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ABSTRACT	

As	a	widespread	RNA	processing	machinery,	alternative	polyadenylation	plays	a	crucial	role	in	
gene	 regulation.	 To	 help	 decipher	 its	 underlying	mechanism	 and	 understand	 its	 impact,	 it	 is	
desirable	 to	 comprehensively	 profile	 3’-untranslated	 region	 cleavage	 and	 associated	
polyadenylation	sites.	State-of-the-art	polyadenylation	site	detection	tools	are	influenced	either	
by	 library	 preparation	or	manually	 selected	 features.	Here	we	present	 Termin(A)ntor,	 a	 deep	
neural	network-based	profiling	pipeline	to	predict	polyadenylation	sites	from	RNA-seq	data.	We	
show	 how	 Termin(A)ntor	 outperforms	 competing	 tools	 in	 sensitivity	 and	 precision	 on	
experimental	transcriptome	sequence	data.	We	also	demonstrate	applications	of	Termin(A)ntor	
with	both	short-read	and	long-read	sequencing	technologies.	
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BACKGROUND	

Since	poly(A)	sequences	were	first	discovered	on	the	3’	ends	of	eukaryotic	mRNAs	40	years	ago	
(1),	 numerous	 studies	 have	 contributed	 to	 the	 understanding	 of	 the	mechanisms,	 evolution,	
regulation,	 and	 impacts	 of	 polyadenylation	 (poly(A))	 (2–5).	 As	 an	 essential	 step	 in	 mRNA	
maturation,	 RNA	 polyadenylation	 involves	 two	 phases:	 3’	 end	 cleavage	 of	 nascent	 RNA	 and	
addition	of	a	poly(A)	tail.	Because	most	nascent	RNA	in	eukaryotes	have	more	than	one	possible	
3’	end	cleavage	site	(CS),	mRNAs	with	different	3’	ends	are	formed	following	these	two	coupled	
processes	 (6).	 This	 phenomenon	 is	 also	 known	 as	 alternative	 polyadenylation	 (APA),	 which	
results	 in	 transcripts	 with	 different	 3’	 untranslated	 regions	 (UTR).	 In	 recent	 years,	 APA	
modulation	 under	 different	 physiological	 and	 pathological	 conditions	 ,	 and	 recent	 advances	
have	shed	light	on	its	implications	in	some	diseases,	especially	cancer	(5,7–9).		

The	importance	of	profiling	poly(A)	sites		

APA	 and	 together	 alternative	 splicing,	 both	 have	 considerable	 impact	 on	 the	modulation	 of	
gene	 expression	 and	 contribute	 to	 the	 transcriptome	 complexity.	 To	 date,	 the	 catalogue	 of	
profiled	poly(A)	sites,	especially	cancer-specific	ones,	is	far	from	complete.	Ensembl	annotation	
version	GRCh38.94	 recorded	 63,620	 poly(A)	 sites	 for	 19,907	 protein	 coding	 genes	 in	 human,	
and	among	them,	73.13%	genes	can	produce	two	or	more	APA	isoforms	(Supplementary	Figure	
S1)	 (10).	 The	 most	 recent	 poly(A)	 database,	 PolyA_DB3,	 compiled	 24	 human	 samples	 and	
cataloged	108,042	poly(A)	sites	 for	20,998	genes	 (11).	The	substantial	 improvement	 in	3’	end	
annotation	 compared	 to	 Ensembl	 suggests	 the	 sample-specific	 usage	 of	 poly(A)	 sites	 and	
highlights	the	incompleteness	of	the	current	annotation.	Moreover,	usage	of	these	poly(A)	sites	
is	 dynamically	 regulated	 under	 different	 developmental	 stages	 and	 pathological	 changes,	 as	
elucidated	 in	 previous	 studies	 (5,7,12,13).	 Profiling	 poly(A)	 sites	 with	 respect	 to	 biological	
conditions	 serves	 as	 the	 first	 step	 towards	 deciphering	 the	 underlying	 mechanism	 of	 APA-
mediated	gene	 regulation.	Hence,	 it	 is	desirable	 to	 incorporate	a	 fast	 and	 robust	poly(A)	 site	
characterization	tool	into	standard	transcriptome	analysis	pipelines.		
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Current	methods	and	limitations	

In	the	past	decades,	continuous	efforts	have	been	made	to	annotate	3’	ends	in	the	genome	and	
predict	poly(A)	 sites	 in	 the	 transcriptome,	using	methods	designed	 for	 two	major	 sequencing	
protocols:	 3’	 end	 sequencing	 and	 poly(A)-selected	 RNA-seq.	 3’	 end	 sequencing	methods	 are	
specialized	 high	 throughput	 sequencing	 techniques	 that	 are	 developed	 to	 overcome	 the	 low	
sequence	complexity	nature	of	the	3’	end	of	transcripts,	including	TAIL-Seq,	PolyA-Seq,	PAS-seq,	
PAT-seq,	 etc.	 (14–17).	 Essentially,	 only	 the	3’	 ends	of	 transcripts	 are	 interrogated	by	primers	
and	 sequenced,	 in	 combination	 with	 subsequent	 sequence	 analysis	 pipeline.	 Comparing	 to	
RNA-seq,	a	critical	advantage	of	these	protocols	is	their	high	sensitivity	in	detecting	poly(A)	sites	
from	 lowly	 expressed	 transcripts.	 With	 the	 help	 of	 3’	 end	 sequencing	 technologies,	 several	
poly(A)	site	databases	have	been	established	and	the	current	3’	end	annotation	is	significantly	
improved	as	a	result.	Though	powerful,	they	require	specialized	library	preparation,	which	can	
be	costly	and	laborious	and	have	not	yet	been	widely	exploited	in	genetic	researches	because	
their	application	is	restricted	to	poly(A)	detection.			

In	contrast,	RNA-seq	is	the	established	sequencing	method	of	choice	for	transcriptomics.	 	 It	 is	
not	 only	 ideal	 for	 poly(A)	 site	 profiling	 on	 a	 per-sample	 basis,	 but	 also	 for	 systematic	 APA	
analysis	 and	 retrospective	 studies	 of	 large	 cohort	 RNA-seq	 data.	 Poly(A)	 site	 prediction	 and	
annotation	 tools	 designed	 for	 RNA-seq	 have	 demonstrated	 that	with	 decent	 coverage	 (Read	
coverage	>=	2).	RNA-seq	reads	contains	sufficient	 information	for	the	 identification	of	poly(A)	
tails	 and	 discovery	 of	 novel	 poly(A)	 sites	 (18,19).	 Generally	 speaking,	 these	 tools	 can	 be	
classified	 into	 three	 approaches:	 read-evidence	 based,	 expression	 level	 based,	 and	 machine	
learning	based.		

