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Abstract

Molecular ecology regularly requires the analysis of count data that reflect the relative abun-

dance of features of a composition (e.g., taxa in a community, gene transcripts in a tissue).

The sampling process that generates these data can be modeled using the multinomial dis-

tribution. Replicate multinomial samples inform the relative abundances of features in an

underlying Dirichlet distribution. These distributions together form a hierarchical model

for relative abundances among replicates and sampling groups. This type of Dirichlet-

multinomial modelling (DMM) has been described previously, but its benefits and limitations

are largely untested. With simulated data, we quantified the ability of DMM to detect dif-

ferences in proportions between treatment and control groups, and compared the efficacy

of three computational methods to implement DMM—Hamiltonian Monte Carlo (HMC),

variational inference (VI), and Gibbs Markov chain Monte Carlo. We report that DMM

was better able to detect shifts in relative abundances than analogous analytical tools, while

identifying an acceptably low number of false positives. Among methods for implementing

DMM, HMC provided the most accurate estimates of relative abundances, and VI was the

most computationally efficient. The sensitivity of DMM was exemplified through analysis

of previously published data describing lung microbiomes. We report that DMM identified

several potentially pathogenic, bacterial taxa as more abundant in the lungs of children who

aspirated foreign material during swallowing; these differences went undetected with different

statistical approaches. Our results suggest that DMM has strong potential as a statistical

method to guide inference in molecular ecology.

Introduction1

In many scientific disciplines, data from both manipulative experiments and surveys of nat-2

ural variation are often counts of observations that are assigned to categories. Given some3

total level of observational effort, the counts of the different features in the sample (e.g.,4
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taxa or transcripts) reflect the underlying proportions of those features in the sampled com-5

position (e.g., an assemblage of organisms or collection of molecules). In molecular ecology,6

such sampling can take the form of detecting and counting taxa based on observed DNA7

sequences (e.g., in molecular barcoding or microbial ecology) or counting the reads assigned8

to specific transcripts in studies of gene expression (Fernandes et al. 2014, Gloor et al. 2017,9

Tsilimigras and Fodor 2016). For these applications, sampling effort corresponds to the total10

number of sequence reads, and the count of reads assigned to a taxon or gene supports infer-11

ence of their true proportion in the composition. Moreover, the total number of reads that12

can be obtained is constrained by the sequencing instrument, with reads ascribed to samples13

and features within each sample. Due to this constant sum constraint, compositional data14

have the important quality that as the relative abundance of one feature in the composition15

increases, other features must decrease.16

Molecular ecologists often rely on compositional count data to define differences between17

sampling groups. As an example, we may wish to know how the foliar and root microbiomes18

of a particular plant taxon differ. To answer this question, an understanding of how each19

feature shifts in relative abundance among sampling groups is required. In our view, if even20

a single feature shifts in relative abundance among groups, then this demonstrates an effect21

of sampling group that could be biologically interesting, albeit subtle. Such effects will go22

unnoticed if analyses rely on techniques such as ordination and PERMANOVA, which can23

provide insight into overall differences between sampling groups (McKnight et al. 2019), but24

provide no statistical model to identify those features that may differ in relative abundance25

among groups. Accordingly, a variety of methods have been developed to perform the seem-26

ingly simple task of determining treatment-induced shifts in relative abundance, which is27

often referred to as “differential relative abundance testing” or “differential expression” test-28

ing (the latter phrase arises because the roots of many of these methods lie within the field29

of functional genomics; Bullard et al. 2010, Dillies et al. 2013, Paulson et al. 2013, Thorsen30

et al. 2016, Weiss et al. 2017).31
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Methods for detecting shifts in relative abundance vary tremendously—and the benefits32

and drawbacks of various methods are the subjects of an ongoing dialogue (e.g., Bullard33

et al. 2010, McMurdie and Holmes 2014, Weiss et al. 2017). Early approaches typically34

relied on repeated frequentist tests after transforming count data to account for differences35

in sampling effort among replicates or sampling groups, typically via rarefaction, conver-36

sion to proportions, or, for transcriptomic data, reads per kilobase per million mapped reads37

