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Abstract— An important step in execution of several cellular
processes is accumulation of a regulatory protein up to a specific
threshold level. Since production of a protein is inherently
stochastic, the time at which its level crosses a threshold exhibits
cell-to-cell variation. A problem of interest is to characterize
how the statistics of event timing is affected by various steps
of protein expression. Our previous work studied this problem
by considering a gene expression model where gene was always
active. Here we extend our analysis to a scenario where gene
stochastically switches between active and inactive states. We
formulate event timing as the first-passage time for a protein’s
level to cross a threshold and investigate how the rates of gene
activation/inactivation affect the distribution and moments of
the first-passage time. Our results show that both the time-scale
of gene switching with respect to the protein degradation rate
as well as the ratio of the gene inactivation to gene activation
rates are important parameters in shaping the event-timing
distribution.

I. INTRODUCTION

In the ever-changing cellular environment, a cell has to
actively sense and respond to both internal and external cues
[1], [2]. The environment is represented via transcription
factors. A change in the environment leads to localization of
appropriate transcription factors which subsequently activate
expression of target genes [3]–[5]. The temporal aspect
of the target gene activity plays important role in cellular
function as cells often couple important decisions or events
to accumulation of specific regulatory proteins up to critical
thresholds. Many examples of such events appear in context
of development [6]–[11], cell-cycle control [12]–[18], cell
differentiation [19]–[23], sporulation [24], [25], apoptosis
[26]–[28], lysis of infected bacterial cells [29]–[31], etc.

As the protein levels are subject to molecular fluctuations
due to inherent noise in gene expression [32]–[42], the timing
of an event that triggers at a critical threshold is expected
to exhibit cell-to-cell variation. Indeed, recent single-cell
experiments have shown considerable cell-to-cell variability
in timing of cellular events [29], [43].

Our recent work has characterized the stochasticity in the
timing of events originating from the inherent gene expres-
sion noise by formulating event timing as a first-passage
time problem [44], [45]. The models of gene expression
considered therein however only accounted for transcription
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(synthesis of mRNA from gene) and translation (synthesis
of protein from mRNA) while assuming that the gene was
always active. However, single-cell measurements have re-
vealed that genes are not always active. Instead, they switch
between active and inactive states [46]–[54].

Here we explore the effects of gene switching on the first-
passage time statistics. We model the gene dynamics as a
telegraph process that switches between ON (active) and
OFF (inactive) states at exponentially distributed times. We
specifically examine the effect of the average time period
of the pulsing, and the average duty cycle (average fraction
of time for which the signal stays in ON state) on the
FPT statistics. In addition to gene switching, our model
considers production of mRNAs when gene is in the ON
state. Regardless of the state of the gene, each mRNA can
synthesize proteins before degrading. For analytical tractabil-
ity, we assume that mRNA half-life is small as compared to
that of the protein of our interest. Therefore, we can ignore its
dynamics and assume that each transcription event produces
protein molecules in bursts that follow geometric distribution
[55]–[57].

Our results show that two important parameters that affect
the shape of the distribution as well as the moments of event
timing are: the time-scale of switching with respect to the
protein degradation rate, and the ratio of gene activation rate
to gene inactivation rate. The effect of time-scale is more
prominent when the gene activation rate is smaller than or
comparable to the gene inactivation rate.

The paper is organized as follows. Section II provides
detailed description of our model and then discusses the
calculations for first-passage time for the model considered
herein. Section III explores the effects of gene switching
parameters on the first-passage time statistics, and finally
Section IV concludes the paper.

II. STOCHASTIC DESCRIPTION OF EVENT TIMING

In this section, we describe a model of gene expression
and use it to compute statistics of event timing.

A. Model Formulation

Let g(t) ∈ {0, 1} denote the state of the gene such
that g(t) = 0 implies that the gene is inactive (OFF) and
g(t) = 1 represents that the gene is active (ON). The
stochastic switching of the gene between these two states
is modeled as a telegraph process

g(t) = 0
kf−−−⇀↽−−−
kb

g(t) = 1. (1)
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Once the gene is in the active state, it produces mRNAs with
a rate k. In other words, the mRNA synthesis rate is given by
kg(t). Each mRNA molecule produces proteins with a rate
kp and it degrades with rate γm. The protein degradation
rate is denoted by γp (Fig. 1). Both mRNA transcripts and
the protein molecules degradation events are considered to
be single step processes.

For analytical tractability, we assume that mRNA half-life
is small as compared to that of the protein of our interest, i.e.,
γm � γp. Therefore, we can ignore its dynamics and assume
that each transcription event produces protein molecules in
bursts that follow geometric distribution with mean burst size
b = kp/γm [55]–[57]. More precisely, let x(t) denote the
protein level in a cell at time t then the probabilities of gene
switching, protein production, and degradation events taking
place in an infinitesimal time interval (t, t+ dt) as

P (g(t) = 0|g(t) = 1) = kbdt, (2a)
P (g(t) = 1|g(t) = 0) = kfdt, (2b)
P (x(t) = i+B|x(t) = i) = kg(t)dt, (2c)
P (x(t) = i− 1|x(t) = i) = iγdt, (2d)

P(B = i) =
bi

(b+ 1)i+1
, b ≥ 0, i ∈ {0, 1, 2, . . . , }. (2e)

Here, P is notation for probability and B denotes the burst
size which follows a geometric distribution with mean b.