Read-evidence	 based	 approaches,	 represented	 by	 KLEAT	 and	 ContextMap2,	 search	 for	
nontemplated	adenosines	(A’s)	 in	aligned	reads	or	de	novo	assembled	transcripts	as	evidence	
to	 determine	 the	 location	 of	 poly(A)	 sites	 (18,19).	 Although	 these	 tools	 are	 able	 to	 discover	
novel	poly(A)	sites	with	high	resolution,	 they	may	 lose	sensitivity	 in	 low	coverage	sequencing	
libraries	because	of	 the	 inadequate	 read	evidence	 support	 (i.e.	 insufficient	 reads	mapping	 to	
one	site).		

For	approaches	based	on	expression	 levels,	poly(A)	 site	prediction	 is	 actually	a	by-product	of	
APA	 analysis.	 Tools	 adopting	 this	 approach	 such	 as	 DaPars,	 APAtrap,	 and	 QAPA,	 all	 rely	 on	
differential	 expression	 in	 the	 3’	 UTR	 of	 different	 samples	 (20–22).	 Due	 to	 the	 low	 sequence	
complexity	of	3’	UTRs,	 read	coverage	 in	 these	 regions	may	not	 reflect	 true	expression	 levels,	
which	 will	 impact	 differential	 expression	 analysis	 and	 associated	 statistical	 tests.	 As	 a	
consequence,	 these	 methods	 may	 fail	 to	 detect	 novel	 but	 lowly	 expressed	 poly(A)	 sites.	 In	
addition,	only	poly(A)	sites	involved	in	significant	APA	events	are	reported,	thus	these	tools	are	
not	capable	of	profiling	all	poly(A)	sites	in	given	samples.	

Another	angle	to	address	the	prediction	problem	is	through	machine	learning	(ML)	approaches,	
and	several	such	models	have	been	proposed.		These	include	more	traditional	ML	methods	like	
support	vector	machine	and	Hidden	Markov	Model,	but	also	the	 latest	deep	 learning	models,	
such	 as	 DeeReCT-PolyA	 and	 DeepGSR	 (23–26).	 Deep	 learning	 models	 generally	 outperform	
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traditional	 classifiers	 because	 they	 abandon	manually	 selected	 features.	 Raw	 sequences	 are	
directly	fed	in	and	hidden	features	may	be	learnt	and	modeled.	The	latter	two	tools	mentioned	
above	have	been	reported	to	show	around	90%	accuracy	on	test	sequences	(23,24).	However,	
these	 models	 are	 only	 trained	 to	 distinguish	 whether	 a	 poly(A)	 signal	 (PAS,	 a	 conserved	
hexamer	motif)	is	real,	but	in	reality,	a	small	proportion	of	functional	human	poly(A)	site	does	
not	require	PAS	(27,28).	The	performance	of	these	tools	on	experimental	RNA-seq	data	has	not	
yet	been	explored.	At	present,	these	approaches	overlook	poly(A)	sites	with	noncanonical	cis-
acting	elements,	which	would	likely	negatively	impact	their	performances	on	experimental	data.			

Termin(A)ntor	

Despite	 the	 availability	 of	 various	 tools,	 comprehensively	 and	 efficiently	 profiling	 all	 poly(A)	
sites	 in	RNA-seq	samples	still	 remains	challenging.	 In	 this	 study,	we	present	Termin(A)ntor,	 	a	
deep	 neural	 network	 (NN)	 model	 for	 fast	 and	 accurate	 poly(A)	 site	 recognition	 that	 is	
independent	of	the	existence	of	a	PAS.	Termin(A)ntor	takes	fixed	length	sequence	as	input	and	
performs	three-label	classification	to	determine	whether	the	sequence	contains	a	poly(A)	site,	a	
non-polyadenylated	 CS,	 or	 no	 sites.	 In	 addition,	 we	 also	 propose	 a	 profiling	 pipeline	 that	
generates	precise	prediction	of	poly(A)	sites	using	raw	RNA-seq	data	as	input.	Its	performance	
was	cross-validated	on	 two	data	sets	of	 sequences	 (human	and	mouse)	 to	select	 the	optimal	
input	 sequence	 length	 and	 model	 hyperparameters.	 We	 have	 benchmarked	 our	 pipeline	
against	competing	tools	on	experimental	RNA-seq	libraries	generated	from	the	Illumina	paired-
end	and	PacBio	Single	Molecule,	Real-Time	(SMRT)	Sequencing	platforms.		

RESULTS	

Performance	of	Termin(A)ntor	using	different	sequence	lengths	

Here	 we	 present	 Termin(A)ntor,	 a	 deep	 	 based	 classifier	 that	 is	 trained	 on	 experimentally	
validated	DNA	sequences	containing	three	types	of	sites:	poly(A)	site,	non-polyadenylated	CS,	
or	no	sites.	Termin(A)ntor	computes	the	probability	of	a	test	sequence	belonging	to	one	of	the	
three	classes.	We	generated	two	data	sets	of	sequences,	human	and	mouse,	based	on	poly(A)	
site	 databases	 and	 Ensembl	 annotation,	 and	 comprehensively	 evaluated	 the	 performance	 of	
Termin(A)ntor	(Methods).		

With	 the	 cross-validated	 optimal	 hyperparameters,	 we	 finalized	 the	 architecture	 of	
Termin(A)ntor	as	shown	in	Methods.	Input	sequences	from	all	three	classes	have	equal	lengths,	
each	 of	which	 has	 three	 parts:	 upstream	 sequence,	 poly(A)	 site,	 and	 downstream	 sequence.	
Upstream	sequences	are	from	corresponding	transcripts	or	genomic	regions	if	no	transcript	 is	
found	 in	 that	 region,	 while	 downstream	 sequences	 are	 genomic.	 Since	 there	 is	 no	 general	
consensus	from	previous	work	on	how	the	sequence	length	influences	prediction	accuracy,	we	
built	 models	 with	 different	 lengths	 to	 evaluate	 its	 effect	 on	 performance.	 Eight	 upstream	
lengths	(200,	160,	120,	100,	80,	60,	40	and	20	nt)	and	five	downstream	lengths	(200,	100,	40,	20	
and	0	nt)	were	chosen	to	create	a	total	of	40	models,	which	were	trained	to	explore	the	impact	
of	 sequence	 length	 on	 poly(A)	 site	 prediction	 (Figure	 1).	 In	 general,	 all	 models	 show	 clear	
separation	 between	 Poly(A)	 sites	 and	 the	 other	 two	 labels	 (Supplementary	 Figure	 S2).	 The	
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accuracy	of	all	40	models	is	above	87%,	including	the	one	trained	with	only	20	nt	long	upstream	
sequence.	 As	 expected,	 models	 trained	 with	 sequences	 containing	 both	 upstream	 and	
downstream	sequences	perform	better	than	the	ones	trained	with	upstream	sequences	alone.	
However,	 given	 the	 same	 upstream	 sequences,	models	 trained	with	 downstream	 sequences	
longer	 than	 20	 nt	 perform	 comparably	 to	 each	 other.	 The	 28	models	 trained	with	 upstream	
sequences	in	{40,	60,	80,	100,	120,	160,	200}	and	downstream	sequences	in	{20,	40,	100,	200}	
have	 an	 average	 accuracy	 of	 94.50%	 ±	 0.0015.	 More	 interestingly,	 longer	 downstream	
sequences	 do	 not	 necessarily	 lead	 to	 better	 performance.	 Models	 trained	 with	 200	 nt	
downstream	sequences	have	slightly	lower	accuracy	than	the	ones	trained	with	shorter	lengths,	
suggesting	 that	 some	 polyadenylation	 recognition	 patterns	 maybe	 obscured	 by	 sequence	
motifs	further	downstream.		

