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Abstract 1 

Synthetic genetic circuits allow us to modify the behavior of living cells. However, changes in 2 

environmental conditions and unforeseen interactions between a circuit and the host cell can 3 

cause deviations from a desired function, resulting in the need for time-consuming physical 4 

re-assembly to fix these issues. Here, we use a regulatory motif that controls transcription and 5 

translation to create genetic devices whose response functions can be dynamically tuned. 6 

This approach allows us, after construction, to shift the ‘on’ and ‘off’ states of a sensor by 4.5- 7 

and 28-fold, respectively, and modify genetic NOT and NOR logic gates to allow their 8 

transitions from an ‘on’ to ‘off’ state to be varied over a >6-fold range. In all cases, tuning leads 9 

to trade-offs in the fold-change and separation between the distributions of cells in ‘on’ and 10 

‘off’ states. By using mathematical modelling, we derive design principles that help to further 11 

optimize the performance of these devices. This work lays the foundation for adaptive genetic 12 

circuits that can be tuned after their physical assembly to maintain functionality across diverse 13 

environments and design contexts.  14 
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Introduction 15 

Gene regulatory networks, or genetic circuits as they are often known, govern when and where 16 

genes are expressed in cells and control core biochemical processes like transcription and 17 

translation 1,2. The ability to synthesize DNA encoding engineered genetic circuits offers a 18 

means to expand the capabilities of a cell and reprogram its behavior 1,3. Synthetic genetic 19 

circuits have been built to implement computational operations 4–12, dynamic behaviors like 20 

oscillations 13–15, and even coordinate multicellular actions across a population 16–20.  21 

 The ability to reprogram living cells is simplified by using genetically encoded devices 22 

that use common input and output signals 1,2,7,9. This allows the output of one device to be 23 

directly connected to the input of another to create circuits implementing more complex 24 

functionalities. Signals can take many forms, but one of the most commonly used is RNA 25 

polymerase (RNAP) flux in which promoters are used to guide this signal to specific points in 26 

a circuit’s DNA 7,21. Based on such input and output signals, the response function of a genetic 27 

device captures how inputs map to outputs at steady state 1,7,21. By ensuring the response 28 

functions of two devices are compatible, i.e. they are “matched” such that the range of the 29 

output of the first device spans the necessary range of inputs for the second device, larger 30 

circuits with desired functions can be constructed 22. Matching of components is vital in circuits 31 

where devices exhibit switching behaviors (e.g. for Boolean logic) to ensure input signals are 32 

sufficiently separated to accurately trigger required transitions between ‘on’ and ‘off’ states as 33 

signals propagate through the circuit. 34 

Although the use of characterized genetic devices has enabled the automated design 35 

of large genetic circuits 7,23, the response functions of these devices are often sensitive to 36 

many factors. For example, differences in host physiology due to culturing conditions 24–26 and 37 

interactions between genetic parts and the host cell 27–32, can all affect the response function 38 

of a device and subsequently its compatibility within a circuit. This makes the creation of 39 

reliable and robust genetic circuits a challenge. Even when considering carefully controlled 40 

conditions, like those in the lab, a genetic circuit often needs to be reassembled from scratch 41 

multiple times using alternative parts until a working combination is found. This is both time 42 

consuming and expensive, and often has to be repeated if the circuit is to be deployed in 43 

slightly different conditions or host strains. 44 

In this work, we tackle this problem by developing genetic devices whose response 45 

functions can be dynamically tuned after physical assembly to correct for unwanted changes 46 

in their behavior. The ability to tune/modify the steady state input-output relationship is made 47 

possible by employing a simple regulatory motif. We show how this motif can be connected to 48 

small molecule sensors to characterize its function and then illustrate how it can be used in 49 

practice by integrating it into genetic NOT and NOR logic gates 33 to allow for the tuning of the 50 
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transition point between ‘on’ and ‘off’ states. These capabilities make these devices more 51 

broadly compatible with other components 1,7,22, but their use comes at a cost because of 52 

trade-offs in their performance. As we tune the devices, a decrease in the dynamic range is 53 

observed and the ability to differentiate ‘on’ and ‘off’ states due to variability in gene expression 54 

across a population. We use mathematical modelling to better understand these limitations 55 

and derive design principles that are then used to further optimize their design. This work is a 56 

step towards genetic circuitry whose individual components can functionally adapt, ensuring 57 

robust system-level behaviors are maintained no matter the genetic, cellular or environmental 58 

context. 59 

 60 

Results 61 

Controlling transcription and translation using a tunable expression system  62 

To allow for the response of a genetic device to be modulated, we developed a tunable 63 

expression system (TES) based on a simple regulatory motif where two separate promoters 64 

control the transcription and translation rates of a gene of interest (Figure 1a). By using 65 

promoters as inputs, it is possible to easily connect a TES to existing genetic 66 

components/circuitry or even endogenous transcriptional signals within a cell. The TES 67 

consists of a toehold switch (THS) that enables the translation initiation rate of the gene of 68 

interest to be varied by the relative concentration of a “tuner” small RNA (sRNA) 6,34. The main 69 

component of the THS is a 92 bp DNA sequence that encodes a structural region and a 70 

ribosome binding site (RBS) used to drive translation of a downstream protein coding region. 71 

This is expressed from a promoter that acts as the main input to the TES (Figure 1a). When 72 

transcribed, the structural region of the THS mRNA folds to form a hairpin loop secondary 73 

structure that makes the RBS less accessible to ribosomes and thus reduces its translation 74 

initiation rate. This structure is disrupted by a second component, a 65 nt tuner sRNA that is 75 

complementary to the first 30 nt of the THS 34. The tuner sRNA is expressed from a second 76 

promoter, which acts as a tuner input to the device (Figure 1a). Complementarity between the 77 

tuner sRNA and a short unstructured region of the toehold switch enables initial binding, which 78 

then makes it thermodynamically favorable for the sRNA to unfold the secondary structure of 79 

the THS through a branch migration process. This makes the RBS more accessible to 80 

ribosomes which increases the translation initiation rate. Relative concentrations of the THS 81 

mRNA and tuner sRNA (controlled by the input and tuner promoters) enable the rate of 82 

translation initiation to be potentially varied over a 100-fold range for the toehold switch design 83 

we selected for our own 34 (Materials and Methods). However, THS designs exist which allow 84 

for up to a 400-fold change in translation initiation rates 6,34. 85 
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 We selected as main and tuner inputs for the TES the output promoters of two sensors, 86 

Ptet and Ptac, that respond to anhydrotetracycline (aTc) and isopropyl β-D-1-87 

thiogalactopyranoside (IPTG), respectively (Figure 1b). This allows us to dynamically tune 88 

transcription and translation rates of a gene to modify the overall rate of protein production. 89 

Each sensor consists of a transcription factor (TetR and LacI sensitive to aTc and IPTG, 90 

respectively) that represses its cognate promoter until an associated small molecule is present 91 

