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Abstract

Infectious diseases are often transmitted through local interactions. Yet, both
surveillance and control measures are implemented within administrative units.
Capturing local transmission processes and spatial coupling between regions from
aggregate level data is therefore a technical challenge that can shed light on both
theoretical questions and practical decisions.

Fox rabies has been eliminated from much of Europe through oral rabies vaccination
(ORV) programmes. The European Union (EU) co-finances ORV to maintain rabies
freedom in EU member and border states via a cordon sanitaire. Models to capture local
transmission dynamics and spatial coupling have immediate application to the planning
of these ORV campaigns and to other parts of the world considering oral vaccination.

We fitted a hierarchical Bayesian state-space model to data on three decades of fox
rabies cases and ORV campaigns from Eastern Germany. Specifically, we find that (i)
combining regional spatial coupling and heterogeneous local transmission allows us to
capture regional rabies dynamics; (ii) incursions from other regions account for less than
1% of cases, but allow for re-emergence of disease; (iii) herd immunity achieved through
bi-annual vaccination campaigns is short-lived due to population turnover. Together,
these findings highlight the need for regular and sustained vaccination efforts and our
modelling approach can be used to provide strategic guidance for ORV delivery.
Moreover, we show that biological understanding can be gained from inference from
partially observed data on wildlife disease.

Introduction 1

Disease dynamics are underpinned by the interplay between population connectivity 2

and the localized nature of transmission [1–4]. Many infectious diseases are transmitted 3

primarily through local interactions, but control strategies and surveillance are 4

implemented at coarser administrative scales. As a result, only aggregate data is 5

available on the occurrence of infections, which makes it difficult to disentangle the 6

extent to which disease dynamics are driven by local transmission versus spatial 7

coupling between subpopulations. Approaches that quantify these processes have 8

potential to guide the efficient use of resources for disease control. 9

Epidemiological data are inherently complex due to variability arising from 10

infectious disease dynamics, including stochastic spatial transmission processes and 11
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observation errors in detecting cases. The study of wildlife disease is particularly 12

complex for several reasons. Surveillance only detects a (usually small) proportion of 13

circulating infections and oftentimes the incidence of disease in wildlife populations can 14

only be inferred through indirect measures (veterinary records, hunting reports), with 15

variable levels of detection [5]. Under limited surveillance failed invasions or low level 16

persistence may be missed entirely. Wildlife populations are often not monitored closely 17

and therefore knowledge of their size and spatial distribution are typically limited and 18

imprecise [6]. Animals and humans move in different ways, as a result of social groups, 19

territorial boundaries, and specific habitats and geographical features that can direct or 20

impede movement [7,8]. Many animals have faster demographic rates than humans [9], 21

such that the herd immunity achieved through vaccination is relatively short-lived. 22

Finally, vaccination programmes targeting wildlife are challenging to implement and 23

monitor [10–12]. 24

Traditional epidemiological models that assume homogenous mixing i.e. individuals 25

interacting randomly and uniformly with all others in the population, have yielded 26

important insights, such as thresholds for disease invasion and control [13–15]. But 27

these models have not accounted for heterogeneous mixing, which is critical for directly 28

transmitted diseases in wildlife populations. Individual-based models explicitly model 29

interactions within discrete spatial or social neighbourhoods [1,16], but require detailed 30

data that is rarely available for wildlife populations. Approximations have been 31

developed to capture interactions between infected and susceptible individuals at the 32

local level [17–21], for example, ‘heterogeneity’ parameters [17,18,22]. These 33

approaches have been effective for human diseases such as cholera [23] and measles [1], 34

but have not been applied to wildlife diseases such as rabies. 35

Rabies has been eliminated from fox populations throughout much of Europe by 36

vaccinating foxes using oral baits containing vaccine. In just over three decades, vaccine 37

baits have been distributed across 2.36 million km2 [24–26]. Since the late 1980s the 38