	
Figure	 1.	Model	 performance	 on	 human	 data	 set.	 Each	 facet	 plot	 represents	 one	 downstream	
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sequence	 length,	and	 the	x-axis	of	each	 facet	plot	 shows	 the	upstream	sequence	 length.	Each	data	
point	is	the	mean	of	5-fold	cross-validation	and	the	error	bar	is	standard	deviation.		
	
On	the	other	hand,	given	the	same	downstream	sequence,	the	performance	of	models	plateaus	
when	the	upstream	sequence	 is	40	nt	or	 longer.	Similarly,	 longer	upstream	sequences	do	not	
guarantee	better	performance	either,	especially	when	the	upstream	length	is	much	longer	than	
the	 downstream	 length.	 For	 example,	 the	model	 with	 120	 nt	 upstream	 sequence	 and	 20	 nt	
downstream	 sequence	 is	 nearly	 0.5%	 more	 accurate	 than	 the	 one	 with	 200	 nt	 upstream	
sequence	 and	 20	 nt	 downstream	 sequence.	 This	 decrease	 is	 mainly	 due	 to	 the	 drop	 in	
specificity,	which	means	 the	model	has	more	 false	positive	predictions	with	 longer	upstream	
sequence.	

Tool	comparison	on	experimental	data	

In	order	to	demonstrate	the	application	of	Termin(A)ntor	on	poly(A)	site	profiling,	we	designed	
a	prediction	pipeline	and	applied	 it	on	two	human	RNA-seq	samples,	Human	Brain	Reference	
RNA	 (HBR)	 and	 Universal	 Human	 Reference	 RNA	 (UHR).	 As	 done	 previously,	 we	 trained	
Termin(A)ntor	 with	 40	 length	 combinations,	 applied	 all	 40	 models	 on	 UHR	 sample,	 and	
computed	 the	 Pareto	 frontier	 based	 on	 sensitivity	 and	 precision.	 The	 sensitivity	 of	
Termin(A)ntor	 is	 positively	 correlated	with	upstream	 sequence	 length,	while	 there	 is	 no	 clear	
trend	 between	 the	 downstream	 sequence	 length	 and	 performance	 metrics	 (Supplementary	
Figure	 S3).	 For	 demonstration	 purpose,	 we	 chose	 ±	 100	 nt	 model	 for	 performance	
benchmarking	and	comparison.	

Next,	we	generated	 two	models	 in	Termin(A)ntor	by	 training	on	human	and	mouse	data	 sets	
separately	 with	 ±	 100	 nt	 sequences.	 We	 applied	 these	 two	 models	 on	 the	 UHR	 and	 HBR	
samples	and	compared	the	performance	with	KLEAT,	DeeReCT-PolyA	and	DeepGSR	(Figure	2A,	
Supplementary	Figure	S4A).	Poly(A)	sites	predicted	by	these	methods	were	compared	against	
Ensembl	 annotation	 to	 calculate	 the	 sensitivity	 and	 precision.	 It	 is	 important	 to	 note	 that	
DeeReCT-PolyA	 and	 DeepGSR	 are	 binary	 classifiers	while	 Termin(A)ntor	 outputs	 a	 probability	
value	that	can	be	tuned	in	favour	of	either	sensitivity	or	precision.	Nevertheless,	Termin(A)ntor	
trained	 on	 human	 sequences	 consistently	 outperforms	 all	 competing	 tools	 in	 both	 metrics,	
except	for	one	data	point,	which	corresponds	to	the	raw,	filter-less	KLEAT	predictions.	However,	
their	precision	 is	 too	 low	 (35.90%	and	25.52%	 for	UHR	and	HBR	 samples,	 respectively)	 to	be	
used	for	high-confidence	predictions.	Although	KLEAT	performs	comparabaly	to	Termin(A)ntor	
on	 UHR	 sample,	 its	 performance	 is	 surprisingly	 low	 on	 HBR	 sample	 regardless	 of	 what	 read	
evidences	are	used	 to	 filter	 the	 its	 raw	predictions.	 It	 is	 also	worth	mentioning	 that	 the	 four	
models	 built	 by	 DeeReCT-PolyA	 and	 DeepGSR	 all	 have	 a	 precision	 lower	 than	 50%,	 while	
precisions	of	the	Termin(A)ntor	human	model	(at	probability	=	0.5	cut-off)	are	55.59%	and	57.72%	
for	UHR	and	HBR	samples,	respectively.	
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Figure	 2.	 Performance	 comparison	 on	 HBR	 sample.	 (A)	 Sensitivity	 and	 specificity	 of	 poly(A)	 sites	
predictions	 from	 Termin(A)ntor,	 KLEAT,	 DeeReCT-PolyA	 and	 DeepGSR	 on	 Ensembl	 annotated	 poly(A)	
sites.	The	two	pre-trained	models	of	DeepGSR	are	the	one	with	sequences	containing	only	the	hexamer	
AATAAA,	and	the	one	with	sequences	containing	all	hexamers	pooled	together.	Two	pre-trained	models	
of	DeeReCT-PolyA	are	 the	one	with	dragon	data	 set	and	 the	one	with	omni	data	 set	described	 in	 the	
DeeReCT-PolyA	publication.	Two	pre-trained	Termin(A)ntor	models	are	the	one	with	human	data	set	and	
the	one	with	mouse	data	set.	The	navy	/blue	crosses	on	Termin(A)ntor	human/mouse	model	represent	
probability	=	0.5	cut-off,	respectively.	(B)	Poly(A)	sites	that	are	missing	from	Ensembl	annotation	were	
compared	to	the	ones	predicted	by	PolyA-Seq.	
 