(Figure 1b). The small molecules bind their cognate transcription factor, altering its 92 

conformation and limiting its ability to repress the promoter, thereby turning on transcription of 93 

the downstream gene. Yellow fluorescent protein (YFP) was used as the output from the TES 94 

(Figure 1b) to allow us to measure the rate of protein production in single cells using flow 95 

cytometry.   96 

Characterization of the device was performed in Escherichia coli cells grown in 97 

different concentrations of aTc (input) and IPTG (tuner). Steady state fluorescence 98 

measurements of single cells in exponential growth phase were taken using flow cytometry 99 

and promoter activities of both the main and tuner input were measured in relative promoter 100 

units (RPUs) to allow for direct comparisons (Materials and Methods; Supplementary 101 

Figure S1). A further advantage of characterizing our devices in RPUs is that this data can be 102 

immediately used within genetic design automation software like Cello 7, allowing our parts to 103 

be interfaced with a large library of existing sensors and logic gates33,35. 104 

For a fixed tuner promoter activity, we observed a sigmoidal increase in output YFP 105 

fluorescence as the input promoter activity increased from 0.002 to 6.6 RPU (Figure 1c). As 106 

the activity of the tuner promoter increased from 0.002 to 2.6 RPU, the entire response 107 

function shifted upwards to higher output YFP fluorescence levels. Notably, this shift was not 108 

uniform, with larger relative increases seen for lower input promoter activities; 28-fold versus 109 

4.5-fold for inputs of 0.002 and 6.6 RPU, respectively (Figure 1c). Closer analysis of the flow 110 

cytometry data (Figure 1d), showed that these changes arose from the distributions of output 111 

YFP fluorescence for low and high inputs shifting uniformly together as the tuner promoter 112 

activity was increased. Therefore, even though a similar relative difference between outputs 113 

for low and high inputs (also referred to as the dynamic range) was observed for all tuner 114 

inputs, when the tuner input is low, the distributions are virtually identical to the 115 

autofluorescence of the cells (Figure 1d). This leads to even small absolute differences in the 116 

median values between low and high input states resulting in high fold-changes. 117 

Flow cytometry data also showed a significant overlap in the output YFP fluorescence 118 

distributions for low and high input promoter activities (Figure 1d). Many applications require 119 

that ‘on’ and ‘off’ states in a system are well separated so that each can be accurately 120 

distinguished (e.g. for Boolean logic). To assess this separation in the TES, we calculated the 121 

fractional overlap between the output YFP fluorescence distributions for low and high input 122 
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promoter activities (Materials and Methods). We found a constant intersection of ~70% 123 

across all tuner promoter activity levels (Figure 1e), which resulted from the similar shifts we 124 

see in output across all input promoter activities (Figure 1d). 125 

To better understand these effects, we derived a deterministic ordinary differential 126 

equation (ODE) model of the system (Supplementary Text S1). Simulations of this model for 127 

biologically realistic parameters (Supplementary Table S1) showed similar qualitative 128 

behavior to the experiments; increasing tuner promoter activity shifted the response curve to 129 

higher output protein production rates (Figure 1f). However, unlike the experiments, increases 130 

in the tuner promoter activity resulted in a small increase in the fold-change in the output 131 

between low and high inputs (Figure 1g, bottom). The limiting effect that the tuner sRNA can 132 

have is a possible mechanism that could account for the non-linear response observed in the 133 

experiments, whereby ‘on’ states do not increase as quickly as ‘off’ states as the tuner activity 134 

increases (Figure 1g, top). Because the tuner sRNA concentration is fixed for each response 135 

function, its concentration could be higher than the concentration of THS transcript when the 136 

main input is low, while also being much lower when the main input is high. This would cause 137 

the rate of protein production to be limited by the THS transcript concentration at low inputs, 138 

and by the tuner sRNA concentration at high inputs. 139 

Another potential cause of this non-linear response could be retroactivity that occurs 140 

when the behavior of components in a biological circuit change once interconnected 36,37. Such 141 

effects break modularity in the system and can make it difficult to predict the behavior of larger 142 

complex circuits. To explore this aspect further, we coupled our existing model to another that 143 

is able to capture retroactivity-like effects due to shifts in ribosome allocation between 144 

endogenous genes and synthetic constructs, such as the TES (Supplementary Text S2) 145 

28,36,37. Ribosomes are a key cellular resource and fluctuations in their availability due to the 146 

additional burden of a synthetic construct can cause drops in protein synthesis rates across 147 

the cell, affecting upstream components in a circuit 25,27,29,32. Comparisons between the original 148 

models and this coupling variant, showed that retroactivity did have an effect for biologically 149 

realistic parameters, but only when the output caused a significant burden on the cell and only 150 

for the most highly expressed outputs, i.e., when both the input and tuner promoter activities 151 

were high (Supplementary Figure S2). 152 

 153 

Design and assembly of a tunable genetic NOT gate 154 

Some genetic devices rely on the expression of proteins such as transcription factors to 155 

implement basic logic functions that can be composed to carry out more complex decision-156 

making tasks 4,7,8. One such commonly used device is a NOT gate, which has a single input 157 

and output 33. The function of this gate is to “invert” the input such that the output is high if the 158 

input is low and vice versa. Such a behavior can be implemented by using promoters as the 159 
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input and output, with the input promoter driving expression of a repressor protein that binds 160 

to the DNA of the constitutive output promoter. When the input promoter is inactive, the 161 

repressor is not synthesized and so the constitutive output promoter is active. However, once 162 

the input promoter is activated, the repressor is expressed which binds the output promoter 163 

and represses its activity. 164 

Because the activity range of promoters varies, the transition point, whereby sufficient 165 

concentrations of repressor are present to cause strong repression of the output promoter, 166 

may make it impossible to connect other devices and ensure a signal is correctly propagated. 167 

For example, the output promoter of a weak sensor system acting as input to a NOT gate with 168 

a high transition point may produce insufficient repressor, causing the output promoter to be 169 

continually active. These incompatibilities can sometimes be corrected for by modifying other 170 

regulatory elements in the design. In the case of a repressor-based NOT gate, while the 171 

promoters cannot be easily changed, in bacteria the translation initiation rate can be varied by 172 

altering the ribosome binding site (RBS) for the repressor gene. Increasing the RBS strength 173 

causes more repressor protein to be produced for the same input promoter activity, shifting 174 

the transition point to a lower value 7,33. While such modifications can fix issues with device 175 

compatibility, they require reassembly of the entire genetic device. 176 

Given that the TES allows for the rates of both transcription and translation to be 177 

dynamically controlled, we attempted to create a proof-of-concept “tunable” NOT gate that 178 

integrated the TES to allow its response function, and crucially the transition point, to be 179 

altered after physical assembly. We chose an existing NOT gate design 33 that uses the PhlF 180 

repressor to control the activity of an output PphlF promoter (Figure 2a). Expression of PhlF 181 

was controlled by the TES (replacing the YFP reporter protein in the original TES design; 182 

Figure 1a). Unlike the TES, the tunable NOT gate uses promoters for both inputs and outputs 183 

allowing it to be easily connected to other devices that use RNAP flux as an input/output signal 184 