European Union (EU) has co-financed Oral Rabies Vaccination (ORV) programmes in 39

member and border states [24,25,27]. Models that capture local transmission dynamics 40

of fox rabies and regional connectivity therefore have immediate application to the 41

situation in Europe and elsewhere. Here, we examine fox rabies dynamics in response to 42

oral vaccination using a hierarchical Bayesian state-space model fit to incidence data 43

from Eastern Germany from 1982-2013. We use a metapopulation approach to model 44

transmission by representing space as a network of subpopulations and estimating the 45

movement of infected individuals (or coupling) between them. We account for 46

heterogeneous mixing using a transmission process that approximates the scaling of 47

individual interactions to the regional level. This study presents a first step towards 48

disentangling local transmission and spatial coupling between subpopulations from 49

aggregated and incomplete data on wildlife rabies. 50

Materials and Methods 51

We analysed monthly time series of fox rabies cases for the period 1982-2013 from 5 52

federal states in Eastern Germany (Brandenburg, Mecklenburg-Vorpommern, Sachsen, 53

Sachsen-Anhalt, and Thüringen) in relation to the timing of ORV campaigns, fitting a 54

hierarchical Bayesian state-space model to these data. 55

0.1 Data Collection 56

We compiled records of laboratory-confirmed rabies cases in foxes from regular reports 57

by the national veterinary authorities and summarized for each federal state (hereafter 58

referred to as region) on a monthly basis. Specimens of suspect rabid foxes were 59
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submitted primarily by veterinarians and hunters. From 1993, cross-sectional sampling 60

of foxes was also conducted, whereby a proportion of foxes hunted were tested for rabies 61

providing a measure of rabies prevalence in the population. The timing of ORV 62

campaigns in each region was also compiled. The Rabies Bulletin Europe (RBE) is a 63

database consisting of national rabies surveillance data managed by the WHO 64

Collaborating Centre for Rabies Surveillance and Research at the 65

Friedrich-Loeffler-Institut in Germany [28,29]. A monthly average number of confirmed 66

rabies cases was calculated from the RBE quarterly reports for neighbouring regions in 67

Poland and the Czech Republic that border the five federal states in Germany. 68

0.2 Bayesian State-Space Model 69

A discrete time stochastic metapopulation model with three states: Susceptible (S), 70

Infected (I), and Vaccinated (V), was developed to model the numbers of foxes and 71

rabies cases in different regions through time. The Bayesian approach allowed us to 72

complement the rabies case data with prior information on some parameters from 73

historical studies on fox demography. 74

A demographic process was used to model the numbers of susceptible and vaccinated 75

foxes in each region at monthly time steps. The starting susceptible population and 76

carrying capacity for each region were extracted from the literature, based on the 77

average density of foxes per km2 scaled up to the region [30–32]. Births were modelled 78

as occurring in April of each year with newborn foxes entering the susceptible population 79

in July coinciding with when they venture further from their den. All susceptible and 80

vaccinated foxes older than one year of age were considered reproductively active. This 81

means that surviving newborns from the past year give birth the following April. We 82

assume that infected individuals transmit rabies and die within the same month, such 83

that infectious animals in the current month t, transmit infection to new animals that 84

subsequently develop rabies the following month t+ 1. No exposed class was considered 85

because the latent period of rabies infection lasts an average of three weeks and thus all 86

new infections at month t become symptomatic by month t+ 1 [33]. Data on the 87

timing of vaccination campaigns in each region were incorporated explicitly. 88

Susceptible individuals S in region r, in month t were modeled as a function of 89

juvenile foxes entering the susceptible population three months after birth jr,t, surviving 90

individuals Cr,t and those removed due to vaccination Vr,t or infection Ir,t: 91

Sr,t+1 = jr,t + Cr,t − Vr,t − Ir,t (1)

The first term jr,t is a binomially distributed variable representing juvenile foxes 92

entering the susceptible population three months after birth and takes the form: 93

jr,t ∼ Bin(s3, ar,t) (2)

where s3 is the 3-month survival probability and ar,t are the newborn foxes. Foxes 94

live to a maximum age of about 4 years [32]. If we assume that only 1% of foxes are 95

alive at age 4 years we can use the following expression to determine the survival 96

probability: s48 = 0.01, s = 0.01(1/48) = 0.909 97

ar,t ∼ Poisson(αr,t(Sr,t + Vr,t)e
εy ) (3)

where αr,t =

{
αr if t = t0 + k12

0, otherwise
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εy ∼ N(0, τ) (4)

