results from the value changes of following 5

parameters: C−MHCI killing by OXP3 saturation rate constant g15, natural death

rate constant of naive T cells kd1, killing rate constant of T effectors or tumor cells

by OXP kd2, APCs natural death rate constant kd3, and natural decay rate constant

of OXP kd4 (see Fig. 4).

Model simulations
In order to investigate potential ways to improve treatment regimes for partial-

responders and non-responders, we simulated the following alternative treatment

scenarios: changing the dose and frequency of chemotherapy drug OXP adminis-

tration, changing the strength of Mif-induced IL-12 expression, and changing the

number of combined treatment cycles.

Partial-responders

We note from Figure 5 that increased number of treatment cycles in the IL-12

and OXP combination therapy does not seem to improve tumor control in the first
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8 months post treatment while increased dose of OXP alone would achieve better

tumor control and enhanced strength of IL-12 expression alone would slightly reduce

tumor size more rapidly after the tumor reaches its maximum size.

Non-responders

From Figure 6, we found that neither increased strength of IL-12 expression nor

moderately increased OXP dose alone in the IL-12 and oxaliplatin (OXP) com-

bination therapy seems to improve tumor control for the median, 90th percentile

lower and 90th percentile upper responses for the 30 non-responder patients. Mean-

while, aggressively increased OXP dose (for instance, 10+ times) in the combination

therapy shows reduced tumor size and delayed time of tumor reaching its carrying

capacity only for the 90th percentile lower responses for the 30 patients. The re-

duction of tumor size slows greatly when OXP dose is increased to more than 100

times. In addition, increased number of treatment cycles in the IL-12 and OXP

combination therapy reduced tumor size and delayed the time of tumor reaching its

carrying capacity only for the 90th percentile lower responses for the 30 patients.

Discussion and Conclusion
Developing mathematical models that represent known features of the biological

system and that are calibrated to experimental studies can help improve under-

standing of the underlying biology targeted by drugs and enables exploring thera-

peutic scenarios that may be difficult or costly to test experimentally. In this paper,

we developed a three-compartment mechanistic mathematical model to describe

the clonal expansion of CD8+ T cells in a mouse model of metastatic colorectal

cancer in response to a combined therapy of IL-12 plus the chemotherapy drug Ox-

aliplatin. Based on the collective knowledge of the underlying biology, the model

represents the primary CD8+ T cell response under a boosting effect of IL-12 and

OXP and the subsequent impact on the growth of a tumor based on the syngeneic

MC38Luc1 mouse model for metastatic colorectal cancer, where the observed re-

sponse was characterized by three phenotypes: responders, partial responders, and

non-responders. Model parameters were calibrated against published experimental

data that describes the primary response for these three phenotypes. The sensi-

tivity analysis of parameters helped explain the differences in calibrated values of

parameters between non-responders, partial-responders, and responders. To reduce

the dependence of our model predictions on any single calibrated set of parameter

values, we generated an ensemble of 30 parameter sets for each phenotype that

provided a similar good fit against the experimental data and show the distribution

in phenotypic responses for those virtual cohorts. Using the corresponding ensem-

ble of model predictions for non-responders, numerical simulation of multiple OXP

and IL-12 combination therapy suggest that aggressively increasing the dose (be-

tween 10 and 100 times of the control) of OXP will improve tumor control results

while increasing the number of treatment cycles of the combined therapy can de-

crease the tumor size as well. We also found that only increasing the OXP dose

in the combination therapy can dramatically decrease the tumor size for partial

responders. Overall, these results illustrate how mechanistic models can be used

to predict tumor growth response to antigen-specific immuno-chemotherapies and
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screen in silico for optimal therapeutic dosage and timing in treating patients with

metastatic colorectal cancer.
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Figure 1 Schematic diagram illustrating the interactions among species present in the three
compartments. Näıve CD8+ T cells (TN ) are activated and become CD8+ T effectors (TE1)
when they encounter tumor antigen presented by the antigen presenting cells (APC1) in the
lymph node. Once activated, effector CD8+ T cells circulate within the blood (TE2) and enter
tumor microenvironment (TE3) where they are retained upon recognition of the corresponding
tumor-associated antigen. Effector CD8+ T cells secrete Interferon gamma (IFNγ) which assist
with the CD8+ T cell-mediated killing of tumor cells (CMHCI+ and CMHCI− ) through increased