(Bullard et al. 2010). More recently, rarefaction has been criticized because it can amplify the38

variation present within replicates and thus reduce statistical power (McMurdie and Holmes39

2014; but see McKnight et al. 2019 and Weiss et al. 2017 for counterarguments). Numer-40

ous statistical modelling approaches have arisen to account for the challenges imposed by41

compositional data, while avoiding rarefaction. These methods often model feature relative42

abundance and typically involve some form of normalization followed by repeated frequentist43

testing. Methods most often differ in the choice of distribution(s) utilized for modelling and44

normalization method employed. For example, the software DESeq2 (Love et al. 2014) and45

edgeR (Robinson et al. 2010) are widely-used for analysis of gene expression data and, more46

recently, for microbiome analysis (Weiss et al. 2017). These tools model feature relative47

abundances using a negative binomial distribution (a reparameterization of the Poisson dis-48

tribution to allow for overdispersion), which is scaled to account for variation in sequencing49

depth among samples (each tool uses different normalization methods). Next a generalized50

linear model is used to determine if features differ in relative abundance between sampling51

groups. By comparison, the popular ANCOM software applies a centered log ratio trans-52

formation (Aitchison 1982) to the data followed by repeated parametric or non-parametric53

testing (depending on the data) with multiple comparison correction. These few examples54

serve to illustrate the variety of approaches available for performing differential expression55

testing. However, we are unaware of any popular method that allows estimates of feature56

relative abundance to be easily extracted while preserving the uncertainty in those estimates57

for propagation to downstream analyses. This perceived need led us to consider modelling58
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feature relative abundances using the Dirichlet and multinomial distributions (Box 1) in a59

Bayesian framework.60

The multinomial and Dirichlet probability distributions are the relevant models of the61

aforementioned sampling process that commonly leads to compositional data. Statistical62

modelling using these distributions has proven successful in a number of biological studies.63

For instance, Fordyce et al. (2011) rely on Dirichlet-multinomial modelling (DMM) to an-64

alyze ecological count data, such as counts of behavioural and dietary choices of animals65

(also see Coblentz et al. 2017). Similar models have been applied to large counts of DNA66

sequences—for instance, Fernandes et al. (ALDEx2, 2014), Nowicka and Robinson (DRIM-67

Seq, 2016), and Rosa et al. (HMP, 2012) use DMM to estimate and compare feature-specific68

relative abundances in transcriptomes and microbiomes. Additionally, DMM has been used69

to model mixtures of compositions, a situation that could arise in a laboratory-derived mi-70

crobial assemblage occurring as a contaminant within samples, or in mixtures of different71

communities in nature (MicrobeDMM, Holmes et al. 2012; SourceTracker, Knights et al.72

2011; BioMiCo, Shafiei et al. 2015; FEAST, Shenhav et al. 2019; ecostructure, White et al.73

2019). Likewise, DMM has been used to estimate association networks among microbial74

taxa (SparCC, Friedman and Alm 2012; mLDM, Yang et al. 2017).75

These models represent important advances and demonstrate the utility of DMM, but76

it remains unclear how data attributes, such as rank-abundance profiles and dimensionality,77

affect the accuracy and precision of parameter estimates. Moreover, compared to models78

that rely on other distributions or are based on different statistical methods (likelihood and79

frequentist methods), Bayesian DMM can be computationally demanding. Recent advances80

in computational statistics such as Hamiltonian Monte Carlo (HMC) sampling and varia-81

tional inference (VI, see Methods; Blei et al. 2017, Monnahan et al. 2017) may improve model82

runtime, but the accuracy and performance of these new methods remains to be evaluated83

in different modelling contexts.84

Consequently, we conducted a simulation experiment to learn the limits and benefits of85
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DMM through the analysis of data that encompass much of the variety in attributes encoun-86

tered across scientific domains (e.g. replication, number of observations, and so on; Fig. 1).87

Notably, included in simulated data, were those emulating the results of high-throughput88

sequencing of microbial assemblages, as these are analytically challenging due to their dimen-89

sionality, high among-replicate variation, and extreme rank-abundance skew—often several90

microbial taxa are orders of magnitude more abundant than the numerous marginal taxa91

that typically compose the bulk of biodiversity within a sample (e.g., see Lynch and Neufeld92