and αr is the per capita annual birth rate in region r in month t applied to all 98

susceptible S and vaccinated V individuals in the system. Fecundity is regulated by 99

annual fluctuations in the environment, eεy . Here, we use the exponential term eεy and 100

a normal prior centred around 0 for εy to capture the effect of environmental noise on 101

the size of the birth pulse. Under the exponential, when ε is 0, then e0 = 1, meaning 102

there is no change in the size of the birth pulse. An ε smaller or greater than 0 will 103

result in a smaller or larger birth pulse, respectively. The prior for the precision term, τ , 104

is specified such that the birth pulse can vary by +/− 10% in line with fluctuations in 105

the birth pulse observed in wild fox populations [34]. 106

The realised per capita annual birth rate with density dependence takes the form: 107

αr =
bλr

λr + Sr,t + Vr,t
(5)

where b is the maximum annual per capita reproductive rate. Here, the inclusion of 108

S and V leads to density dependence, the strength of which is controlled by the 109

parameter λr (derived in Appendix ??) in the different regions r and takes the form: 110

λr =
(s− 1)Kr

1− s− b/12
(6)

where s is the survival probability (see Eq (2)) and Kr is the carrying capacity in 111

region r. 112

The second term in Eq 1 comes from a binomial distribution and represents the 113

surviving susceptible individuals in region r and month t, 114

Cr,t ∼ Bin(s, Sr,t) (7)

where s is the survival probability (see Eq (2)) and is assumed to be fixed across 115

time and regions. 116

Infected individuals are modelled as: 117

Ir,t = (1− ρr)I∗r,t +
∑
i 6=r

ρili,rI
∗
i,t (8)

where I∗r,t is the number of infected individuals in region r prior to any movement. 118

Infected individuals leave the region with probability ρr. The summation term 119

represents incursions from other regions as a function of rabies incidence I∗i,t in region i, 120

the proportion of infected animals leaving region i: ρi, and li,r the proportion of those 121

moving to region r. This can be modelled in different ways, but here we chose to equate 122

it to the proportion of the border of region i that is shared with region r. 123

The probability of leaving ρi was calculated as: 124

ρi =
ρmax

√
Amin√
Ai

(9)

where ρmax is the maximum leaving rate. Under a diffusive assumption for 125

movement the leaving rate is expected to decrease as the size of the region increases 126
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relative to its perimeter and the probability that any given infected animal moves 127

outside of its region declines. To capture this effect, we scaled the leaving rate by 128

dividing it by the area of the region
√
Ai, which is proportional to how far individuals 129

are from the perimeter of the region. 130

In the model, new infections are generated within region r from a Binomial 131

distribution: 132

Ir,t+1 ∼ Bin(pr,t, Sr,t) (10)

where the new infected individuals Ir,t at time t+ 1 in region r are generated from 133

the susceptible individuals S with a risk of transmission probability pr,t represented by: 134

pr,t =
Ir,t

hAr + Ir,t
(11)

Here hAr is the half-saturation point for pr,t. That is the number of infected 135

individuals that raise the transmission probability to 0.5. We assume that this number 136

is only a function of the total area of the region, appropriately scaled by the constant h 137

which is estimated from the data. Subsequently, the risk of infection pr,t depends on the 138

density of infected individuals
Ir,t

hAr+Ir,t
in the region, with the transmission rate per 139

infected individual decaying as the number of infected individuals grows. 140

The biological rationale behind Eq (11) is that in larger areas, susceptible 141

individuals are expected to be less accessible to infected individuals due to the greater 142

distance to reach them. The addition of infected individuals in the denominator allows 143

us to account for saturation effects that occur at high incidence, when infected 144

individuals might contact fewer susceptibles due to disease-induced mortality or because 145

local contacts might already be latently infected. Local susceptible depletion thereby 146

reduces the transmission rate of each infected individual as incidence increases. 147

The functional form of transmission is a special case of the general model in Eq 35 148

from [18]: 149

SqG(I) = Sq
kIp−1

1 +mIp−1
(12)

where S is the susceptible population, I is the number of infected individuals and k, 150

p, q, and m are positive constants. If we assume that q is 1, G(I) can be written as 151

G(I) =
kIp−1

1 +mIp−1
(13)