presentation of tumor-associated antigens by Major Histocompatibility Complex protein class I
(MHCI). During this process, IL-12 (IL) helps promote T cell proliferation and suppresses
regulatory T (TR) cells’ proliferation and immunosuppressing action on effector CD8+ T cells. In
addition, the chemotherapy drug Oxaliplatin in the lymph node and tumor (OXPi where i = 1, 3)
will kill fast-proliferating cells such as T effectors and tumor cells.
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A). B). 

Time (Days) Mifepristone ( µg/kg ) 

Figure 2 Model fit of Mif-induced IL-12 expression. (A) Simulated IL-12 expression as a function
of time was calibrated to (mean + s.d.) experimental data reported in Fig. 1B in ([6]).
Specifically, the HC-Ad/RUmIL-12 vector was administered at 2.5*108 IU/mouse in C57BL/6
mice by intrahepatic injection. A set of 8 mice received an adjusted protocol (red circles, n=8)
that consisted of 125 µg/kg Mifepristone days 1-2; 250 µg/kg days 3-5; 500 µg/kg days 5-7 and
1000 µg/kg days 9-11. The concentration of IL-12 in serum was determined 10 h after induction
at the indicated days. Experimental data in error bars represent mean+ s.d. and the green curve
gives our calibrated IL-12 expression (IL) in ng/ml (IL = f(t) as a function of time in days t:

IL = 13.6127∗t2+0.8606∗t+1
0.3130∗t2−0.6216∗t+1

. (B) Simulated does-response of IL-12 expression versus Mifepristone

dose was calibrated to experimental data in Fig. 1A in [6]. The vector was administered at
2.5*108 IU/mouse in C57BL/6 mice by intrahepatic injection. Two weeks later, a single dose of
Mifepristone (125; 250; 1000; 2000 or 4000 µg/kg) was administered intraperitoneally to different
groups of animals (n=5). The concentration of IL-12 was measured in serum 10 h later.
Experimental data in error bars represent mean+ s.d. and the green curve gives our calibrated
IL-12 (IL) expression in ng/ml (IL = f(Mif)) as a function of Mifepristone (Mif) in µg/kg Mif:
IL = −173.027 + 41.6337 ∗ ln(Mif− 48.0489).
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Figure 3 A. Comparison of model predictions with experimental measures of tumor volume, IFNγ
and TE3/TR of mice subjected to tumor rechallenge after one cycle of IL-12 and OXP treatment
at day 57. The experimental data were acquired for a group of C57BL/6 mice with 5*105

MC38Luc1 cells inoculated in the liver on day 0 and subjected to one cycle of OXP (on day 9)
and Mif-induced IL-12 (started on day 12 and continued 10 days) treatment. To check the
immunological protection against cancer cells in treated animals, the cured mice had a tumor
rechallenge of 106 MC38Luc1 cells about one month after completion of previous treatment.
Experimental measures of tumor volume, IFNγ , and TE3/TR (crosses) from Figures 2 - 5 in [6]
were compared to the model predictions (blue curve) generated using a genetic algorithm. B - D.
The experimental data were acquired for a group of C57BL/6 mice bearing hepatic tumors treated
with the HC-Ad/RUmIL-12 vector and received two cycles of Mifepristone (Mif) induction
preceded by OXP (5 mg/kg, intraperitoneally). Animals cured from their hepatic tumors were
subjected to a subcutaneous challenge with the same tumor cells (MC38Luc1), and received a
third cycle of IL-12 and OXP treatment starting on day 103. Experimental measures of tumor
volume (squares, triangles, and crosses) for mice from Figure 7 in [6] were compared to the model
predictions (blue curve) generated using a genetic algorithm. Model predictions calibrated to
tumor volume for responder, partial-responder, and non-responder mice treated with one cycle of
combined therapy after tumor rechallenge are shown in panels B, C, D, respectively. Each graph
displays a collection of 30 good fits of model predictions against experimental data. The solid blue
curve provides the median model prediction of the 30 good fits, and the dashed purple and green
curves indicate the 90% upper and lower boundaries in the model predictions of 30 good fits,
respectively. Example parameter values of good fits in each panel are included in Table 2.
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Non-Responders Partial-Responders Responders