7,21 (Figure 2a). 185 

To enable characterization of the tunable NOT gate, the output promoter PphlF was 186 

used to drive expression of YFP. Measurements were taken using flow cytometry for cells 187 

harboring the device in varying concentrations of aTc and IPTG, and steady state response 188 

functions were generated (Figures 2b and 2c). As expected, these displayed a negative 189 

sigmoidal shape with transition points (K values from the Hill function fits to the experimental 190 

data) that varied over a 7-fold range (Figure 2b). We also found that increases in the tuner 191 

promoter activity lead to transitions at lower activity levels for the input promoter. The range 192 

of transition points achieved by our device also covered a high proportion (35%) of the largest 193 

collection of repressor-based NOT gates built to date (total of 20 variants; Figure 2d) 7. 194 

These results demonstrate the ability of the proposed TES component to dynamically 195 

alter a key characteristic of a NOT gate’s response function (specifically the transition point) 196 
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to improve its compatibility with other genetic devices. However, it came at a cost; tuning 197 

resulted in a drop in the fold-change between low and high outputs (Figure 2e) and an 198 

increase in the overlap of the output YFP fluorescence distributions, which made high and low 199 

states difficult to distinguish (Figure 2f). 200 

 201 

Boosting sRNA levels improves the performance of the tunable genetic devices 202 

For the THS to function correctly, it is essential that the sRNA reaches a sufficiently high 203 

concentration relative to the THS transcript to ensure the associated RBS is in a predominantly 204 

exposed state 34. In our design, the tuner promoter Ptac has less than half the maximum 205 

strength of the main input promoter Ptet (Supplementary Figure S1). Furthermore, although 206 

the tuner sRNA contains a hairpin to improve its stability, sRNAs are generally more quickly 207 

turned over than normal transcripts 38,39, yielding much lower steady state concentrations 208 

compared to the THS transcript. 209 

To better understand the role that the THS transcript to tuner sRNA ratio had on the 210 

performance of the TES, we used our mathematical model of the system (Supplementary 211 

Text S1) to explore how various key parameters (e.g. transcription rates and binding affinities) 212 

affected the response function of the device. Using biologically realistic ranges of parameters 213 

(Supplementary Table S1), we found that for lower sRNA transcription rates the output 214 

response function could be shifted maintaining a similar fold-change between low and high 215 

output states (Figure 3a). At these low THS/sRNA ratios the translation rate from the THS 216 

transcript is limited by the sRNA concentration. However, as the sRNA transcription rate 217 

increased a transition point was seen (i.e. between green and blue shared curves in Figure 218 

3a) whereby for low THS transcription rates the sRNAs are in excess making the output protein 219 

production rate limited by the THS transcript concentration (Figure 3a). In contrast, at high 220 

THS transcription rates the sRNAs become limiting again but allow for relatively much higher 221 

output protein production rates that enable a larger fold-change in the response function of 222 

the TES (Figure 3a). Further stochastic modelling of the system showed that increased sRNA 223 

transcription rates also reduced variability in the distribution of protein production rates across 224 

a population and lowered the fractional intersection between low and high output states 225 

(Figure 3b).  226 

To experimentally verify the benefit of increasing the sRNA transcription rate, we built 227 

a complementary sRNA booster plasmid that contained a high-copy pColE1 origin of 228 

replication (50–70 copies per cell) 40 and expressed the tuner sRNA from a strong viral PT7 229 

promoter (Figure 3c) 41. Transcription from PT7 requires T7 RNA polymerase (T7RNAP). This 230 

is provided by our host strain E. coli BL21 Star (DE3), which has the T7RNAP gene under the 231 

control of an IPTG inducible PlacUV5 promoter within its genome (Figure 3c) 42. Using IPTG, 232 

induction of the tuner Ptac promoter in our devices using IPTG leads to simultaneous 233 
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expression of T7 RNAP from the host genome and transcription of additional tuner sRNA from 234 

the booster plasmid (Figure 3c). As the tunable devices are encoded on a plasmid with a 235 

p15A origin of replication (~15 copies per cell; Supplementary Figure S3) 43, we would expect 236 

at least five times higher tuner sRNA concentrations are reached when the sRNA booster is 237 

present. 238 

Cells were co-transformed with each tunable genetic device and sRNA booster 239 

plasmid, and their response functions were measured (Figures 3D and 3E). As predicted by 240 

the modelling, the TES displayed improved performance with a more than doubling in the fold-241 

change across all tuner promoter activities and a >40% drop in the intersection between low 242 

and high output YFP fluorescence distributions (Table 1). For the tunable NOT gate only minor 243 

differences in performance were seen with mostly small decreases in fold-change for high 244 

tuner promoter activities. 245 

 246 

Self-cleaving ribozyme insulators impact toehold switch function 247 

In our initial designs, a RiboJ self-cleaving ribozyme was included in the TES and NOT gate 248 

to insulate the translation of the yfp or phlF genes, respectively, from different 5’ untranslated 249 

region (UTR) sequences that might be generated when using different promoters as an input 250 

(Figures 1a, 2a) 44. Any variable UTR sequences would be cleaved at the RiboJ site to 251 

produce a standardized mRNA with more consistent rates of mRNA degradation and 252 

translation. Unfortunately, because RiboJ contains a number of strong secondary RNA 253 

structures 44,45, it is possible that the 23 nt hairpin at the 3’-end impacts the ability for the sRNA 254 

to interact with the THS, reducing the hybridization rate (Figure 4a). 255 

To assess whether the RiboJ insulator might affect the stability of secondary structures 256 

that are crucial to the TES’s function, we performed thermodynamic modelling of the binding 257 

between the toehold switch region of the mRNA and the tuner sRNA for variants of the TES 258 

design with and without RiboJ present (Materials and Methods). Simulations showed a 40% 259 

drop in predicted Gibbs free energy of the reactants when RiboJ was removed (−40.5 kcal/mol 260 

with versus −65 kcal/mol without RiboJ; Figure 4b). This suggests that binding between 261 

sRNAs and the THS may be hampered by interactions with the RiboJ insulator, lowering the 262 

effective translation initiation rate of the RBS controlled by the toehold switch and 263 

subsequently the overall performance of the devices. 264 

To experimentally test these predictions, non-insulated variants of the TES and tunable 265 

NOT gate were constructed in which RiboJ was removed. Characterization of these devices 266 

showed major improvements in overall performance (Figures 4c and 4d). The TES saw more 267 

than a doubling in the dynamic range and 10-fold increase in the fold-change between ‘on’ 268 

and ‘off’ states across low and high tuner activity levels compared to the original design (Table 269 

1). In addition, the fraction of intersection of the output YFP fluorescence distributions dropped 270 
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by >50%. The tunable NOT gate saw more modest improvements with a 73% increase in the 271 

fold-change at high tuner activity levels, but an overall drop of 66% in the range of transition 272 

points (K values) that could be achieved (Table 1). These results highlight an important 273 

consideration often ignored. When using RNA-based devices that require proper formation of 274 

secondary structures, care must be taken in looking at how multiple devices relying on mRNA 275 

folding to function could interfere with each other, leading to cryptic failure modes. 276 