Since	 UHR	 and	 HBR	 samples	may	 express	 novel	 transcripts	 or	 transcripts	 with	 novel	 poly(A)	
sites,	we	compared	the	falsely	predicted	poly(A)	sites	determined	by	Ensembl	annotation	with	
the	corresponding	PolyA-seq	predictions	to	identify	true	novel	ones	(Figure	2B,	Supplementary	
Figure	S4B).	We	observe	a	higher	percentage	(23.26%	to	36.95%)	of	poly(A)	sites	predicted	by	
Termin(A)ntor,	 regardless	 of	 the	 species	 of	 the	 model,	 and	 whether	 they	 have	 PolyA-seq	
evidence	 support	 which	 may	 explain	 its	 high	 precision	 compared	 to	 the	 other	 methods.	
Although	 the	 raw	 KLEAT	 predictions	 identified	 a	 large	 number	 of	 poly(A)	 sites,	 only	 a	 small	
proportion	 can	be	 verified	by	PolyA-seq.	 To	maintain	 the	precision,	 certain	 filters	have	 to	be	
applied	 to	 make	 use	 of	 KLEAT	 predictions,	 while	 the	 choice	 of	 filter	 may	 be	 highly	 library-
dependent.	

We	 compared	 the	 runtime	 and	 peak	memory	 usage	 of	 all	 competing	 tools	 under	 the	 same	
computing	environment	(Table	1).	All	 four	pipelines	used	RNA-Bloom	as	the	de	novo	RNA-seq	
assembler,	 which	 also	 contributed	 to	 the	 peak	 memory	 usage	 of	 37.87	 GB.	 Termin(A)ntor,	
DeepGSR,	 and	 DeeReCT-PolyA	 shared	 the	 same	 pipeline	 in	 identifying	 candidate	 sequences,	
and	 the	 only	 difference	 is	 the	 NN	 used	 for	 sequence	 classification,	 which	 resulted	 runtime	
differences.	 DeeReCT-PolyA	 is	 the	 fastest	 tool,	 followed	 by	 Termin(A)ntor	 with	 10-minute	
(1.57%)	 difference.	 DeepGSR	 runs	much	 slower	 than	 the	 other	 two	NNs	 probably	 due	 to	 its	
implementation,	which	was	run	with	Python	2.7	and	older	versions	of	Keras	and	Theano	(the	
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only	compatible	 language	and	packages).	KLEAT	 is	more	than	three	times	slower	as	the	other	
tools	because	it	involves	both	reads-to-contig	and	contig-to-genome	alignments.	

Table	1	Runtime	comparison.	The	runtime	for	all	four	pipelines	includes	de	novo	assembly	of	UHR	
sample	(two	replicates),	alignments,	candidate	poly(A)	site	identification	and	classification.	

Pipeline	 Wallclock	Runtime	(hh:mm:ss)	
DeeReCT-PolyA	 7:06:52	
Termin(A)ntor	 7:11:23	
DeepGSR	 11:10:22	
KLEAT	 25:17:00	

	

Impact	of	expression	level	on	prediction	accuracy	

The	Ensembl	annotation	is	a	repertoire	of	transcript	annotations	from	multiple	tissues	and	cell	
lines,	so	not	all	of	the	annotated	poly(A)	sites	are	expressed	in	the	HBR	and	UHR	samples.	We	
quantified	 the	 abundance	of	 all	 polyadenylated	 transcripts	 from	Ensembl	 and	examined	how	
the	 four	 tools	 perform	with	 respect	 to	 poly(A)	 sites	 at	 different	 expression	 levels	 (Figure	 3,	
Supplementary	 Figure	 S5).	 Aside	 from	 the	 spikes	 corresponding	 to	 KLEAT	 raw	 predictions,	
Termin(A)ntor	 consistently	 performs	 better	 than	 all	 competitors	 in	 four	 tiers	 of	 expression	
thesholds.	As	expected,	 the	 sensitivity	of	 all	 tools	 increases	as	 the	expression	 level	 threshold	
increases,	 because	more	 reads	 are	 likely	 to	 contain	 the	 poly(A)	 tail.	 The	 difference	 between	
Termin(A)ntor	and	other	tools	increases	as	well	when	the	expression	cut-off	 increases.	In	fact,	
the	metrics	of	Termin(A)ntor	mouse	model	on	poly(A)	sites	expressed	at	>	20	TPM	are	similar	to,	
or	better	than,	DeepGSR	and	DeeReCT-PolyA	models	for	both	UHR	and	HBR	samples.	
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Figure	3.	Performance	comparison	on	UHR	sample	with	different	expression	level	cut-offs.	Sensitivity	
and	 precision	 of	 poly(A)	 sites	 predicted	 by	 Termin(A)ntor,	 KLEAT,	 DeeReCT-PolyA	 and	 DeepGSR	 (7	
models)	when	compared	to	poly(A)	sites	of	annotated	transcripts	with	different	expression	 levels.	The	
four	facet	plots	represent	the	comparison	between	all	expressed	transcripts,	expressed	transcript	with	
transcript	per	million	(TPM)	>	1,	>	10,	and	>	20.	
 
Single	nucleotide	variation	in	PAS	affects	APA	choices	

One	of	the	advantages	of	Termin(A)ntor	is	that	its	capability	of	predicting	poly(A)	sites	is	solely	
based	on	sequence	context.	Consequently,	poly(A)	sites	created	or	destroyed	by	base	changes	
can	be	easily	 identified.	We	carefully	examined	all	candidate	sequences	belonging	to	the	UHR	
sample	 and	 identified	 sequences	 containing	 a	 different	 PAS	 hexamer	 from	 reference	 human	
genome	 assembly.	 Through	 comparisons	 between	 the	 predicted	 probabilities	 and	 the	 base	
variation,	we	discovered	two	cases	of	SNP-associated	polyadenylation.	