Having defined the model, we can now characterize the
statistics of the time at which protein level crosses a specific
threshold.

B. Event Timing Distribution
We are interested in computing distribution of the first

time at which x(t) crosses a threshold X (Fig. 1). The time
to this event can be conveniently formulated as first-passage
time (FPT) defined as

T := inf{t ≥ 0 : x(t) ≥ X|x(0) = 0}. (3)

The pdf of T can be computed by constructing an auxiliary
process xaux(t) on the state-space {0, 1, . . . , X}. The initial
conditions as well as the probabilities of occurrences for this
process are exactly same as x(t) in (2), except that here X is
an absorbing state, i.e., once the process reaches the state X ,
it remains there forever. In terms of the first-passage time,
both processes x(t), and xaux(t) are identical.

The probability that the state X is reached by xaux(t) in
the time-interval (t, t+ dt) is given by

P (T ∈ (t, t+ dt)) =
X−1∑
i=0

kdt× P (B ≥ X − i)× P (g(t) = 1, xaux(t) = i) .

(4)

Denoting the pdf of T by fT (t), using the fact that
Probability (B ≥ X − i) = (b/b + 1)X−i, and denoting
P1,i(t) := P (g(t) = 1, xaux(t) = i), we get

fT (t) =
X−1∑
i=0

k

(
b

b+ 1

)X−i

P1,i(t). (5)

The terms Pi(t) can be determined from the Chemical
Master Equation (CME) which can be written as a system
of differential equations

fT (t) =
X−1∑
i=0

k

(
b

b+ 1

)X−i

P1,i(t). (6)

The terms P1,i(t) can be computed from the master equation
for the auxiliary process that can be written as

dP0,i(t)

dt
= −kfP0,i(t) + kbP1,i(t)

+ γ [(i+ 1)P0,i+1(t)− iP0,i(t)] , 0 ≤ i ≤ X − 2, (7a)
dP0,X−1(t)

dt
= −kfP0,X−1(t) + kbP1,X−1(t)

− (X − 1)γP0,X−1(t), (7b)
dP1,i(t)

dt
= kfP0,i(t)− kbP1,i(t)

+ γ [(i+ 1)P1,i+1(t)− iP1,i(t)]

+

i−1∑
n=0

k
bi−n

(b+ 1)i−n+1
P1,n(t)

− k b

b+ 1
P1,i(t), 0 ≤ i ≤ X − 2, (7c)

dP1,X−1(t)

dt
= kfP0,X−1(t)− kbP1,X−1(t)

− (X − 1)γP1,X−1(t)

+
X−2∑
n=0

k
bX−n

(b+ 1)X−n+1
P1,n(t)

− k b

b+ 1
P1,X−1(t), (7d)

where we have used the following notation

P0,i(t) = P (g(t) = 0, xaux(t) = i) , (8)
P1,i(t) = P (g(t) = 1, xaux(t) = i) (9)

[58]–[61]. Stacking the probabilities in a single vector

P (t) =



P0,0(t)
...

P0,X−1(t)
P1,0(t)

...
P1,X−1(t)


. (10)

leads to a convenient form of the CME as the following
linear time invariant dynamical system

dP (t)

dt
= AP (t). (11)

The matrix A in the above equation can be written as

A =

[
A00 A01

A10 A11

]
, (12)
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Fig. 1. Event timing as a first-passage time problem. Left: A sketch of the gene expression model that includes production and degradation of mRNA/protein
molecules. The gene dynamics is represented by g(t). Right: An event of interest is triggered when the protein level reaches a critical event threshold for
the first time. Each protein trajectory is representative of protein level over time inside individual cells. As a consequence of stochastic expression of the
protein, the threshold is attained at different times in different cells. The corresponding time at which the event happens denotes the first-passage time/event
time.

where (i, j)− th elements of the X ×X block matrices are
given by

(A00)ij =


(i− 1)γ, j = i+ 1

−kf − (i− 1)γ, j = i

0, otherwise.
(13a)

(A01)ij =

{
kb, j = i

0, otherwise.
(13b)

(A10)ij =

{
kf , j = i

0, otherwise.
(13c)

(A11)ij =


0, j > i+ 1

(i− 1)γ, j = i+ 1

−kb − k b
b+1 − (i− 1)γ, j = i

k bi−j

(b+1)i−j+1 , j < i.