If we consider the special case where p = 2, m = (hA)−1, k = hA and q = 1 then 152

G(I) =
kI

1 +mI
(14)

G(I) =
k
mI

1
m + I

S (15)

which is equivalent to Eq (11). 153
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The time evolution of the number of vaccinated individuals is modelled as: 154

Vr,t+1 = vr,t +Xr,t (16)

where vr,t represents the newly vaccinated individuals drawn from a binomial 155

distribution. 156

vr,t ∼ B(ν
Sr,t

Sr,t + Vr,t
, Sr,t) (17)

and ν is the rate of bait uptake by the population of susceptible and vaccinated 157

individuals in region r at time t. The bait uptake rate ν was given a fixed Beta prior 158

with mean 0.30 and variance of 0.005 based on field studies [35]. To account for the 159

depletion of baits by already vaccinated conspecifics, the rate of bait uptake by 160

susceptible individuals is determined relative to their proportion in the population 161

Sr,t

Sr,t+Vr,t
. Vaccination is switched on and off by an indicator variable that is 0 in all 162

months apart from those when a vaccination campaign occurred when it equals 1. 163

Vaccination campaigns were typically carried out in September or October and April 164

during the study period. The term Xr,t in Eq (16) represents surviving vaccinated 165

individuals from the previous time step drawn from a Binomial distribution. 166

Xr,t ∼ Bin(s, Vr,t) (18)

where s is the survival probability (see Eq (2)). 167

We assumed that infected individuals Ir,t were observed imperfectly each year with 168

probability θy: 169

Îr,t ∼ Bin(θy, Ir,t) (19)

that varies stochastically on an annual basis. 170

In the cross-sectional sampling regime, hunted foxes Hr,t had a probability of being 171

observed to be infected equal to the risk of transmission pr,t. 172

Ĥposr,t ∼ B(pr,t, Hr,t) (20)

where Ĥposr,t is the number of positive cases out of the total foxes hunted Hr,t. 173

1 Model Fitting 174

All models were fitted using the software JAGS [36], which uses Gibbs sampling to 175

generate posterior distributions of the parameters given the likelihood, prior 176

distributions and the data itself. We ran the models for 3,000,000 iterations, with a 177

burn-in of 30,000 and a thin interval of 300, giving 10,000 samples. We inspected the 178

model for convergence and effective sample size. To account for the fact that 179

fox-mediated rabies had been circulating in Germany since the late 1940s, we started 180

the model 10 years (120 time steps) prior to when the time series began to allow the 181

system to settle at an endemic equilibrium. Fitting of the model required considerable 182

computational time and a compromise in what parameters were estimated in order for 183

the model to converge. This was resolved pragmatically by fixing some parameters that 184

were not central to the research questions or for which good quality information was 185

available (Table 1). 186
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We were primarily interested in estimating four main parameters: the heterogeneity 187

parameter for transmission h, the probability of an infected fox leaving an area ρmax, 188

the observation rate θ, and the precision τ of the environmental noise (Table 2). The 189

heterogeneity parameter h for transmission was given a gamma prior with mean 4 and 190

variance 9. We experimented with the sensitivity of the model to the parameter θ, for 191

quantifying case detection. We chose a prior for ρmax (the rate at which infected foxes 192

leave their focal region) where the posterior, informed by data, would have to move 193

away from 0, ‘no movement’, to support connectivity between regions. Because infected 194

foxes have a limited dispersal range [37], we expected the value of ρmax to be small. To 195

limit the search to a biologically plausible range of values for the leaving rate, we used a 196

Beta prior with mean 0.004 and variance 0.000005 that declined with distance from 0. 197

The precision of the environmental noise term τ was given a gamma prior with mean 198

1000 and variance 5000, based on fluctuations in fox reproductive effort reported in the 199

literature [34]. This allowed the litter size (or birth pulse) to vary between 0.9 and 1.1 200

of the mean litter size each year. 201

2 Model evaluation 202

To assess the model fit we used a probability integral transform, testing whether the 203

observed rabies cases can reasonably be assumed to be arising from the chosen model. 204