The	 first	variant	base	 is	 recorded	 in	SNPdb	as	 rs6484833,	a	C	 to	T	change	at	chr11:36273982	
(GRCh38.p12)	on	the	reverse	strand	(Figure	4A).	This	polymorphism	creates	a	strong	hexamer	
AATAAA	 on	 gene	 COMMD9,	 and	 as	 a	 result,	 it	 created	 an	 unannotated	 poly(A)	 site	 at	
chr11:36273960	on	the	terminus	exon.	 In	our	pipeline,	RNA-Bloom	successfully	reconstructed	
this	novel	transcript	to	full	length	with	a	poly(A)	tail,	and	Termin(A)ntor	predicted	it	as	a	poly(A)	
site	with	0.99	probability.	This	poly(A)	 site	 is	also	detected	 in	PolyA-Seq	of	 the	same	sample.	
Based	on	Ensembl	annotation,	COMMD9	has	3	poly(A)	sites	associated	with	the	same	terminus	
exon.	This	site	results	in	the	second-longest	3’	UTR,	which	harbours	3	miRNA	binding	sites	and	
extensive	RNA	binding	protein	(RBP)	sites	for	19	RBPs	(Supplementary	Figure	S6).	
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The	second	variant	base	is	rs15342,	a	T	to	C	change	at	chr15:	101070089	on	gene	LRRK1	(Figure	
4B).	 This	 polymorphism	 destroys	 a	 strong	 hexamer	 AATAAA,	 which	 is	 associated	 with	 an	
annotated	poly(A)	site	22	nt	downstream.	Figure	4B	shows	that	21	sequencing	reads	containing	
this	 polymorphism	 extend	 beyond	 this	 poly(A)	 site,	while	 reads	 carrying	 the	wildtype	 are	 all	
polyadenylated.	RNA-Bloom	successfully	assembled	both	the	wildtype	transcript	with	a	poly(A)	
tail	 and	 the	 variant	 transcript	 without	 poly(A)	 tail.	 Termin(A)ntor	 classifed	 the	 wildtype	 and	
variant	transcripts	to	contain	poly(A)	sites	with	a	probability	of	0.98	and	0.01,	respectively.	This	
polymorphism	may	prevent	cleavage	at	the	immediate	downstream	poly(A)	site,	leading	to	the	
alternative	usage	of	the	poly(A)	site	further	downstream,	and	produces	a	transcript	with	longer	
3’	 UTR.	 Similarly,	 extensive	 (16)	 miRNA	 binding	 sites	 and	 RBP	 sites	 for	 77	 RPBs	 are	 also	
predicted	to	exist	on	this	extended	3’	UTR	(Supplementary	Figure	S7).	
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Figure	4.	 Integrative	Genomics	Viewer	 (IGV)	 screenshot	of	 two	SNPs	 and	 the	 corresponding	poly(A)	
sites.	All	data	shown	here	are	based	on	the	UHR	sample.	(A)	SNP	rs6484833	on	gene	COMMD9,	(B)	SNP	
rs15342	 on	 gene	 LRRK1.	 For	 both	 panels,	 four	 tracks	 from	 top	 to	 bottom	 are	 Replicate	 1	 assembled	
transcripts	;	Replicate	1	raw	reads;	Replicate	2	assembled	transcripts;	Replicate	2	raw	reads.	
	
Termin(A)ntor	performance	on	long	reads	

Although	the	current	short	read	sequencing	followed	by	de	novo	transcriptome	assembly	is	the	
mainstream	 RNA-seq	 analysis	 pipeline,	 the	 advent	 of	 long	 read	 sequencing	 technologies	
provides	 unprecedented	 opportunity	 to	 study	 APA	 at	 the	 transcript	 isoform	 level.	 Here	 we	
applied	 Termin(A)ntor	 pipeline	 on	 two	 sequence	 libraries	 from	 the	 human	 sample	 NA12878,	
namely	Illumina	short	reads	and	PacBio	circular	consensus	sequence	(CCS)	reads.	Termin(A)ntor	
consistently	 profiles	 three	 times	 or	more	 poly(A)	 sites	 in	 PacBio	 library	 as	 in	 Illumina	 library	
under	 different	 expression	 level	 cut-offs	 (Figure	 5).	 However,	 with	 Illumina	 library,	
Termin(A)ntor	 is	 able	 to	 detect	 more	 poly(A)	 sites	 at	 a	 higher	 precision	 (>	 70%).	 As	 the	
probability	 cut-off	 becomes	more	 stringent,	 less	 positive	 poly(A)	 sites	 are	 predicted	 by	 both	
library,	 but	 the	 overlapping	 percentage	 with	 respect	 to	 Illumina	 library	 increases	
(Supplementary	Figure	S8).	For	predicted	poly(A)	sites	with	a	probability	>	0.9,	59.27%	of	 the	
ones	found	in	Illumina	library	are	also	found	in	PacBio	library.	

	
Figure	5.	Performance	comparison	between	PacBio	 library	and	 Illumina	Library	on	NA12878	sample.	
Sensitivity	and	precision	of	poly(A)	sites	predicted	by	Termin(A)ntor	on	PacBio	library	and	Illumina	library	
when	compared	to	poly(A)	sites	of	annotated	transcripts	with	different	expression	levels.	The	four	facet	
plots	represent	the	comparison	between	all	expressed	transcripts,	expressed	transcript	with	transcript	
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per	million	(TPM)	>	1,	>	10,	and	>	20.	
	

DISCUSSION	and	CONCLUSIONS	

Here	we	introduce	a	novel	deep	learning	model	Termin(A)ntor	to	classify	DNA	sequences	with	
or	 without	 poly(A)	 sites,	 and	 a	 profiling	 pipeline	 that	 starts	 from	 raw	 RNA-seq	 reads	 to	
characterize	expressed	poly(A)	sites.	The	novelties	of	our	model	and	contributions	in	this	work	
are	as	follows:	

1.	 The	 use	 of	 concatenated	 k-mer	 representations	 instead	 of	 raw	 sequence	 as	model	 input.	
Previous	applications	of	deep	 learning	 in	omics	 research	have	shown	that	designing	a	proper	
representation	 of	 the	 raw	 data	 is	 critical	 to	 facilitate	 classification	 performance.	 Inputting	
additional	information,	namely	well-studied	sequence	features,	can	also	alleviate	the	burden	of	
learning	 complex	 structures.	 In	 the	 case	of	 polyadenylation,	 several	 cis-acting	 elements	 have	
been	 revealed,	 such	 as	 the	 GU-rich	 sequences	 in	 the	 downstream,	 UGUA	 elements	 in	 the	
upstream,	 and	 the	 conserved	 hexamer	 motif.	 Inspired	 by	 the	 usage	 of	 k-mer	 in	
genome/transcriptome	assembly,	we	used	k-mer	representation	of	raw	sequences	to	mimic	the	
functional	 motifs.	 Since	 the	 auxiliary	 elements	 may	 have	 different	 lengths,	 multiple	 k-mer	
representations	are	jointly	used	to	push	the	accuracy	further.		

2.	 The	 use	 of	 an	 embedding	 layer	 to	 learn	 the	 similarities	 between	 k-mer	 pairs.	 One-hot	
encoded	k-mer	representation	of	raw	sequence	is	high	dimensional	and	sparse.	In	our	case,	the	
length	of	the	 input	 is	exponential	 to	k.	 In	other	words,	most	positions	 in	the	 input	vector	are	
zeros,	which	 is	computationally	 inefficient	and	cannot	reflect	the	similarities	between	k-mers.	
To	 address	 this	 issue,	 we	 borrowed	 the	 concept	 of	 word	 embedding	 from	 natural	 language	
processing	and	used	it	as	an	interface	between	the	input	layer	and	the	following	hidden	layers.	
Essentially,	 in	 embedding	 layer,	 one-hot	 encoded	 k-mers	 are	 converted	 into	 dense	 vectors,	
representing	the	projection	of	k-mers	 in	a	continuous	vector	space.	As	a	consequence,	motifs	
with	similar	 functions	are	 likely	 to	have	similar	weights,	and	treated	similarly	 in	 the	 following	
layers.	