(13d)

where i, j ∈ {1, . . . , X}.
Using the solution of the linear time invariant system of

equations in (10), the pdf of T can be written as

fT (t) = kU>P (t), (14)

where U represents the following 2X-dimensional vector

U =

[
0 . . . 0

(
b

b+1

)X
· · · b

b+1

]>
. (15)

The solution P (t) can be analytically computed as

P (t) = exp(At)P (0). (16)

Here the initial condition is taken as P (0) =[
0 . . . 0 1 0 . . . 0

]>
which corresponds to g(0) = 1,

xaux(0) = x(0) = 0 with probability one. As a result, the
pdf of T takes the form

fT (t) = kU> exp(At)P (0). (17)

We can now use (17) to compute the moments of T . In
particular, we study the first two moments in this work.

C. Moments of Event Timing

We can use (17) to compute a mth order moment as

〈Tm〉 =
∫ ∞
0

tmfT (t)dt = kU>
(∫ ∞

0

exp(At)dt

)
P (0).

(18)
Though we do not provide a formal proof here, the matrix A
has the property that its diagonal elements are negative and
dominant (i.e., sum of absolute values of all other elements in
a column is less than absolute value of the diagonal element).
Thus, we can use the result from [62, Thm. 1, pp 48–49] to
argue that A is full-rank and eigenvalues with negative real
parts. Therefore, the above integral simplifies to [45]

〈Tm〉 = (−1)m+1m!kU>
(
A−1

)m+1
P (0). (19)

To compute A−1, we now use the standard formulas for
inverse of a block diagonal matrix as [63]

A−1 =

[
A′00 A′01
A′10 A′11.

]
(20)

where

A′00 =
(
A00 −A01A

−1
11 A10

)−1
(21)

A′01 =
(
A00 −A01A

−1
11 A10

)−1
A01A

−1
11 (22)

A′10 = −
(
A11 −A10A

−1
00 A01

)−1
A10A00 (23)

A′11 = −
(
A11 −A10A

−1
00 A01

)−1
(24)
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Typically, there are multiple ways to write the inverse,
depending upon which of the block matrices are non-
singular. Due to sheer complexity of the expressions, we
do not provide explicit form of A−1. At any rate, we can
numerically invert these matrices and obtain A−1 to compute
the moments.

So far, we have found an expression for the distribution
and moments of T in terms of the model parameters. In the
next section, we explore the effect of model parameters on
these.

III. EFFECT OF MODEL PARAMETERS

We begin by exploring the effect of gene switching pa-
rameters on the distribution of T given by (17). To keep the
analysis relative to the protein time-scale, we set γp = 1.
In Fig. 2, we plot the distribution for various values of kf
and kb. Since the time-scale of gene turning off is set by
1/kb, we look at its values that are orders of magnitude
different. Furthermore, the average time for which the gene
remains active is given by 1/(1 + kb/kf ). Therefore, we
look at various values of kf that span a couple of orders of
magnitude of kb. We note that when kb is small as compared
to γ, i.e., the switching occurs at a slow rate, then the ratio of
kf to kb doesn’t affect the distribution much (blue curves).
On the other hand, if kb is much higher than γ, then the ratio
greatly impacts the distribution shape (magenta curves). In
particular, when kb is higher than kf , the distribution has
a heavy-tail (top, right). Likewise, when kf is much larger
than kb, then the relative value of kb with respect to γ doesn’t
affect the distribution much (bottom row). The value of kb
starts to impact the distribution when kf is either similar or
much smaller than kb (middle and top rows).

In our previous work [64], we noted that the relative
positions of the study-state protein level with respect to the
event threshold can affect the noise in event timing in non-
trivial ways. In this model, the steady-state protein level is
given by

xss =
1

1 + kb

kf

k × b
γ

. (25)

Indeed when the distribution has a long-tail (as in top row,
right), xss = 50/11 which is much less than the event
threshold X = 20. Therefore, the relative positions of xss
and X seem to matter in this case as well.

We can also use the expression of moments in (19) to
look at the effect of moments. To illustrate this, we look
at the effect of duty cycle r = kon

kon+koff
, i.e., fraction of

time the gene is in ON state on the moments of event
timing. Interestingly, while the mean time expectedly de-
creases with increase in the duty cycle, the noise (quantified
by coefficient of variation squared) shows a non-monotonic
behavior (Fig. 3). Note that while the decrease in noise can
be explained by the relative positions of the event threshold
and xss, the earlier increase in the noise cannot be explained
this way since xss increases with duty-cycle.

IV. CONCLUSIONS

In this paper, we studied the effect of gene switching
on the distribution and statistics of timing of an event
that triggers upon attainment of a specific protein level.
We showed that both the ratio of switching rates as well
as the time-scale of switching as compared to the protein
degradation rate affect the statistics. Future work will explore
effect of feedback strategies on event timing, wherein the
feedback affects the rate of activation or inactivation.
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Fig. 2. Effect of gene switching parameters on the probability density function of T in (17). We have chosen γ = 1, so as to normalize all parameters
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