2015, Sachdeva et al. 2019). Our primary analytical goal was to measure the sensitivity and93

accuracy of DMM for comparing feature relative abundance between compositions and to94

compare the performance of DMM with competing approaches. Also, we provide a primer95

on the requisite algorithmic methods (e.g., VI and HMC) for Bayesian implementation of96

DMM and explore how different algorithms affect model accuracy and computational ex-97

pense. Finally, we analyzed a data set published by Duvallet et al. (2019) that describes98

the lung microbiomes of children experiencing aspiration of foreign material and evaluated99

to what extent DMM recapitulated the published analyses or detected additional differences100

among microbiomes.101

Box 1. A brief explanation of the multinomial and Dirichlet distributions

The multinomial distribution is the multivariate generalization of the binomial distri-

bution. The binomial distribution can be used to describe counts of binary outcomes,

with respective probabilities p and 1−p. For instance, with a finite sample of observa-

tions, the binomial distribution would be useful for estimating the frequency of females

(p) in a dioecious population. The multinomial distribution extends this concept to

encompass more than two unique outcomes. For instance, a composition comprising

three equally abundant features would have the the following multinomial parameter

vector: ~p = [1
3 ,

1
3 ,

1
3 ]. As an example, consider data from a sequencing machine. The

counts of sequences that fall into each category (e.g., transcripts or taxa) are multino-
102

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/711317doi: bioRxiv preprint 

https://doi.org/10.1101/711317
http://creativecommons.org/licenses/by-nc-nd/4.0/


mially distributed, with a probability that corresponds to its relative abundance. For

three equally abundant features (i.e. microbial taxa), there would be an equal chance

of sampling a sequence from each of the features and on average we would expect

to obtain the same number of sequences from each (for this example, we assume no

laboratory-technique imposed bias).

To share information among samples in the same sampling group (e.g. treatment

group, host population, or sampling location) and recover group-level estimates of the

proportion of each feature in a composition, the Dirichlet distribution can be appro-

priately parameterized. The Dirichlet distribution is the multivariate generalization

of the beta distribution. Deviates from a standard beta distribution fall in the range

of [0, 1], and the distribution can be parameterized with expectation π (the expected

frequency of the reference category, with 1 − π for the alternative category) and a

parameter, θ, that affects the variation among deviates. Likewise, the Dirichlet distri-

bution can be parameterized by a vector of expected frequencies of each feature (~π),

and an intensity parameter, θ. When drawing deviates from the Dirichlet distribu-

tion, the intensity parameter influences the amount of among-deviate variation in the

frequencies observed—for a given ~π, larger intensity parameters induce less among-

deviate variation. This parameterization of the Dirichlet thus allows modelling of the

variation among experimental replicates (the “noise” within the data).

Information about the frequencies of features within replicates (~p) is shared to

estimate frequencies for each feature within that sampling group (~π), forming a hier-

archical model (Fig. 1) that is analogous to how replicates can be used in an analysis of

variance to learn about marginal, grand means associated with treatments. Estimates

of frequencies of compositional features at the sampling group level (~π) are the basis of

inferences about which features differ among sampling groups (e.g., treatment versus

control) and by how much (on an absolute or normalized scale).
103
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Methods104

Dirichlet multinomial modelling approach105

Our specification of the Dirichlet-multinomial model generally follows that of Fordyce et al.106

(2011, implemented in the bayespref software) and takes as input a matrix of counts (X). The107

rows of this matrix correspond to different replicates (~xi; the superscripted arrow denotes a108

vector) and the columns correspond to features of the composition (the format of an OTU or109

transcript table). Each count xij in this matrix corresponds to the jth feature (of n features110

in total) in the composition observed in the ith replicate sample. Replicates are grouped111

into k groups, corresponding to treatment conditions, sampling locations, or some other112

stratification that specifies which replicates share information (parameters shared among113

replicates for the group). Counts in each row of the matrix are multinomially distributed:114

~xi ∼ Multinomial(~pi, Ni)

Each value pij in ~pi is the probability of observing a particular feature j in sample i and115

~Ni is a vector of the total counts in each sample. The product across i replicates of the i116

multinomial distributions forms the likelihood in the model and can be written:117