3.	 Separation	 of	 non-polyadenylated	 CSs	 from	 polyadenylated	 CSs.	 To	 our	 knowledge,	
Termin(A)ntor	 is	 the	 first	 poly(A)	 site	 classifier	 that	 included	 non-polyadenylated	 CS	 label.	
Although	most	protein-coding	and	long-noncoding	RNAs	contain	poly(A)	tails	at	their	3’	ends,	a	
significant	 number	 of	 functional	 transcripts	 are	 not	 polyadenylated	 (29).	 Since	 the	 3’	 end	
processing	mechanism	of	 this	group	 is	distinct	 from	polyadenylated	CS,	 separating	 it	out	as	a	
new	 class	 improves	 the	 performance	 of	 the	 model.	 Sequence	 clustering	 based	 on	
Termin(A)ntor’s	 last	 hidden	 layer	 also	 groups	 sequences	with	 non-polyadenylated	CS	 and	 the	
ones	with	no	sites	together	into	one	big	cluster	(Supplementary	Figure	S2).	

Comparing	 to	 targeted	3’	end	 sequencing	 technologies,	RNA-seq,	whether	 short	 read	or	 long	
read	 techniques,	are	more	accessible	and	widely	used	 in	 transcriptome	studies.	 In	 this	 study,	
we	 demonstrate	 that	 the	 Termin(A)ntor	 pipeline	 is	 capable	 of	 identifying	 poly(A)	 sites	 on	
expressed	transcripts	with	high	precision.	The	failure	of	detecting	a	real	and	expressed	poly(A)	
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site	is	mostly	due	to	the	failure	of	reconstructing	transcripts	to	their	3’	ends.	Take	UHR	sample	
as	an	example,	among	the	58,925	expressed	poly(A)	sites	 that	were	not	detected,	more	than	
half	 of	 them	 (30,181)	have	 a	 TPM	 lower	 than	one.	Most	of	 them	have	 very	 few	or	no	 reads	
supporting	 the	 poly(A)	 tail	 because	 of	 sequencing	 bias.	 False	 positive	 predictions	 by	
Termin(A)ntor	generally	occur	for	three	reasons.	The	first	and	most	common	scenario	are	mis-
assemblies	due	to	the	low	sequence	complexity	of	the	3’	UTR.	Second,	these	poly(A)	sites	are	
actually	 real	 but	 unannotated.	 Nearly	 30%	 of	 the	 Termin(A)ntor	 false	 positives	 according	 to	
Ensembl	annotation	are	in	fact	identified	by	PolyA-Seq	(Figure	2B,	Supplementary	Figure	S4B).	
Third,	mis-alignment	 for	 reference-based	pipeline,	which	means	 the	 sequence	may	 contain	 a	
real	poly(A)	site,	but	the	genomic	location	is	incorrect.		

Theoretically,	 Termin(A)ntor	 pipeline	 can	 be	 applied	 on	 any	 reconstructed	 transcripts	 to	
determine	if	its	end	contains	a	poly(A)	site,	or	non-polyadenylated	CS,	or	no	site	(3’	incomplete).	
Aside	 from	 benchmarking	 its	 performance	 on	 traditional	 Illumina	 short	 read	 assemblies,	 we	
also	explored	its	application	on	PacBio	long	read	technology.	Termin(A)ntor	demonstrated	more	
than	twice	sensitivity	in	PacBio	library	as	in	Illumina	library,	probably	because	more	sequences	
containing	 real	 poly(A)	 sites	 are	 fed	 into	 the	NN	model.	 PacBio	 CCS	 reads	 are	 self-corrected	
through	consensus	calling	step,	resulting	in	near-	or	full-length	transcripts	with	poly(A)	tails.	In	
contrast,	 transcripts	 reconstructed	 from	 Illumina	 library	may	 suffer	 from	mis-assemblies	 and	
lowly	expressed	poly(A)	sites	may	be	obscured	by	longer	transcripts.	In	our	analysis,	among	the	
548448	 candidate	 sequences	 extracted	 from	 PacBio	 library,	 29.71%	 of	 them	 contain	
untemplated	poly(A)s,	while	the	ratio	shrunk	to	7.22%	out	of	381934	sequences	from	Illumina	
library.		

In	summary,	Termin(A)ntor	outperforms	all	state-of-art	methods	within	a	reasonable	runtime,	
making	it	an	ideal	tool	as	a	routine	step	in	RNA-seq	analysis.	Termin(A)ntor	has	demonstrated	
its	 performance	 on	 both	 short-read	 and	 long-read	 sequencing	 technologies.	 Transcriptome	
studies	using	 long-read	RNA-seq	data	will	 shed	 light	on	 the	association	between	poly(A)	 sites	
and	 transcript	 isoforms,	 a	 new	 era	 of	 APA	 studies.	Moreover,	 Termin(A)ntor	 can	 be	 used	 to	
identify	 novel	 poly(A)	 sites	 caused	 by	 base	 variation	 accurately.	 As	 has	 been	 elucidated	 in	
previous	 studies,	 novel	 poly(A)	 sites	 are	 expressed	 in	 cancer	 tissues,	 and	 with	 the	 help	 of	
Termin(A)ntor,	 mechanisms	 and	 impacts	 of	 APA	 can	 be	 better	 understood.	 Even	 for	 species	
without	 an	 established	 poly(A)	 site	 database,	 their	 expressed	 poly(A)	 sites	 can	 be	 identified	
with	a	Termin(A)ntor	model	pre-trained	on	a	different	species.	The	usage	of	Termin(A)ntor,	as	a	
sequence	classifier,	is	not	limited	to	poly(A)	site	profiling,	but	can	also	be	extended	to	facilitate	
gene	 annotation	 and	 testing	 the	 completeness	 of	 assembled	 transcripts.	 We	 expect	
Termin(A)ntor	 to	have	broad	applications	 in	genome/transcriptome	annotation,	novel	 isoform	
identification,	APA	analysis	and	gene	regulation	studies.	

METHODS	

Data	sets	

In	 this	work,	we	built	 two	data	 sets	 (human	and	mouse)	 for	model	 training,	 cross-validation,	
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and	 cross-species	performance	demonstration.	 Each	data	 set	 is	 composed	of	 sequences	with	
equal	 lengths	 coming	 from	 three	 classes,	 poly(A)	 site,	 non-polyadenylated	 CS,	 and	 no	 sites	
(Table	 1).	 PolyA_DB	 version3.1	 was	 used	 as	 our	 primary	 poly(A)	 site	 library	 (11).	 We	 first	
mapped	 poly(A)	 sites	 recorded	 in	 PolyA_DB3	 to	 Ensembl	 annotation	 release	 94	 using	
bedtools closest	 (v2.27.1)	 and	 selected	 the	 most	 compatible	 transcript	 for	 each	 site.	
Poly(A)	sites	supported	by	 less	 than	1	Reads	Per	Million	 (RPM)	or	 located	more	than	1000	nt	
downstream	of	any	annotated	transcript	were	considered	unreliable	and	were	discarded.		