Another counterintuitive change in the TES’s response function after RiboJ removal 277 

was the large drop in output YFP fluorescence from 26 to 3 arbitrary units (a.u.) when no input 278 

or tuner was present (Figure 4c). Similar drops of between 4- and 11-fold were also seen for 279 

higher tuner promoter activities. Given that binding of a tuner sRNA to the THS mRNA should 280 

be less hampered when RiboJ is absent, an increase not decrease in output protein production 281 

would be expected. A possible explanation is that the stability of the THS mRNA decreased 282 

after RiboJ was removed. This is supported by recent results that have shown the RiboJ 283 

insulator both stabilizes its mRNA and also boosts the translation initiation rate of a nearby 284 

downstream RBS 46. The precise mechanisms for this are not well understood but it is thought 285 

that the structural aspect of the RiboJ element at the 5’-end of an mRNA inhibits degradation 286 

by exonucleases, whilst the hairpin at the 3’-end of RiboJ exposes the nearby RBS by reducing 287 

the chance of unwanted secondary structure formation 44,45. 288 

Finally, we combined the non-insulated designs with the sRNA booster plasmid to see 289 

whether further improvements could be made (Table 1). For the TES, we found that the 290 

dynamic range had plateaued, with only moderate increases that were mostly at low tuner 291 

promoter activities. In contrast, the fold-change between low and high outputs more than 292 

doubled across tuner promoter activities when compared to the non-insulated design, and a 293 

further drop of >18% was seen in the fractional intersection between the YFP fluorescence 294 

distributions for these output states. The tunable NOT gate showed minor decreases in 295 

performance for many of the measures (Table 1). However, the inclusion of the sRNA booster 296 

likely increased overall PhlF concentrations as the transition points from an ‘on’ to ‘off’ state 297 

(K value range) shifted to far below what had been seen for all other designs. This would make 298 

this specific design of value for uses where a weak input signal needs to be inverted and 299 

amplified simultaneously. 300 

 301 

Towards complex tunable logic 302 

To create larger genetic circuits that implement complex logic, it is vital that a sufficiently 303 

diverse set of logic gates are available for use. Because a NOT gate alone has limited 304 

capabilities, we further modified its design to create a tunable 2-input NOR gate device 7,33. 305 

The output of a NOR gate is ‘on’ only when both inputs are ‘off’ (Figure 5b) and crucially this 306 

type of logic gate is functionally complete (i.e. any combinatorial logic function can be 307 
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implemented using NOR gates alone). In our new device, we added a further inducible input 308 

promoter, PBAD, directly before the existing Ptet input promoter, and included the associated 309 

sensor system (i.e. araC gene) to allow activity of the PBAD promoter to be controlled by the 310 

concentration of L-Arabinose (Figure 5a). Our modifications were made to the existing NOT 311 

gate design that included the RiboJ insulator because this produced the largest tunable range 312 

for the ‘on’ to ‘off’ transition point.  313 

To assess the function of the tunable NOR gate, the activities of both input promoters 314 

PBAD and Ptet, and the tuner promoter Ptac were varied by culturing cells harboring the device 315 

in different concentrations of L-Arabinose, aTc and IPTG, respectively (Materials and 316 

Methods). The two-dimensional response functions from these experiments (Figure 5c) 317 

showed that NOR logic was successfully implemented and that the transition point from low 318 

to high output for both inputs was simultaneous shifted to lower input promoter activities when 319 

the tuner promoter was highly active (Figure 5c, right panel). Considering each input promoter 320 

separately, this resulted in the transition point between ‘on’ and ‘off’ states shifting by 16- and 321 

6-fold for PBAD and Ptet, respectively. 322 

Interestingly, unlike the NOT gate, even at high tuner promoter activities, the dynamic 323 

range was better maintained, dropping at most 35%, and the fold-change between ‘on’ and 324 

‘off’ states remained above 4- and 8-fold for low and high tuner promoter activities, respectively 325 

(Supplementary Table S3). Furthermore, the improved separation of these states leads to 326 

smaller intersections in the output YFP distributions compared to the NOT gate. This was 327 

especially evident when comparing NOR gate states where both input promoters were 328 

simultaneously ‘off’ or ‘on’ with only a ~5% intersection (Supplementary Table S3). 329 

The cause of this improvement is not clear but may relate to the PBAD promoter 330 

insulating expression of the phlF gene from transcriptional read-through originating from the 331 

tuner transcription unit that is located directly upstream in the DNA (Supplementary Figure 332 

S3). Without this insulating effect, read-through would cause elevated expression of PhlF, 333 

even when the input promoters are off, and potentially lead to a partial switch in the output 334 

when the tuner promoter is active (as seen for the original NOT gate, Figure 2b). Such a 335 

mechanism could also account for the elevated output levels for the TES when the input 336 

promoter is off, but the tuner promoter activity is increased (Figure 1c). 337 

 338 

Discussion 339 

In this work, we have developed a new class of genetic device where an additional tuner input 340 

is able to dynamically change key features of the device’s response function. This was 341 

achieved by employing a regulatory motif that allows for the transcription and translation rate 342 

of a gene to be controlled by the activity of multiple input promoters. Connecting this TES to 343 
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a number of small molecule sensors, we were able to demonstrate its ability to shift the ‘on’ 344 

and ‘off’ output states by 4.5- and 28-fold, respectively (Figure 1). Furthermore, we showed 345 

how the TES could be incorporated into genetic NOT and NOR gates to enable tuning of the 346 

crucial transition point between an ‘on’ and ‘off’ state over >6-fold range (Figure 2). This made 347 

the gates more broadly compatible with other components where matching of transition points 348 

to high and low output levels is essential for effective propagation of biological computations 349 

7,22. Unfortunately, the performance of the tunable devices varied for differing tuner inputs, 350 

leading to a trade-off between performance and the level of tuning required. Mathematical and 351 

biophysical modelling of the TES helped to uncover: 1. the importance of ensuring sufficient 352 

tuner sRNA is present to fully activate the THS (Figure 3), and 2. the presence of possible 353 

detrimental interactions between a self-cleaving ribosome used to insulate protein expression 354 

from genetic context and the THS that relies on the correct folding of an RNA secondary 355 

structure to function properly (Figure 4). Modified designs that addressed these concerns 356 

demonstrated improved performance for the TES in both cases, but only minor improvements 357 

in the fold-change of the tunable NOT gate when the self-cleaving ribosome was removed 358 