P (~x1···i|~p1···i, ~N1···i) =
∏
i

Ni!
xi1! · · · xij!

pi1
xi1 · · · pijxij

The prior probability for the vector of feature proportions (~pi) is a Dirichlet distribution,118

with parameters that are specific to the kth group of replicates and that are learned from119

the data:120

~pi ∼ Dirichlet(~πkθk)

θk ∼ Uniform(0, 4000)
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In this parameterization of the Dirichlet distribution for ~pi, the ~πk parameters correspond121

to the expected proportions of each of the n features (e.g., a particular transcript or taxon)122

in group k, and θ is an intensity parameter that is shared among all features (see Box 1).123

For a given ~π, larger θ means less variation among deviates from the Dirichlet expectation124

~π. The probability density function of this distribution, across i replicates within the kth
125

group, is given by,126

P (~p|~πk, θk) = 1
B(~πkθk)

∏
i

∏
j pij

πijθk−1

B(~πkθk) =
∏

j
Γ(~πjθk)

Γ(
∑

j
~πjθk)

where B(~πkθk) is a normalizing function that ensures the Dirichlet distribution integrates127

to one. The hyperprior for the ~πk parameters at the “topmost”, or most inclusive, level of128

the model hierarchy is another Dirichlet distribution with equal prior probability for each129

feature within the composition. For this Dirichlet distribution we use α1...n = 10−7 as a prior130

that will contribute little information, gives an expected value of 1
n
, and has a high variance131

on the expectation:132

~πk ∼ Dirichlet(~α)

The overall model for the posterior distribution for parameters of a sampling group is:133

P (~p, ~π, ~α, θ|X, ~N) ∝ (
∏
i

P (~xi|~pi, Ni)P (~pi|~π, θ))P (~π|~α)P (~α)P (θ)

To quantify differences in proportions of features between two sampling groups (often re-134

ferred to as “differential relative abundance testing”; Thorsen et al. 2016, Weiss et al. 2017),135

posterior probability distributions (PPDs) for πj,k=1−πj,k=2 (Fig. 2d) can be obtained. Con-136

sistent with convention, if 95% of the samples of this PPD of differences are either greater or137

less than zero, then there is a high certainty of a non-zero effect of sampling group on feature138
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relative abundance. One can also observe where zero occurs in the PPD of differences to139

quantify the probability of no effect of sampling group on feature relative abundance.140

If a sampling scheme was used that induces dependence among replicates via a more141

nested hierarchical structure then the model described above, then the model hierarchy142

could be extended to include inference of the Dirichlet distributions describing the rela-143

tive abundances of features within each additional stratum of the sampling scheme. For144

example, consider a study design where subjects are provided one of several diets and gut145

microbiome samples are taken from both sexes. In this case, one would want to account146

for non-independence among the data due to both sex and diet treatment. This can be147

accomplished through incorporation of additional Dirichlet distributions into the model,148

P ( ~πk| ~ψm, τ), where ~ψm describes the relative abundances of features within each diet treat-149

ment (m), τ is the intensity parameter for that Dirichlet distribution, and ~πk describes150

relative abundances of features within each sex that is nested within each diet treatment. In151

this way, the model can be extended to encompass as many hierarchical layers as desired,152

given suitable sampling and replication (Coblentz et al. 2017).153

A primer of the algorithms to perform DMM

One goal of statistical modelling is to estimate values for parameters that could corre-154

spond with directly observable variables (i.e. the data) or with latent, unobservable, variables155

(i.e. those that are inferred from observable variables). Bayesian modelling attempts to es-156

timate parameters of interest, while explicitly quantifying the uncertainty in those estimates157

and allowing for the influence of prior knowledge on estimates. Much of Bayesian statistical158

modelling relies on Markov chain Monte Carlo (MCMC) sampling (Gelman et al. 2013). A159

Markov chain is a series of states where each state depends upon the immediately preceding160

state. Monte Carlo refers to repeated, random sampling. MCMC is a process by which values161

are suggested randomly from a probability distribution and substituted into the functions162

that define the model. Over MCMC iterations, sampling converges on the most supported163

parameter space (the PPDs for model parameters) and samples in the chain occur with164
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probability defined by the PPD.165