Figure 4 Violin plots of normalized tumor size changes with 30 good fits of parameter sets for
responders, partial-responders, and non-responders on day 120. The sample set of parameter
values for each group used in the plots are listed in Table 2.
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Figure 5 Treatment strategies for partial-responders. The median, 90th percentile lower, and 90th
percentile upper responses of 30 patients were sketched for each treatment strategy using 30 sets
of good fits of calibrated parameters for partial responders. See a sample set of parameter values
used in the plots in Table 2. a. Effects of increased interleukin-12 (IL-12) dose from 1 time (1X,
control) to 3, 5, 10 times (3X, 5X, 10X, respectively). b. Effects of moderately increased OXP
dose from 1 time (1X, control) to 2, 4, 6 times (2X, 4X, 6X, respectively). c. Effects of
aggressively increased OXP dose from 1 time (1X, control) to 10, 100, 200 times (10X, 100X,
200X, respectively). d. Effects of increased number of treatment cycles from 3 cycles to 4, 5, and
6 cycles.
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Treatment strategies for non-responders
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Figure 6 Treatment strategies for non-responders. The median, 90th percentile lower, and 90th
percentile upper responses of 30 patients were sketched for each treatment strategy using 30 sets
of good fits of calibrated parameters for non-responders. A sample set of parameter values used in
the plots is listed in Table 2. a. Effects of increased interleukin-12 (IL-12) dose from 1 time (1X,
control) to 3, 5, 10 times (3X, 5X, 10X, respectively). b. Effects of moderately increased OXP
dose from 1 time (1X, control) to 2, 4, 6 times (2X, 4X, 6X, respectively). c. Effects of
aggressively increased OXP dose from 1 time (1X, control) to 10, 100, 200 times (10X, 100X,
200X, respectively). d. Effects of increased number of treatment cycles from 3 cycles to 4, 5, and
6 cycles.
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Tables

Table 1 List of parameters in the model

Parameter Units Description
kd1 day−1 Näıve CD8+ T cell natural death rate constant
kd2 day−1 T effector (in lymph node or tumor) or tumor cell

death rate constant due to OXP
kd3 day−1 APC (in lymph node or tumor) natural death rate

constant
kd4 day−1 OXP natural decay rate constant
kd5 day−1 T effector (in blood) natural death rate constant
kd6 day−1 T effector (in tumor) natural death rate constant
kd7 day−1 Interferon γ natural death rate constant
kd8 day−1 IL-12 natural death rate constant
kd9 day−1 Regulatory T cell natural death rate constant
kd10 day−1 Tumor cell natural death rate constant
kd11 mm3 ∗ day−1 MHC class I positive tumor cell death rate constant

due to T effector (in tumor) lysis
kp1 day−1 T effector (in lymph node) proliferation rate constant

due to tumor antigens presented by APC in lymph
node

kp2 day−1 T effector (in tumor) proliferation rate constant
kp3 ng∗mm−3·day−1 Regulatory T cell proliferation rate constant due to

tumor growth and proliferation of T effector in tumor
kp4 day−1 Tumor cell proliferation rate constant
a12 day−1 Rate constant for T cell flow from lymph node to

blood
a21 day−1 Rate constant for T cell flow from blood to lymph

node
a23 day−1 Rate constant for T cell flow from blood to tumor
a32 day−1 Rate constant for T cell flow from tumor to blood
b23 day−1 Rate constant for APC flow from blood to tumor
b31 day−1 Rate constant for APC flow from tumor to lymph node
c1 cell · mm−3 ·