(Table 1). By combining these two modifications into a single system, further improvements 359 

were observed for the TES, but not the tunable NOT gate when compared to the original 360 

designs (Table 1). In contrast, the NOR gate behaved more consistently across tuner activity 361 

levels and displayed better performance with greater separation of ‘on’ and ‘off’ states. To the 362 

best of our knowledge the simultaneous control of transcription and translation to tune the 363 

response function of a genetic device has not been shown before, making this work a valuable 364 

resource for others to build on. Furthermore, unlike other attempts at tuning the response of 365 

devices through mutation of protein components to alter catalytic rates 47, our method allows 366 

for dynamic changes to a response function using simple to control transcriptional signals (i.e. 367 

by the use of appropriate promoters). 368 

A difficulty when using THSs to regulate gene expression is that high relative 369 

concentrations of sRNA are required to achieve a strong enough activation of mRNA 370 

translation. This stems from the regulatory mechanism relying purely on base-pairing of the 371 

sRNA to THS, which places limits on the binding affinity that can be achieved. A possible 372 

means of increasing the affinity between these species would be to exploit RNA chaperones 373 

such as Hfq 48,49. In prokaryotes, sRNAs that associate with Hfq play a variety of roles from 374 

inhibiting and activating translation, to affecting the stability of a target mRNA 50–52. In some 375 

cases, these effects are significant. For example, it has been shown in vitro that Hfq increases 376 

by 30- to 50-fold the binding affinity of the DsrA sRNA to the leader of the rpoS mRNA 53. 377 

Designing de novo sRNA that binds to Hfq to increase their affinity to a target mRNA has been 378 

demonstrated for both activation 48 and inhibition 49 of translation initiation. In both cases, Hfq 379 

binding scaffolds from endogenous genes (e.g. micC) are fused with a targeting sequence. 380 
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This approach could be employed in future TES designs. In fact, previous work that used Hfq 381 

associated sRNAs to implement a metabolically cheap negative feedback control loop created 382 

a useful repressive tuning element that could be directly used in our system49. By combining 383 

the findings from that study with ours and incorporating recent improvements in THS design 384 

6, it should be possible to make further strides towards high-performance tunable genetic 385 

devices. 386 

An interesting future direction opened up by the adaptive nature of our devices is the 387 

possibility of incorporating many of them into larger circuits. This would allow many parts of a 388 

circuit to be tuned simultaneously to maximize the compatibility between components and 389 

optimize the behavior of the overall system. Unlike a typical design-build-test cycle that 390 

requires the reassembly of a genetic circuit with a new combination of parts if malfunctions 391 

are detected, this work supports a design-build-test-tune cycle where time consuming and 392 

costly reassembly can be avoided. Rather than reassembling a circuit after each cycle, parts 393 

can instead be dynamically tuned until they work correctly in unison. In this context, the use 394 

of sensitivity analysis during circuit design would offer valuable insight into specific 395 

components where even small deviations in behavior would adversely impact overall circuit 396 

function 54. These would be ideal candidates to be encoded using tunable devices to allow for 397 

tweaking at these critical points. Furthermore, the use of new microfluidic culturing systems 398 

and online machine learning algorithms offers a way to rapidly discover the precise tuner 399 

inputs needed to achieve specific circuit functions under fluctuating environmental conditions 400 

55–58. 401 

Some practical challenges are raised by the additional tuner input in our devices. 402 

Systems composed of numerous tunable devices will require a large number of tuner inputs 403 

to be controlled simultaneously. If external signals are to be used, then a unique sensor is 404 

required for each tuner input, as well as the capability to be able to control the environment to 405 

provide the correct set of input signals over time. Although the range of small molecule 35 and 406 

light based 47,59 sensing systems available to bioengineers in E. coli has grown over recent 407 

years, the ability to control many environmental factors (e.g. small molecule concentrations 408 

and light intensities) simultaneously remains difficult. However, external control is not the only 409 

way to tune the behavior of these devices. The use of promoters as inputs and outputs allows 410 

them to be controlled by connecting them directly to the many transcriptional signals used 411 

natively in a cell. This offers the advantage of tapping into the cells innate capacity to sense 412 

and respond to its environment and internal protein synthesis demands. Alternatively, if an 413 

adaptive circuit is not required, sensors controlling the tuning inputs could be replaced once a 414 

working configuration is found with constitutive promoters of an identical strength. This would 415 

still reduce the reassembly required to a single step once the correct combination of tuning 416 
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inputs is found and remove the need for active control of the environment to provide necessary 417 

stimuli for sensors. 418 

When designing our tunable devices, we observed deviations between the 419 

experimental and modelled responses. Further investigation suggested that this may be due 420 

to retroactivity 36,37, specifically whereby expression of the output reporter protein places a 421 

significant burden on the host cell (Supplementary Text S2). Recently, there has been 422 

increased interest in the role of burden 60 impacting upon the function of large synthetic genetic 423 

systems and attempts made to help mitigate its effect 61. One approach has been to create 424 

intracellular resource allocation schemes based on split exogenous RNAPs 62. These limit the 425 

maximum burden a circuit can impose by providing pools of transcriptional resources that are 426 

orthogonal to the endogenous ones. This helps to reduce the chance of large unpredictable 427 

physiological changes in the cell that might affect the function of synthetic circuits. Because 428 

our tunable devices can have their sensitivity dynamically altered (i.e. transition point can 429 

occur for weaker inputs), they offer another means of adapting to the reduced availability of 430 

shared cellular resources. They could also be used to boost the expression of downstream 431 

components to mitigate retroactivity effects or even be used to cap to maximum levels of 432 

resource that can be used by a circuit (i.e. tuning the levels of several devices concurrently to 433 

ensure protein expression does not exceed a fixed level).  434 

For synthetic biology to have a broad and lasting impact outside of the carefully 435 

controlled conditions of a lab, it is vital that means are developed to construct adaptive genetic 436 

circuits able to maintain their functionality when exposed to unexpected environmental 437 

changes or shifts in host cell physiology 63. By combining advances in biological control 438 

engineering 61,63–67 with the tunable genetic devices developed in this work, bioengineers have 439 

a complementary set of tools capable of taking steps towards this goal. 440 

 441 

Materials and Methods 442 

Strains and media 443 

Cloning was performed using Escherichia coli strain DH5-α (F– endA1 glnV44 thi-1 recA1 444 

relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA–argF)U169, hsdR17(rK
–mK

+), λ–) 445 

(New England Biolabs, C2987I). Device characterization was performed using BL21 Star 446 

(DE3) (F– ompT hsdSB (rB
–, mB

–) gal dcm rne-131 [DE3]) (Thermo Fisher Scientific, C601003). 447 

For cloning, cells were grown in LB Miller broth (Sigma-Aldrich, L3522). For device 448 

characterization, cells were grown in M9 minimal media supplemented with glucose containing 449 

M9 salts (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl) (Sigma-Aldrich, 450 

M6030), 0.34 g/L thiamine hydrochloride (Sigma T4625), 0.4% D-glucose (Sigma-Aldrich, 451 

G7528), 0.2% casamino acids (Acros, AC61204-5000), 2 mM MgSO4 (Acros, 213115000), 452 
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and 0.1 mM CaCl2 (Sigma-Aldrich, C8106). Antibiotic selection was performed using 50 μg/mL 453 

kanamycin (Sigma-Aldrich, K1637) or 50 mg/mL spectinomycin (Santa Cruz Biotechnology, 454 

sc-203279). Induction of sensor systems was performed using anhydrotetracycline (aTc) 455 