This was done by comparing the observed number of rabies cases to the posterior 205

distribution of the expected number of infected cases estimated from the MCMC 206

samples, calculating the percentile where the data point fell within the cumulative 207

distribution function [38]. Because the credible intervals are calculated from the 208

posterior of the expected values and not the posterior of the prediction, which also 209

includes an error term, the credible intervals are more conservative and reflect only the 210

uncertainty around the regression and not the prediction. As a result, they are narrower 211

than the credible intervals of the prediction because they do not include this error. 212

To assess the model fit through time we plotted the computed monthly probability 213

integral transform values through time. To explore the full range of potential rabies 214

epidemic scenarios within the parameter space we simulated from the fitted model 215

providing the same initial conditions including the size of the region, connectivity 216

between regions, carrying capacity, initial number of susceptible and infected 217

individuals, and rates of vaccination. We also assessed the model predictions when the 218

model was provided with the first data point and the first 20 data points in each region 219

using the probability integral transform to assess the prediction. 220
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Variable Description Parameter JAGS code Value References
Birth per capita birth rate b b 4 [32,39]

Survival survival probability s s 0.908 [32,40]
Area (km2) Size of region A A

Shared border (km) 15 x 15 matrix l qb
Carrying Capacity region 1 K1 K[1] 140000

region 2 K2 K[2] 110000
region 3 K3 K[3] 90000
region 4 K4 K[4] 95000
region 5 K5 K[5] 90000

Area (km2) region 1 A1 A[1] 29479
region 2 A2 A[2] 23180
region 3 A3 A[3] 18146
region 4 A4 A[4] 20446
region 5 A5 A[5] 16172

Table 1. Fixed parameters used in the Bayesian hierarchical model
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Variable Parameter JAGS code Distribution Prior Mean and variance Reference
Leaving probability ρ c Beta dbeta(1.26176, 156.45824) (0.008, 5e-5)

Heterogeneity parameter h h Gamma dgamma(1.7777, 0.4444) (4, 9)
Vaccination Rate ν v Beta dbeta(12.3, 28.7) (0.3, 0.005) [35]

Environmental Noise τ tau Gamma dgamma(200, 0.2) (1000, 5000) [34]
Observation Probability θ obs1 Beta dbeta(9.45, 179.55) (0.05, 0.00001)

Population Region 1 start pop[1, 1] Gamma dgamma(50.06, 0.0007) (70750, 100e6)
Population Region 2 start pop[2, 1] Gamma dgamma(30.95, 0.0006) (55632, 100e6)
Population Region 3 start pop[3, 1] Gamma dgamma(18.97, 0.0004) (43550, 100e6)
Population Region 4 start pop[4, 1] Gamma dgamma(24.08, 0.0005) (49070, 100e6)
Population Region 5 start pop[5, 1] Gamma dgamma(15.06, 0.0004) (38813, 100e6)

Table 2. Priors used for the stochastic parameters in the Bayesian hierarchical model
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Results 221

Across all regions the number of reported annual fox rabies cases ranged from 959 to 222

2375 pre-vaccination, with 2277 cases in 1990, the first year of vaccination. A swift 223

decline in rabies followed, with 1643, 321, 28, 4 cases detected in the subsequent years. 224

Fitting the model to the fox rabies case data generated key estimates of local 225

transmission and spatial coupling between regions. The model captured key aspects of 226

fox demography including the birth pulse, fluctuations in fecundity with environmental 227

noise, and in surveillance, yielding a close fit to the case data in all 5 regions (Fig 1). 228

From the fitted parameters, we estimated that less than 8% of the fox population were 229

infected by rabies annually and that incidence was generally low. The model 230

accommodated uncertainty in the biological and observation processes, allowing 231

inference of missing time series of infected, susceptible, and vaccinated individuals by 232

latent process methods. 233

Fig 1. State-space model results for 5 federal states in Eastern Germany:
Brandenburg, Mecklenburg-Vorpommern, Sachsen-Anhalt, Sachsen, and
Thüringen. The gray line represents the estimated percentage of the population
vaccinated. The dark blue line is the monthly reported rabies cases for each region. The
light blue shaded region is the 95% credible intervals.