There are several MCMC algorithms and they primarily differ in how they choose or166

propose new values and their criteria for inclusion of those values in the chain (Gelman et al.167

2013). A standard MCMC tool is the Metropolis algorithm (Gelman et al. 2013, pg. 289).168

To perform Metropolis sampling, a value (xt) is proposed from some distribution Q(xt|xt−1),169

where t is iteration (a suitable initial value, x0, is required). Once xt is chosen a ratio of170

α = f(xt)
f(xt−1) is calculated, where f(x) is a function that is proportional to the probability171

density to be estimated. The new value xt is accepted into the chain with probability α,172

otherwise xt = xt−1. The Metropolis algorithm relies on a symmetric proposal distribution,173

such that Q(xt|xt−1) = Q(xt−1|xt). The Metropolis-Hastings (MH) algorithm extends this174

concept through relaxing the assumption of symmetry regarding the proposal probability175

distribution.176

Gibbs sampling (Geman and Geman 1987, Kruschke 2015) is a special case of the MH177

algorithm (because the proposal acceptance criterion is always met; see pg. 289 in Gelman178

et al. 2013) and is suited for cases when the distributions used within the model are con-179

ditionally conjugate, such as when the prior and likelihood distributions are conjugate and,180

consequently, their product has a well defined form. At each iteration of Gibbs sampling (t),181

each parameter is sampled from the conditional distribution defined by the other parameters182

in the model, which are held constant at values chosen at iteration t − 1 . Parameters are183

typically updated one at a time, in a predefined order.184

The probabilistic programming language JAGS (Plummer 2003) implements Gibbs and185

Metropolis-Hastings MCMC as required to obtain samples from the distributions in our186

DMM. Henceforth, we refer to parameter estimation via Gibbs, Metropolis, and Metropolis-187

Hasting sampling as MCMC. These algorithms can be slow to converge for complex models;188

indeed in our experience, in a JAGS implementation, convergence may not be observed for189

the majority of parameters over a week of runtime for DMM with high dimensional data (such190

as transcriptomic data), even with sensible chain initialization values (a bespoke software191
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implementation of MCMC tuned to the data and model would likely be faster, but would192

require greater care in programming and use).193

Hamiltonian Monte Carlo (HMC) seeks to improve upon the efficiency of MCMC through194

the use of a physics inspired algorithm (for an excellent description of HMC see Monnahan195

et al. 2017). The sampling method can be envisioned by considering a ball dropped into a196

bowl and allowing the ball to roll about the curvature of the bowl. The bowl is the PPD and197

is frictionless, so the ball will roll back and forth in the bowl forever. After repeated drops of198

the ball into the bowl, from different angles and with different potential energies, the shape199

of the PPD is determined from the combined paths the ball took across all iterations. The200

benefit of this approach is that samples from nearly anywhere in the PPD can be generated201

at each iteration (HMC does not use a Markov chain process, but does rely on a Metropolis202

ratio to determine acceptability of updates), whereas MCMC typically chooses values based203

on the previous state space and thus cannot quickly move throughout the PPD, which can204

slow chain mixing and time to convergence. The probabilistic programming language and205

software Stan allows the use of an improved version of HMC called the “no U-turn” sampler206

that avoids redundant sampling of parameter space (Hoffman and Gelman 2014). To continue207

the previous analogy, when the ball starts to make a U-turn due to the curvature of the bowl,208

the sampler is stopped, and the ball dropped again—thus avoiding spending sampler time209

in previous explored parameter space.210

HMC often improves model runtime (Monnahan et al. 2017) over MCMC, but can still211

be quite time consuming. Variational inference is a class of optimization methods from the212

machine learning literature that can rapidly approximate PPDs (Blei et al. 2017), and thus213

holds great promise for statistical modelling of complex data where the speed of MCMC or214

HMC is insufficient. Variational inference (VI) has yet to be widely applied by biologists,215

but it has been used to estimate population genetic structure (e.g. Raj et al. 2014, Scordato216

et al. 2017), genotype-phenotype associations (Carbonetto and Stephens 2012, Logsdon et al.217