(Sigma-Alrdich, 37919), isopropyl β-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich, I6758) 456 

and L-Arabinose (Ara) (Sigma-Aldrich, A3256). 457 

 458 

Genetic device synthesis and assembly 459 

Plasmids containing the TES and tunable NOT gate devices were constructed by gene 460 

synthesis of the individual transcriptional units (e.g. tuner sRNA, THS-yfp, THS-phlF and yfp), 461 

(GeneArt, Thermo Fisher Scientific) and insertion of these elements into a pAN1201 plasmid 462 

backbone. pAN1201 provides all the sensor systems used for induction of the input promoters. 463 

Assembly was performed by first PCR of the synthesized transcriptional units and the 464 

pAN1201 plasmid (without the lacZα region normally used for blue/white screening) with all 465 

primers containing a 20 bp tail homologous sequence to the previous or subsequent region in 466 

the desired assembly. Gibson assembly (New England Biolabs, E2611S) was then used to 467 

scarlessly assemble these fragments into a complete plasmid. The plasmid used to boost 468 

tuner sRNA levels (pVB005) was fully synthesized (GeneArt, Thermo Fisher Scientific). The 469 

plasmid containing the tunable NOR gate device (pVB006) was constructed by first PCR 470 

amplification of the pAN1720 plasmid (without the lacZα region normally used for blue/white 471 

screening) using primers containing an EcoRI restriction site at the 5’-end and a NotI restriction 472 

site at the 3’-end. The tunable NOR gate DNA insert was synthesized in three parts (Integrated 473 

DNA Technologies) which were assembled using a standard Golden Gate assembly method 474 

(New England Biolabs, E1601S) to create a full-length linear insert. This was designed to 475 

contain complementary EcoRI and NotI restriction sites to the amplified pAN1720 fragment. 476 

Both linear DNA fragments were finally used in a standard restriction digest using EcoRI (New 477 

England Biolabs, R3101) and NotI (New England Biolabs, R3189), and then a ligation reaction 478 

(New England Biolabs, M0202S) to assemble the complete pVB006 plasmid. All plasmids 479 

were sequence verified by Sanger sequencing (Eurofins Genomics). Annotated plasmid maps 480 

of all devices are provided in Supplementary Figure S3 and Supplementary File S2. 481 

 482 

Genetic device characterization  483 

Single colonies of cells transformed with the appropriate genetic constructs were inoculated 484 

in 200 μL M9 media supplemented with glucose and necessary antibiotics for selection in a 485 

96-well microtiter plate (Thermo Fisher Scientific, 249952) and grown for 16 hours in a shaking 486 

incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, cultures were diluted 9:1600 487 

(15 μL into 185 μL, with 15 μL of this dilution loaded into 185 μL) in glucose supplemented M9 488 

media with necessary antibiotics for selection and grown for 3 hours at the same conditions. 489 
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Next, the cultures were diluted 1:45 (10 μL into 140 μL) into supplemented M9 media with 490 

necessary antibiotics for selection and any required inducers in a new 96-well microtiter plate 491 

(Thermo Fisher Scientific, 249952) and grown at 37 °C and 1250 rpm for 5 hours. Finally, the 492 

cells were diluted 1:10 (10 μL into 90 μL) in phosphate-buffered saline (PBS) (Gibco,18912-493 

014) containing 2 mg/mL kanamycin to halt translation and incubated at room temperature for 494 

1 hour to allow for maturation of the YFP before performing flow cytometry. 495 

 496 

Flow cytometry 497 

YFP fluorescence of individual cells was measured using an Acea Biosciences NovoCyte 498 

3000 flow cytometer equipped with a NovoSampler to allow for automated collection from 96-499 

well microtiter plates. Cells were excited using a 488 nm laser and measurements were taken 500 

using a 530 nm detector. A flow rate of 40 μL/min was used to collect at least 105 cells for all 501 

measured conditions. Automated gating of events using the forward (FSC-A) and side scatter 502 

(SSC-A) channels was performed for all data using the FlowCal Python package version 1.2 503 

68 and the density2d function with parameters: channels = [‘FSC-A’, ‘SSC-A’], bins = 1024, 504 

gate_fraction = 0.5, xscale = ‘logicle’, yscale = ‘logicle’, and sigma = 10.0. 505 

 506 

Autofluorescence correction 507 

To measure YFP fluorescence from our constructs it was necessary to correct for the 508 

autofluorescence of cells. An autofluorescence control strain containing the pAN1201 plasmid 509 

7, which does not express YFP but contains the same backbone as our genetic devices, was 510 

measured using flow cytometry under the same culturing conditions as for characterization. 511 

Measurements were taken from three biological replicates and an average of the medians of 512 

the gated distributions was subtracted from the gated YFP fluorescence flow cytometry data 513 

of the characterized devices, as in previous work 7. 514 

 515 

Characterization of sensor systems in relative promoter units (RPU) 516 

To allow for inputs to our devices to be controlled in standardized relative promoter units 517 

(RPUs) 7,69, calibration curves for the two sensor systems were generated to enable a 518 

conversion between a chemical inducer concentration and the relative promoter activity of 519 

each sensors’ output promoter (Ptac and Ptet). Cells transformed with plasmids pAN1718 and 520 

pAN1719 for Ptac and Ptet, respectively, and the pAN1717 RPU standard 7, were cultured in 521 

the same way as the characterization experiments. Flow cytometry was used to measure YFP 522 

fluorescence which was further corrected for cell autofluorescence. RPU values were then 523 

calculated by dividing the YFP output from the sensor by the YFP output from the RPU 524 

standard and a Hill function fitted to the resultant data (Supplementary Figure S1).  525 

 526 
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Quantifying histogram intersections  527 

The fraction of intersection H between two histograms (e.g. flow cytometry fluorescence 528 

distributions), x and y, was calculated using, 529 

𝐻(𝑥, 𝑦) = 	∑ *+,	(-.,/.)
-.