In terms of model fitting, the posterior for transmission heterogeneity h was both 234

within the broad support of the prior and more precise than the prior, informed by the 235

data (Fig 2). Too much flexibility in θ caused the model to explain most cases in terms 236

of detectability, rather than epidemiological processes and tended to settle on posterior 237

values that were too large compared to expert opinion for rabies and known limits of 238

passive surveillance. Specifically, we found that wider priors for θ (e.g. mean = 0.10, 239

variance = 0.01), went to biologically implausible areas of parameter space (around 240

30-40% of cases observed). The more flexible model also resulted in larger unrealistic 241

values of h and poor model convergence, that we believe is due to the biological 242

processes not being captured effectively. We addressed this pragmatically by 243

incorporating expert opinion into our prior for detectability (mean = 0.05, variance = 244

0.00025). 245

Fig 2. The posterior distribution and priors for the parameters estimated
in the hierarchical Bayesian state-space model. The posterior distribution is
shaded in blue (dark blue represents the 2.5-97.5% credible intervals, the light blue
represents the 0-2.5% and 97.5-100% credible intervals), the black line represents the
prior distribution. In order from top to bottom and left to right are the parameters
representing fluctuations in fecundity due to environmental noise τ , rate of migration of
rabid foxes between regions ρmax in the equation, rabies transmission heteorgeneity h,
zoomed out to show the prior, and zoomed in to show the distributions better, and the
annual probability of observing rabies cases θ.

The posterior for ρmax (the rate at which infected foxes leave their focal region) 246

supported our hypothesis of connectivity between regions by moving away from 0. The 247

posterior distribution of the environmental noise term τ shifts to the left of the prior, 248

which suggests that the population fluctuates slightly more than specified by the prior. 249

Although the fluctuations estimated from the model were larger than previously 250

reported [34], they rarely exceeded 10% with the largest reaching 15%. This could be 251

due to more extreme environmental changes during this period compared to when 252

Lindström’s study was conducted. 253
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The multi-year peaks in observed cases are largely explained by the annual birth rate 254

and variation in both the observation rate and environmental noise (Fig 3). The 255

environmental noise term influences the size of the susceptible population by increasing 256

or decreasing the size of the birth pulse. In the model this results in more infected 257

individuals, while a larger observation rate means that although more cases were 258

detected, fewer cases occurred overall. 259

Fig 3. Annual observational and environmental noise estimates over time.
The top and bottom panel show the annual observational noise estimates (red) and
annual environmental noise estimates (blue) over time. The dark lines represent the
mean estimates, the lighter envelope represents the 95% credible intervals. The
environmental noise parameter fluctuates between − 10 and +15%. The observational
noise term ranges between 5% and 18%.

We estimated that incursions from neighbouring regions accounted for on average 1% 260

or less of monthly rabies cases in a region, with the mean number of incursions varying 261

between 0 and 4 per month in each region and from 0-24 per year (Fig 4. Low numbers 262

of estimated external incursions from 2000 onwards reflect coincident declines in rabies 263

cases in all 5 regions resulting from coordinated vaccination. 264

Fig 4. Estimated incursions per region through time. The map and incursions
are colour-coded by region (BB = Brandenburg, MV = Mecklenburg-Vorpommern, SN
= Sachsen, ST = Sachsen-Anhalt, and TH = Thüringen). Light grey regions
represented neighbouring regions included in the model from Germany, Czech Republic,
and Poland. The darker lines represent the mean number of incursions estimated per
region. The lighter envelopes indicate the credible intervals.

Under the fixed vaccination rate (mean = 0.30, variance = 0.005), herd immunity 265

peaked at between 60-75% of the population vaccinated in each region (Fig 1). Swift 266

reductions in herd immunity occurred due to the entry of juvenile foxes into the 267

population three months after the birth pulse (July), reducing the percentage of 268

vaccinated individuals in the population by more than half. Between the annual entry of 269

juvenile foxes, levels of herd immunity were maintained as vaccinated and susceptible 270

individuals experience the same rate of natural mortality and rabies only claims a small 271

proportion of the susceptible population (Fig 1). 272

From the plot of the probability integral transform calculated from the MCMC 273

samples of the model fit, we can see that the model does not capture the largest peaks 274

in observed cases and misses some of the observed cases between the birth pulses, when 275

the population is at its lowest (Fig 5A). In the model, mortality is constant across the 276