day−1
Näıve T cell natural production rate constant

c2 day−1 Näıve T cell to T effector (in lymph node) transfer
rate constant

c21 day−1 Rate constant for OXP flow from blood to lymph node
c23 day−1 Rate constant for OXP flow from blood to tumor
c4 pg ·mm−3 ·day−1 Interferon γ secretion constant
c5 pg · cell−1 · day−1 IL-12 production rate constant by APC in tumor
c6 cells · mm−3 ·

day−1
Regulatory T cell production rate constant

c7 day−1 MHC class I negative to positive tumor cells transfer
rate constant

α (cell ·mm−3)
2

T effector (in lymph node) saturation constant
K cell ·mm−3 Carrying capacity of APC (in blood)
g1 cell ·mm−3 APC (in lymph node) saturation constant
g2 cell ·mm−3 APC (in lymph node) saturation constant
g3 mg · kg−1 OXP (in lymph node) saturation constant
g4 ng ∗ml IL-12 saturation rate constant
g5 cell ·mm−3 Regulatory T cell saturation constant
g6 mg · kg−1 OXP (in tumor) saturation constant
g7 ng ·ml IL-12 saturation rate constant
g8 cell ·mm−3 Regulatory T cell saturation rate constant
g9 cell ·mm−3 T effector (in tumor) saturation rate constant
g10 ng ·ml IL-12 saturation constant
g11 pg ·mm−3 Cellular Interferon γ saturation constant
g12 mg · kg−1 OXP (in tumor) saturation rate constant
g13 cell ·mm−3 Regulatory T cell saturation rate constant
g14 mg · kg−1 OXP (in tumor) killing MHC class I positive tumor

cells saturation rate constant
g15 mg · kg−1 OXP (in tumor) killing MHC class I negative tumor

cells saturation rate constant
r1 cell−1 · day−1 Constant in tumor logistic growth
r2 day−1 Growth rate constant of APC (in blood)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/710434doi: bioRxiv preprint 

https://doi.org/10.1101/710434
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wang et al. Page 24 of 24

Table 2 Examples of calibrated parameter values against experimental data

Parameter Fig.3A. Fig.3B. Par.-Res. Fig.3C. Res. Fig.3D. Non-Res.
kd1 8.060 ∗ 10−2 4.613 ∗ 10−5 7.892 ∗ 10−6 7.629 ∗ 10−5

kd2 3.954 ∗ 10−2 9.923 3.286 8.370
kd3 5.738 ∗ 10−1 3.863 5.982 5.727 ∗ 10−1

kd4 1.760 2.658 1.924 ∗ 10−3 2.358
kd5 6.293 ∗ 10−3 3.312 ∗ 10−4 5.385 ∗ 10−1 6.170 ∗ 10−5

kd6 9.849 ∗ 10−3 5.026 ∗ 10−6 2.258 ∗ 10−2 5.988 ∗ 10
kd7 8.159 ∗ 10−2 3.390 ∗ 10−2 7.620 ∗ 10−2 5.603
kd8 6.097 ∗ 10−1 5.085 ∗ 10−6 4.692 ∗ 10−4 2.513 ∗ 10−7

kd9 4.382 ∗ 10−6 5.310 ∗ 10−6 2.206 ∗ 10−2 9.706 ∗ 10−7

kd10 2.116 ∗ 10−5 2.140 ∗ 10−6 7.795 ∗ 10−6 9.434 ∗ 10−6

kd11 7.956 ∗ 10−3 6.953 ∗ 10−6 7.047 ∗ 10−5 6.539 ∗ 10−5

kp1 2.188 ∗ 10 4.770 ∗ 104 9.808 ∗ 10 5.515 ∗ 102
kp2 6.445 ∗ 10−6 8.367 ∗ 10−7 1.687 ∗ 10−12 9.255 ∗ 10−7