0
123 	.           (1) 530 

Here, histograms x and y are divided into n bins that correspond to identical ranges of values 531 

for each, with xi and yi denoting the value of bin i for histogram x or y, respectively. 532 

 533 

Predicting RNA binding and secondary structure 534 

To predict the binding and secondary structure of the toehold switch and tuner sRNA (Figure 535 

3), thermodynamic modelling was performed using the NUPACK web application 70. All 536 

simulations were run using the parameters: nucleic acid = RNA, temperature = 37 °C and the 537 

concentration of toehold switch mRNA was set to 5 × 10−4 μM. The switch sequence mRNA 538 

and the switch sequence mRNA with an upstream cleaved RiboJ were simulated 539 

independently with additional parameters strand species = 1 and a maximum complex size = 540 

1. The toehold switch mRNA with and without an upstream RiboJ sequence where also 541 

simulated in the presence of trigger sRNA set to a concentration of 7 × 10−5 μM with additional 542 

parameters: strand species = 1 and a maximum complex size = 1. Full sequences are given 543 

in Supplementary Table S2. 544 

 545 

Computational analyses and data fitting 546 

All computational analyses were performed using Python version 3.6.6. Response functions 547 

for the TES designs were generated by fitting median values of YFP fluorescence from flow 548 

cytometry data to a Hill function of the form 549 

𝑦 = 𝑦*+, + (𝑦*56 − 𝑦*+,)
-8

98:-8
,          (2) 550 

where y is the output YFP fluorescence (in arbitrary units), ymin and ymax are the minimum and 551 

maximum output YFP fluorescence (in arbitrary units), respectively, K is the input promoter 552 

activity (in RPU units) at which the output is halfway between its minimum and maximum, n is 553 

the Hill coefficient, and x is the input promoter activity (in RPU units). Response functions for 554 

the tunable NOT gates were generated in a similar way using a Hill function of the form 555 

𝑦 = 𝑦*+, + (𝑦*56 − 𝑦*+,)
98

98:-8
.          (3) 556 

Fitting of data was performed using non-linear least squares and the curve_fit function from 557 

the SciPy.integrate Python package version 1.1. 558 

 559 

Numerical simulation 560 
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The deterministic ODE model (Supplementary Text S1) was simulated using the odeint 561 

function of the SciPy.integrate Python package version 1.1 with default parameters. The delay 562 

differential equations (Supplementary Text S2) were simulated using the 563 

DifferentialEquations module version 6.10 using the Bogacki-Shampine 3/2 method running 564 

in Julia version 1.3. Stochastic simulations of the biochemical model (Supplementary Text 565 

S1) were performed using the tau-leap method in COPASI 71 version 4.24 with the following 566 

settings: number of iterations (simulations) = 4000, duration = 100 min, interval size = 1 min, 567 

number of intervals = 100 and the starting in steady state option selected. Initial steady-state 568 

conditions for the simulation are calculated automatically by COPASI using a damped Newton 569 

method. 570 

 571 

Visualization of genetic designs 572 

All genetic diagrams are shown using Synthetic Biology Open Language Visual (SBOL Visual) 573 

notation 72. SBOL Visual diagrams were generated using the DNAplotlib Python package 73,74 574 

version 1.0 which were then annotated and composed with OmniGraffle version 7.9.2.  575 

 576 

Data availability 577 

Systems Biology Markup Language (SBML) file implementing a model of the TES can be 578 

found in Supplementary File S1. Annotated sequence files in GenBank format for all 579 

plasmids are available in Supplementary File S2. All plasmids are available from Addgene 580 

(#127185–127189). 581 
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Figures and captions 767 

 768 

Figure 1: Design and characterization of a tunable expression system (TES). (a) 769 

Schematic of the TES (top) and genetic implementation using a toehold switch (design 20) 34 770 

to regulate translation (TL) initiation rate of an output protein (bottom, dashed box). Yellow 771 

fluorescent protein (YFP) is used as the output and T1 and T2 correspond to the transcriptional 772 

terminators L3S3P11 and L3S2P21, respectively 75. (b) Genetic design of the sensor modules 773 

used to drive the main and tuner inputs to the TES. (c) Experimentally measured response 774 

functions for the TES. Points denote the average of three biological replicates and error bars 775 

show ±1 standard deviation. Each line shows a fitted Hill function for a fixed tuner input (light–776 

dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). (d) Flow cytometry distributions of output YFP 777 

fluorescence when the tuner promoter activity is low (bottom; 0.002 RPU) and high (top; 2.6 778 

RPU). Black outlined distributions correspond to a high input promoter activity (6.6 RPU) and 779 

the filled red distributions to a low input promoter activity (0.002 RPU). Cell autofluorescence 780 

is shown by the dashed grey line. (e) Fraction of intersection between YFP fluorescence 781 

distributions for low (0.002 RPU) and high (6.6 RPU) inputs across varying tuner promoter 782 

activities. (f) Response functions from a deterministic model of the TES (Supplementary Text 783 

S1). Output shown as the steady state protein level. Line color corresponds to the promoter 784 

activity of the tuner input (light–dark: 0.0001, 0.06, 0.3, 1.5, 7.6, 38, 190 RNAP/min). (g) 785 

Comparison of the output for high (filled circles; 6.6 RPU) and low (unfilled circles; 0.002 RPU) 786 

inputs across a range of tuner promoter activities (Experiment: 0.002, 0.03, 0.15, 0.43, 0.9, 787 

2.6 RPU; Model: 0.0001, 0.3, 1.5, 7.6, 38, 190 RNAP/min).  788 
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 789 

Figure 2: Design and characterization of a tunable NOT gate. (a) Schematic of the tunable 790 

NOT gate (top) and genetic implementation embedding the TES (bottom, dashed box). Yellow 791 

fluorescent protein (YFP) expression is driven by the output promoter and T1 and T3 792 

correspond to the transcriptional terminators L3S3P11 and ECK120033737, respectively 75. 793 

(b) Experimentally measured response functions of the tunable NOT gate. Points denote the 794 

average of three biological replicates and error bars show ±1 standard deviation. Each line 795 

shows a fitted Hill function for a fixed tuner input (light–dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 796 

RPU). (c) Flow cytometry distributions of the output YFP fluorescence from the tunable NOT 797 

gate when the tuner promoter activity is low (bottom; 0.002 RPU) and high (top; 2.6 RPU). 798 

Black outlined distributions correspond to a high input promoter activity (1.5 RPU) and the 799 

filled blue distributions to a low input promoter activity (0.002 RPU). (d) Comparison of the 800 

switching point (K value) for each repressor-based NOT gate from Cello 7 (black circles) to the 801 

range achievable by the tunable NOT gate (red crosses and shaded regions). (e) Fraction of 802 

intersection between output YFP fluorescence distributions for low (0.002 RPU) and high (1.5 803 

RPU) inputs across varying tuner promoter activities. (f) Fold-change in the median output 804 

YFP fluorescence between low (0.002 RPU) and high (1.5 RPU) inputs across varying tuner 805 

promoter activities.  806 
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 807 

Figure 3: Increasing tuner sRNA transcription rate to improve device performance. (a) 808 

Results of deterministic simulations of the TES model (Supplementary Text S1) showing 809 

steady state protein output and THS mRNA to tuner sRNA ratio for a range of input and tuner 810 

promoter activities. Tuner promoter activities are shown in bands between (light–dark) 0.0001, 811 

0.0005, 0.0024, 0.012, 0.056, 0.27, 1.3, 6.4, 31, 150 and 730 RNAP/min, respectively. (b) 812 

Stochastic simulation of the TES model (n = 4000) for low (1 RNAP/min; grey) and high (1.5 813 

RNAP/min; green) input promoter activity. Top and bottom panels correspond to low (1.5 814 

RNAP/min) and high (5 RNAP/min) tuner promoter activities, respectively. (c) Genetic design 815 

of the sRNA booster. The T7RNAP gene is encoded in the host genome and an additional 816 

plasmid contains a tuner sRNA expression unit. (d) Experimentally measured response 817 

functions (left) and flow cytometry distributions of the YFP fluorescence output (right) for the 818 