To	 avoid	 potential	 poly(A)	 sites	 from	 contaminating	 the	other	 two	 classes,	we	 expanded	our	
poly(A)	 site	 library	 by	 incorporating	 three	 additional	 PolyA	 databases,	 including	 APADB	 v2,	
APASdb,	 and	 PolyASite.	 Again,	we	 used	bedtools closest	 to	 assign	 poly(A)	 sites	 in	 the	
compiled	poly(A)	library	to	Ensembl	transcripts.	Transcripts	with	no	poly(A)	sites	assigned	were	
considered	 as	 cleaved	 but	 not	 polyadenylated	 and	 their	 3’	 ends	 constituted	 the	 non-
polyadenylated	CS	set.		

Pseudo	 sites	 comprises	 5	 types	 of	 genomic	 locations:	 exonic,	 intronic,	 intergenic,	 5’	 and	 3’	
untranslated	 regions,	 which	 are	 randomly	 selected	 and	 at	 least	 100	 nt	 away	 from	 any	
annotated	3’	ends,	including	Ensembl	annotation	and	compiled	poly(A)	library.		

Our	data	sets	are	imbalanced	due	to	the	limited	number	of	non-polyadenylated	CS.	However,	
to	 fully	 exploit	 the	 potential	 of	 deep	 NNs,	 we	 used	 all	 non-redundant	 poly(A)	 sites	 and	 CS	
generated	 as	 above	 descriptions	 and	 deliberately	 matched	 the	 number	 of	 pseudo	 sites	 to	
poly(A)	sites.	As	a	consequence,	we	used	both	accuracy	and	the	F-measure,	the	harmonic	mean	
of	precision	and	recall,	as	assessment	metrics	during	model	training	and	benchmarking.	

	

Model	training	

The	NN	model	is	implemented	in	Python	3.6.6,	using	Keras	library	2.2.4	with	TensorFlow	1.11.0	
as	the	backend	(30,31).	To	evaluate	the	performance	of	the	model	with	different	architectures	
and	hyperparameter	combinations,	we	used	stratified	5-fold	cross	validation	on	the	whole	data	
set	to	monitor	the	overall	accuracy	of	three	labels,	and	accuracy,	sensitivity,	and	specificity	on	
poly(A)	label.	All	performance	metrics	on	the	training	sets	reported	in	this	study	are	the	mean	
and	 standard	 deviation	 of	 5	 validation	 processes.	 In	 each	 process,	 80%	 of	 data	 is	 used	 for	
training	and	20%	is	used	for	validation.	Next,	we	trained	the	model	using	the	entire	training	set	
and	used	it	for	benchmarking	the	performance	on	experimental	data.	

Model	architecture	and	hyperparameter	tuning	

Table	2.	Size	and	origin	of	data	sets	for	model	training,	testing,	and	validation	
Species	 Poly(A)	site	 CS	 Pseudo	site	

H.	sapiens	 52,457	 27,595	 52,460	
M.	musculus	 75,661	 37,028	 75,660	
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Searching	 for	 the	optimal	hyperparameters	 for	a	deep	NN	has	always	been	a	tedious	task,	as	
many	of	them	are	dependent	on	each	other.	We	first	built	the	basic	frame	with	one	input	layer,	
one	embedding	layer,	and	one	output	classification	layer,	and	then	fine-tune	hyperparameters	
related	to	architecture	and	training	using	grid	search	as	listed	in	Table	3.	For	all	models,	initial	
model	weights	were	 randomly	drawn	 from	Glorot	uniform	 initializer	 (32).	The	weights	of	 the	
three	neurons	 in	the	output	 layer	are	computed	via	softmax	activation	function,	representing	
the	probability	distribution	of	the	three	labels	and	they	always	add	up	to	one.	In	order	to	avoid	
over-fitting,	we	 applied	 early	 stopping	 to	 each	model.	 As	 an	 iterative	method,	 the	 validation	
loss	is	monitored	at	each	epoch	and	when	it	stays	the	same	or	increases	for	the	next	ten	epochs,	
the	training	process	will	be	stopped.	Without	early	stopping,	too	many	training	epochs	will	lead	
to	nearly	100%	accuracy	on	training	set,	yet	very	low	accuracy	on	validation	and	test	set.		

	

The	 final	 architecture	 of	 Termin(A)ntor	 is	 depicted	 in	 Figure	 6	 and	 the	 selected	 optimal	
hyperparameters	are	in	bold	font	in	Table	3.	The	first	step	of	Termin(A)ntor	is	to	concatenate	all	
k-mer	 representations	 of	 the	 raw	 DNA	 sequence.	 Each	 k-mer	 in	 the	 one-hot	 encoded	 raw	
sequence	 is	 represented	 as	 a	 vector	 of	 length	 l	 as	 computed	 in	 Formula	 (1),	 which	 is	
exponential	to	k.		

	
(1)	

Then	an	embedding	layer	with	128	nodes	is	used	to	connect	the	input	layer	and	hidden	layers.	
The	next	four	layers	are	all	fully	connected	layers	and	the	activation	function	between	each	two	

Table	3.	Model	hyperparameter	tuning.	Bolded	parameters	are	the	selected	optimal	values.	
Parameter	type	 Parameter	 Search	space	
Training	 Optimizer	 SGD,	Adam,	Adagrad,	RMSprop	

Learning	rate	 0.1,	0.01,	0.001,	0.0001	
Loss	function	 Categorical_cross_entropy,	mean_squared_error	
K-mer	representation	 {1},	{2},	{3},	{4},	{5},	{6},	{7},	{8},	{9},	{10},	{11},	

{12},	{4,	5},	{4,	6},	{4,	8},	{4,	10},	{4,	11},	{4,	5,	6},	
{4,	6,	8},	{4,	5,	6,	10},	{4,	6,	8,	10},	{4,	5,	6,	8,	10}	

Batch	size	 32,	64,	128,	256	
Architecture	 Number	of	layers	 1,	2,	3,	4,	5	

Number	of	nodes	for	
each	layer	

4,	16,	32,	64,	128,	256,	512,	1024	
Refer	to	Figure	6	for	details	

Regularization	 Dropout:	0,	0.1,	0.2,	0.5	
Activation	function	for	
hidden	layers	

Tanh,	ReLU	

	 Activation	function	for	
output	layer	

Softmax,	Sigmoid	
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layers	 is	 rectified	 linear	 unit	 (ReLU).	 Since	 dropout	 regularization	 did	 not	 achieve	 better	
performance,	they	were	removed	from	the	final	model.	

	

Figure	6.	Architecture	of	Termin(A)ntor	

Experimental	data	

The	 raw	 RNA-seq	 reads	 for	 the	 two	MAQC	 reference	 human	 samples,	 HBR	 and	 UHR,	 were	
downloaded	 from	 Illumina	 BaseSpace,	 and	 each	 sample	 has	 two	 replicates	
(https://basespace.illumina.com/projects/3777775/samples)	 (33).	 Raw	RNA-seq	 reads	 Each	of	
the	 4	 libraries	 was	 prepared	 with	 Illumina	 TruSeq	 Stranded	 kits	 using	 poly(A)	 selection	 and	
sequenced	 as	 75bp	 paired-end	 reads.	 The	 Illumina	 and	 PacBio	 reads	 for	 NA12878	 were	
obtained	 from	 an	 earlier	 study	 under	 accession	 number	 SRR1153470	 and	 SRR1163655,	
respectively	 (34).	 The	 Illumina	 reads	 are	 poly(A)	 selected	 and	 sequenced	 as	 75bp	 stranded	
paired-end	reads.	