kp3 5.015 ∗ 10−7 7.807 ∗ 10−9 4.276 ∗ 10−7 8.696 ∗ 10−7

kp4 5.800 ∗ 10−2 3.952 ∗ 10−1 3.297 ∗ 10−1 2.186 ∗ 10−1

a12 5.497 ∗ 10−1 9.636 3.031 ∗ 10−2 8.575 ∗ 10−2

a21 1.133 ∗ 10−4 9.984 ∗ 10−1 9.011 ∗ 10−4 1.614 ∗ 10−1

a23 7.254 ∗ 10−7 9.567 ∗ 10−6 2.431 ∗ 10−3 4.776 ∗ 10−11

a32 4.575 ∗ 10−3 9.246 ∗ 10−1 2.573 ∗ 10−3 7.638 ∗ 10−3

b23 9.581 ∗ 105 6.334 ∗ 10−9 1.406 ∗ 10−2 5.710 ∗ 10−13

b31 6.872 ∗ 10−7 8.489 ∗ 10−8 5.700 ∗ 10−10 3.980 ∗ 10−9

c1 8.563 ∗ 10−4 9.611 4.366 ∗ 10−4 4.108 ∗ 10−2

c2 7.360 ∗ 10−2 8.751 ∗ 10−2 3.373 ∗ 10 6.011 ∗ 10−2

c21 7.211 ∗ 10−8 5.684 ∗ 10−4 5.475 ∗ 10−2 9.907 ∗ 10−1

c23 3.648 ∗ 10−6 5.873 3.355 9.905 ∗ 10−1

c4 6.878 ∗ 10−2 8.671 ∗ 104 7.547 ∗ 102 2.327 ∗ 102
c5 5.263 ∗ 105 9.844 ∗ 10−9 7.279 ∗ 10−10 9.722 ∗ 10−11

c6 1.490 ∗ 10−2 3.260 ∗ 10−2 6.253 ∗ 10−4 7.635 ∗ 102
c7 8.842 ∗ 102 7.546 3.412 ∗ 102 9.289 ∗ 103
α 5.530 ∗ 109 3.647 ∗ 106 1.556 ∗ 107 9.834 ∗ 103
K 7.539 ∗ 104 9.292 ∗ 1012 3.116 ∗ 1011 4.964 ∗ 105
g1 7.971 ∗ 109 4.578 9.304 ∗ 102 3.445 ∗ 104
g2 2.441 ∗ 10−2 3.568 ∗ 10−10 6.108 ∗ 10−13 5.108 ∗ 10−12

g3 3.561 ∗ 10−7 1.081 ∗ 10−11 9.294 ∗ 10−12 5.325 ∗ 10−5

g4 6.740 ∗ 102 9.535 ∗ 104 1.518 ∗ 10 3.713 ∗ 10
g5 9.702 ∗ 107 2.440 ∗ 105 9.131 ∗ 10−3 8.235 ∗ 1011
g6 2.318 ∗ 105 8.034 ∗ 103 3.843 ∗ 106 6.932 ∗ 104
g7 9.387 ∗ 107 9.307 ∗ 108 9.040 ∗ 108 7.528 ∗ 108
g8 8.412 ∗ 10−5 7.079 ∗ 10−9 7.897 ∗ 10−7 5.385 ∗ 10−8

g9 3.757 ∗ 10−5 5.234 ∗ 10−3 5.185 ∗ 10−8 9.378 ∗ 10
g10 6.242 ∗ 10−5 9.338 ∗ 10−6 5.537 ∗ 10−6 5.110 ∗ 10−8

g11 2.183 ∗ 108 5.064 ∗ 1010 7.624 ∗ 106 4.565 ∗ 109
g12 3.229 ∗ 10−8 1.542 ∗ 10−11 1.930 ∗ 10−10 7.116 ∗ 10−9

g13 8.733 ∗ 106 2.273 ∗ 107 4.689 ∗ 107 9.747 ∗ 105
g14 5.981 ∗ 103 4.809 ∗ 109 4.799 ∗ 1010 3.855 ∗ 104
g15 3.068 ∗ 109 7.927 ∗ 105 8.642 ∗ 103 5.392 ∗ 106
r1 2.140 ∗ 10−10 2.448 ∗ 10−2 6.718 ∗ 10−2 7.260 ∗ 10−5

r2 8.065 2.780 ∗ 10−4 3.394 ∗ 10−9 2.793 ∗ 10−6
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