population, however, foxes experience a higher rate of mortality in the first months of 277

life. Therefore, sharper population declines might be expected to follow the birth pulse 278

due to this high juvenile mortality. Generally the fluctuations in observed cases were 279

more variable compared to the model expectations. This could be because the model 280

only allows for annual variability in the probability of detection and environmental 281

variability rather than monthly variation. This was a deliberate modelling choice, as we 282

found that too much flexibility in the detection probability or environmental noise (i.e. 283

allowing these variables to vary by month or have a wider prior) resulted in overfitting 284

and came at the expense of convergence of the other parameters, in particular 285

transmission heterogeneity. Even though the fitted model expects a more gradual and 286

smoothed number of cases than the observed data and the credible intervals are 287

misleadingly narrow, the expectation is not far off from the observed cases and the 288

model successfully captures the effect of vaccination. 289
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Fig 5. Model fit and projections with 1 and 20 data points with
accompanying probability integral transform plots. The left panels show A. the
model fit, B. the model projection with 1 data point, and C. the model projection with
20 data points. The right panels show the corresponding probability integral transform,
i.e. where the observed case falls in the cumulative distribution function, over time for
the three cases A-C. The dark blue line represents the observed rabies cases and the
light and dark shaded blue regions represent the 95% and 50% Credible Intervals (CI)
estimated from the MCMC samples, respectively. The colours in the probability integral
transform plot indicate whether the observed cases falls inside (red) the 95% CI, outside
(turquoise) the 95% CI but within the 100% CI, or outlier (green) when the case falls
outside the CI entirely.

From the model projections, the most dominant features were oscillations due to the 290

entry of juvenile foxes after the birth pulse (Figs 5B,C). In the first prediction, when 291

the model is only provided with the first data point, all of the cases fall within the 292

credible intervals and the majority of data points are within the middle 50% of the 293

credible intervals, which suggests that the model prediction is too broad (Fig 5B). The 294

model’s prediction improves when provided with the first 20 data points and is good at 295

projecting the long-term behaviour and decline of rabies. However the prediction misses 296

the tail end of the cases (Fig 5C). Although the credible intervals around the model 297

predictions reduced when more data was provided, the model was unable to capture the 298

multi-year oscillations in cases, which in the model fit were explained by annual 299

fluctuations in environmental noise and variation in the annual observation rate (Fig 3). 300

Discussion 301

Approaches to understand interactions between spatial and demographic processes are 302

likely to reveal key insights into disease dynamics in wildlife populations. Here, we 303

present a method to capture local transmission processes and spatial coupling between 304

regions from partially observed data on wildlife diseases. Using a hierarchical Bayesian 305

State-space metapopulation approach we were able to recreate observed dynamics, and 306

infer missing time series by latent process methods. Specifically we find that (i) spatial 307

coupling and local transmission can be estimated from aggregated data using a 308

metapopulation modelling approach and a heterogeneous mixing term that captures the 309

low incidence dynamics of rabies at a regional level; (ii) incursions of rabid foxes from 310

other regions that account for less than 1% of cases are sufficient to trigger rabies 311

re-emergence; and (iii) herd immunity achieved through bi-annual vaccination 312

campaigns is short-lived due to fox population turnover. Together these findings have 313

important practical implications for the design of control measures. 314

Partially observed disease data is common in the study of wildlife disease. Using a 315

Bayesian state-space model we were able to accommodate uncertainty in the biological 316

and observation processes and infer missing time series by latent process methods. By 317

combining a metapopulation model representing space as a network of subpopulations 318

with different rates of coupling, and a transmission process that approximates the 319

scaling of individual interactions to regional dynamics, we provide a framework to 320

estimate the rate of incursions and to model local dynamics. The heterogeneous mixing 321

term involved a decay function that allowed for a reduction in transmission as the 322

number of infected individuals increased. Our approximation was able to capture the 323

low incidence of fox rabies and prevented unrealistically large epidemics. Earlier studies 324

have accounted for heterogenous mixing in childhood diseases [17,22] and influenza 325