TES with the sRNA booster present. (e) Experimentally measured response functions (left) 819 

and flow cytometry distributions of the YFP fluorescence output (right) for the tunable NOT 820 

gate with the sRNA booster present. Points in all response functions denote the average of 821 

three biological replicates and error bars show ±1 standard deviation. Each line shows a fitted 822 

Hill function for a fixed tuner input (light–dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). All flow 823 

cytometry distributions are shown for low (bottom; 0.002 RPU) and high (top; 2.6 RPU) tuner 824 

promoter activity. Black outlined distributions correspond to a high input promoter activity (6.6 825 

RPU for the TES and 1.5 RPU for the NOT gate) and filled red/blue distributions to a low input 826 

promoter activity (0.002 RPU). Cell autofluorescence is shown by the dashed grey line.  827 
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 828 

Figure 4: Self-cleaving ribozyme insulators affect tunable device performance. (a) 829 

Original designs of both the TES and tunable NOT gate include a RiboJ insulating element, 830 

which can potentially interfere with binding of the tuner sRNA to the toehold switch. (b) RNA 831 

secondary structure predictions for THS mRNA alone and with a complimentary tuner sRNA 832 

bound. Separate structures shown when the RiboJ insulating element is present (left) and 833 

absent (right). (c) Experimentally measured response functions (left) and flow cytometry 834 

distributions of the output YFP fluorescence (right) for the TES with the RiboJ insulator 835 

removed. (d) Experimentally measured response functions (left) and flow cytometry 836 

distributions of the YFP fluorescence output (right) for the tunable NOT gate with the RiboJ 837 

insulator removed. Points in all response functions denote the average of three biological 838 

replicates and error bars show ±1 standard deviation. Each line shows a fitted Hill function for 839 

a fixed tuner input (light–dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). All flow cytometry 840 

distributions are shown for low (bottom; 0.002 RPU) and high (top; 2.6 RPU) tuner promoter 841 

activity. Black outlined distributions correspond to a high input promoter activity (6.6 RPU for 842 

the TES and 1.5 RPU for the NOT gate) and filled red/blue distributions to a low input promoter 843 

activity (0.002 RPU). Cell autofluorescence is shown by the dashed grey line.  844 
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 846 

Figure 5: Design and characterization of a tunable NOR gate. (a) Schematic of all the 847 

sensor systems used (top, left), the tunable NOR gate (top, right), and their genetic 848 

implementation (bottom, dashed boxes). Yellow fluorescent protein (YFP) expression is driven 849 

by the output promoter and T1 and T3 correspond to the transcriptional terminators L3S3P11 850 

and ECK120033737, respectively 75. (b) Function of a 2-input NOR gate. (c) Heatmaps 851 

showing the output of the tunable NOR gate for varying input promoter activities (Input A – 852 

PBAD: 0.008, 0.003, 0.15, 0.5, 2.5, 3.1 RPU; Input B – Ptet: 0.05, 0.5, 1.6, 3.1, 6.4, 7.5 RPU) 853 

and for low (left) and high (right) tuner promoter activities. Output promoter activities shown 854 

are average values calculated from flow cytometry data for three biological replicates. White 855 

dashed line shows an output of 1.2 RPU and denotes the transition point from a high to low 856 

output. (d) Flow cytometry distributions of the output YFP fluorescence for tuner promoter 857 

activities of 0.002 RPU (bottom) and 2.6 RPU (top). The four distributions correspond to 858 

combinations of the absence and presence of L-Arabinose (10 mM) and aTc (50 ng/mL).  859 
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Tables 860 

Table 1: Performance summary of TES and tunable NOT gate. 861 

Device Design 

Dynamic rangea,b 
(a.u.) 

Fold-changea,c Intersectiona,d 
K range 
(RPU)g Lowe Highf Lowe Highf Lowe Highf 

TES Original  333 ± 
53 

877 ± 
695 

14 ± 
1.7 

2.4 ± 
1.2 

0.78 ± 
0.06 

0.69 ± 
0.16 

– 

sRNA boosterh 538 ± 

51 

2064 ± 

1070 

227 ± 

297 

5.7 ± 

1.8 

0.46 ± 

0.04 

0.35 ± 

0.15 

– 

Non-insulatedi 882 ± 

134 

2149 ± 

409 

445 ± 

412 

31 ± 

16 

0.26 ± 

0.07 

0.27 ± 

0.06 

– 

Combinedj 1550 ± 

209 

1712 ± 

584 

1236 ± 

613 

66 ± 

54 

0.15 ± 

0.04 

0.22 ± 

0.04 

– 

NOT 
gate 

Original 17280 ± 

1273 

3512 ± 

286 

6.0 ± 

0.1  

1.5 ± 

0.1 

0.19 ± 

0.04 

0.84 ± 

0.02 

0.01–0.07 

sRNA boosterh 22040 ± 

1601 

2170 ± 

654 

5.8 ± 

0.3 

0.9 ± 

0.3 

0.13 ± 

0.07 

0.85 ± 

0.02 

0.01–0.06 

Non-insulatedi 17466 ± 
1926 

4061 ± 
827 

6.8 ± 
0.3 

2.6 ± 
0.4 

0.11 ± 
0.03 

0.56 ± 
0.08 

0.02–0.04 

Combinedj 27751 ± 

3104 

2383 ± 

165 

6.0 ± 

0.6 

0.9 ± 

0.1 

0.08 ± 

0.05 

0.90 ± 

0.03 

0.003–0.02 

a.  Average values are shown ± 1 standard deviation calculated from flow cytometry data for three 862 

biological replicates. 863 

b. Dynamic range calculated as the absolute difference in YFP fluorescence between low and high 864 

inputs (0.002 and 6.6 RPU for the TES, and 0.002 and 1.5 RPU for the NOT gate, respectively). 865 

c. Fold-change in YFP fluorescence (corrected for cell autofluorescence) for low and high inputs 866 

(0.002 and 6.6 RPU for the TES, and 0.002 and 1.5 RPU for the NOT gate, respectively). 867 

d. Fraction of intersection between the flow cytometry YFP fluorescence distributions for low and high 868 

inputs (0.002 and 6.6 RPU for the TES, and 0.002 and 1.5 RPU for the NOT gate, respectively) 869 

(Materials and Methods). 870 

e. Performance measured for a low tuner input (0.002 RPU). This is the expected promoter activity of 871 

the Ptac promoter in our designs. 872 

f. Performance measured for a high tuner input (2.61 RPU). This is the expected promoter activity of 873 

the Ptac promoter in our designs. 874 

g. Range of K values from Hill functions fitted to experimental data. 875 

h.  Original designs (Figures 1a and 2a) with the sRNA booster system (Figure 3c). 876 

i. Design has the RiboJ insulating element removed (Figure 4a). 877 

j. Design has the RiboJ insulating element removed (Figure 4a), and sRNA booster system present 878 

(Figure 3c). 879 
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