Prediction	pipeline	

Here	we	propose	a	Poly(A)	site	prediction	pipeline	based	on	Termin(A)ntor.	The	pipeline	starts	
with	 RNA-Bloom,	 a	 fast	 and	 memory-efficient	 de	 novo	 transcriptome	 assembler	 (35).	 RNA-
Bloom	is	run	with	the	option	-stratum 01	that	allows	extension	of	all	fragments	regardless	
of	 its	 coverage,	 and	 the	 option	 --polya	 that	 prioritizes	 the	 assembly	 of	 transcripts	 with	
poly(A)	tails.	The	false	positive	rate	(FPR)	of	Bloom	filters	in	the	program	is	set	to	0.005.	Then,	
all	assembled	transcripts	are	aligned	to	the	reference	genome	hg38	and	compared	to	Ensembl	
annotation	 release	94	 to	 identify	 the	ones	 that	miss	poly(A)	 tail	 but	do	end	 in	 the	3’	UTR	of	
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annotated	 transcripts.	 These	 transcripts,	 together	 with	 the	 ones	 end	 with	 a	 stretch	 of	
untemplated	As,	are	 considered	as	having	potential	poly(A)	 sites.	 Similar	 to	 sequences	 in	 the	
training	 data	 set,	 a	 test	 sequence	 can	 also	 be	 divided	 into	 three	 parts,	 100nt	 upstream	
sequence	 extracted	 from	 the	 assembled	 transcript,	 a	 potential	 poly(A)	 site,	 and	 100nt	
downstream	genomic	sequences	from	the	reference.	Finally,	these	candidate	sequences	are	fed	
into	pre-trained	Termin(A)ntor	for	classification.	

Evaluation	of	prediction	pipeline	

Poly(A)	 sites	are	heterogeneous,	 so	 they	are	often	observed	as	a	group	of	neighbouring	sites	
rather	than	a	precise	genomic	 location	(6).	Predicted	poly(A)	sites	within	30nt	were	clustered	
and	 the	 one	with	 the	 highest	 probability	was	 chosen.	 Ensembl	 annotated	 poly(A)	 sites	were	
also	clustered	in	the	same	way,	while	the	one	located	in	the	median	position	was	chosen	as	the	
representative.	Then,	the	predicted	list	was	compared	with	the	annotated	list	to	compute	the	
hits	and	misses.	 In	our	evaluation	system,	true	positive	poly(A)	site	 is	a	predicted	poly(A)	site	
that	 lies	within	±	30	nt	of	an	annotated	site;	 false	positive	site	 is	a	predicted	poly(A)	site	that	
does	not	lie	within	±	30	nt	of	any	annotated	site;	false	negative	means	an	annotated	site	does	
not	 have	 any	 predicted	 site	 lie	 within	 ±	 30	 nt;	 true	 negative	 means	 there	 is	 no	 real	 nor	
predicted	poly(A)	site	 in	a	certain	 location,	which	cannot	be	monitored.	Since	true	negative	 is	
missing	in	the	evaluation	system,	we	used	sensitivity	and	precision	as	performance	metrics	for	
all	experimental	data	tests.	

Tool	comparison	

We	 applied	 the	 proposed	 prediction	 pipeline	 on	 experimental	 data	 and	 compared	 the	
performance	with	 state-of-the-art	methods.	 All	 experiments	were	 run	 on	 Centos	 6.7	 system	
with	12	Intel	Xeon	E5-2650	CPUs	and	84	GB	memory.	

KLEAT	pipeline	was	chosen	as	a	representative	of	read-evidence	based	approach.	The	auxiliary	
files	 KLEAT	 needed	 include:	 1)	 RNA-seq	 assemblies	 from	 RNA-Bloom,	 2)	 read	 to	 contig	
alignment	file	generated	by	BWA-MEM	0.7.17-r1188	(36),	and	3)	contig	to	genome	alignment	
file	generated	by	GMAP	version	2017-01-14	(37).	Since	KLEAT	only	works	on	hg19	assemblies,	
all	predicted	poly(A)	sites	were	converted	into	hg38	genomic	coordinates	by	UCSC	liftOver	(38).	
KLEAT	 outputs	 all	 possible	 poly(A)	 sites	 and	 their	 supporting	 evidence,	 such	 as	 the	 length	 of	
poly(A)	 tail	 in	 reconstructed	 transcripts,	 the	number	of	 reads	 containing	poly(A)	 tail,	 and	 the	
length	of	poly(A)	 tail	 of	 reads	 that	 can	be	mapped	 to	a	 reconstructed	 transcript.	We	applied	
filters	 to	 the	 raw	 predictions	 with	 different	 combinations	 of	 three	 types	 of	 evidences	 and	
computed	the	Pareto	frontier	for	each	plot.		

Two	emerging	deep	learning	models,	DeepGSR	and	DeeReCT-PolyA,	were	also	 included	in	the	
comparison.	 Similar	 to	 Termin(A)ntor,	 these	 two	 tools	 are	 simply	 NN	models	 expecting	 fixed	
length	sequences	as	input.	Starting	from	all	candidate	sequences	processed	from	our	prediction	
pipeline,	we	selected	only	the	ones	containing	PAS,	adjusted	the	sequence	lengths	as	required,	
and	fed	into	these	two	models	for	classification.	For	DeepGSR,	we	used	two	pre-trained	models,	
one	is	trained	on	only	AATAAA	signal	and	the	other	is	trained	on	all	signals.	DeeReCT-PolyA	also	
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published	 two	 pre-trained	models	 based	 on	 two	 data	 sets,	 dragon	 and	 omni,	 both	 of	which	
were	included	in	the	comparison.	

LIST	OF	ABBREVIATIONS	

3’	untranslated	region	 3’UTR	
Alternative	polyadenylation	 APA	
Circular	consensus	sequence	CCS	
Cleavage	site	 CS	
Human	Brain	Reference	 HBR	
Neural	network	 NN	
Pacific	Bioscience	 PacBio	
Polyadenylation	 poly(A)	
Poly(A)	signal	 PAS	
RNA	Binding	Protein	 RBP	
Reads	Per	Million	 RPM	
Rectified	linear	unit	 ReLU	
Single	Molecule,	Real-Time	 SMRT	
Single	nucleotide	polymorphism	 SNP	
Transcripts	Per	Million	 TPM	
Universal	Human	Reference	 UHR	
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