[18], however, this study is the first to use such an approximation for rabies. The 326
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approach has potential application for other diseases that circulate through local 327

interactions but for which surveillance data is aggregated. 328

Incursions can play a crucial role in sustaining disease circulation, however many 329

models do not explicitly consider between-region transmission. We estimated that 330

incursions comprise less than 1 % of overall cases, reflecting the predominantly local 331

nature of rabies transmission and the large size of the federal states. Although 332

long-distance translocations of infected wildlife are known to occur [41], fox rabies 333

transmission is thought to mainly result from movement of rabid and latently infected 334

foxes. Even a small number of incursions from neighbouring regions through such 335

movement can enable disease resurgence in a rabies-free region and are an important 336

consideration in the design of vaccination strategies [42]. Coordinated vaccination 337

efforts between regions can act to isolate foci of infection [43] and are crucial to the 338

success of fox rabies elimination strategies [29]. Eastern Germany was able to rapidly 339

eliminate rabies compared to elsewhere in Germany thanks to coordinated vaccination 340

effort [29]. 341

Herd immunity in foxes is dynamic as a result of demographic processes, declining by 342

more than half following entry of juvenile foxes into the population following the birth 343

pulse. Influxes of new susceptible individuals may result in isolated infections becoming 344

rapidly reconnected with susceptible hosts and transmission maintained in the absence 345

of adequate immunity [Katie- do you have a suggestion for a citation]. Our analyses of 346

vaccination suggest that herd immunity is only maintained through regular ORV 347

campaigns due to high population turnover. This may also have important implications 348

for other wildlife diseases with marked birth pulses [44]. 349

While our model generally captured rabies dynamics, it struggled to capture 350

monthly variation in cases and long-term multi-year dynamics. The strongest 351

mechanistic feature of our model driving these fluctuations was the entry of juvenile 352

foxes into the population after the birth pulse. This is evident from both model 353

projections with 1 or 20 data points (Figs 5B,C). Although the credible intervals 354

around the model predictions reduced when more data was provided (20 data points 355

compared to 1 data point), the model did not able to capture multi-year oscillations in 356

cases, which were explained by the annual environmental and observation noise 357

parameters. It is probable that changes in resource availability and variation in 358

detection explains some of the variation, but, we did not have any data to inform these 359

parameters aside from expert opinion. We speculate that nuances in the dynamics may 360

be obscured due to the aggregation of data. The behaviour of the observation 361

parameter θ over time suggests either marked changes in case detection or other 362

mechanisms not being captured that the model is apportioning to the observation rate. 363

In analysing the data at a finer spatial scale we observe multiple foci of cases within a 364

region. However, because the data are aggregated these local dynamics are not evident. 365

Nonetheless, the model expectation is not far off from the observed cases and the model 366

successfully captures the effect of vaccination. Therefore, although the model fit is 367

overconfident, overall it does a good job of capturing the disease dynamics. 368

Conclusion 369

Disease dynamics play out across space, irrespective of borders. Modelling approaches 370

to understand interactions between spatial and demographic processes can reveal key 371

insights into disease dynamics and are crucial to the planning of regional vaccination 372

strategies. Several studies have been central for guiding control of fox rabies in Europe. 373

A simple deterministic, compartmental model based on fox population biology 374

compared the dynamics of rabies under culling versus vaccination [39]. Spatially 375

explicit individual-based models (IBM) of rabies have since been used to evaluate 376
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vaccination strategies for elimination [40,45] and emergency vaccination under limited 377

resources [46,47]. Our model adds to this body of work and is the first to estimate 378

epidemiological parameters from fitting to rabies incidence data. Our study adds to the 379

considerable body of work that has been central for guiding the control of fox rabies in 380

Europe [39,46, 47]. It is the first to estimate key epidemiological parameters, including 381

spatial coupling and local transmission, using a model fit to data. Our findings have 382

implications for strategies aiming to achieve and maintain rabies freedom and the 383

modeling approach can be used to further explore vaccination strategies to inform 384

ongoing vaccination in Eastern Europe [42]. This work also makes an important 385

methodological contribution to the study of spatial disease dynamics in other wildlife 386

diseases where only limited epidemiological and demographic data are available. 387

Supporting information 388

S1 Fig. Model Diagnostics Posterior and prior distributions and traceplots for all 389

parameters in the model. 390
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Turnover of Fox Populations in Europe. Zentralblatt für Veterinärmedizin Reihe
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