2010), phylogenetic relationships (Jojic et al. 2004), and in a generalized latent linear mod-218
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elling context (Niku et al. 2019).219

The idea behind VI is that the exact PPD need not be estimated, but can be approxi-220

mated through optimization of parameters of more tractable distributions. Briefly, a density221

is chosen from a family of distributions and optimized so that the Kullback-Leibler (KL)222

divergence between that density and the PPD is minimized. KL divergence relies on the223

definition of entropy. Entropy is a measure of the information present within a distribution224

and can be expressed (for a discrete probability distribution):225

H = −
N∑
i=1

p(xi)log p(xi)

where p(x) is a function that outputs a probability contingent upon an input value x, which226

is indexed by i. It is perhaps easiest to intuit entropy using log2, in which case H is the227

minimum number of bits needed to encode the data. KL divergence extends this idea to228

quantify the amount of information necessary to explain the divergence (||) between two229

probability distributions p and q, which, in this example, are discrete:230

DKL(p||q) =
N∑
i=1

p(xi)(log p(xi)− log q(xi))

Because this measure of divergence is based on the quantification of entropy, when p231

and q differ greatly, then more information is required to explain how they differ and KL232

divergence increases. For VI we wish to minimize the KL divergence between the probability233

distribution p(~z|~x) and some density q(~z) chosen from a family of distributions Q. To avoid234

computation of p(~x) (see Blei et al. 2017, for more), minimizing the KL divergence can235

be solved by maximizing the “evidence lower bound” (ELBO; the E used below refers to236

expectation):237

ELBO(q) = E[log p(~z, ~x)]− E[log q(~z)]
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The ELBO is the negative of KL divergence after adding the constant log p(x). Thus238

maximizing the ELBO is equivalent to minimizing the KL divergence, up to the added239

constant. This also means that:240

log p(~x) = DKL(p||q) + ELBO(q)

The ELBO describes the lower bound of the evidence, because when the ELBO is sub-241

tracted from the evidence (log p(x)) the result must be ≥ 0, because KL must be ≥ 0.242

Because maximizing the ELBO does not require computing log p(~x) it is easier than mini-243

mizing KL divergence. Maximization techniques can then be used to find the density q∗(~z)244

that best approximates p(~z|~x).245

Choosing Q such that the family of densities includes a q∗(~z) that provides a good ap-246

proximation, while being easily optimized, is the challenge of VI. Stan solves this problem247

through a method called “automatic differentiation variational inference” (Kucukelbir et al.248

2015) by first transforming the data that are the support of the latent variables to lie within249

the real numbers (R) and then suggesting a Gaussian distribution, which can be optimized250

to fit the data, and which induces a non-Gaussian approximation to the untransformed data.251

Stan’s default approach uses the “mean-field” algorithm, which treats latent variables (zj)252

as independent and assigns a unique density, qj(zj), to each of these j variables. Since Stan253

transforms the data such that latent variables have support on R and then fits Gaussian254

distributions to those data, this statement becomes the product of many Gaussian distribu-255

tions, each of which are optimized to minimize the ELBO. Following the notation of Blei256

et al. (2017), this can be written:257

q(~z) =
m∏
j=1

qj(zj)

VI is an attractive technique because it can be many orders of magnitude faster than MCMC258

(e.g. Raj et al. 2014). However, it is unclear how well VI works across analytical tasks and259
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model specifications (Blei et al. 2017).260

Model implementation261

We performed DMM in the R statistical computing environment (R Core Team 2019) using262

models specified for the JAGS and Stan (Carpenter et al. 2017) software programs, and used263

the models through the rjags (Plummer 2015) and rstan (Stan Development Team 2018) R264

packages, respectively. JAGS uses MCMC (Gibbs and MH), whereas Stan implements HMC265

(no U-turn sampling) and VI. Model specification for use in Stan was slightly modified from266

that described above in that we used an exponential distribution as the form of the prior for267

θk:268

θk ∼ Exponential(λ = 0.001)

This change in model specification followed the recommendation to avoid uniform priors269

provided in the Stan documentation.270

For HMC and MCMC implementations of DMM, we used two chains to explore parameter271

space. Initial values for ~pi in each chain were the vector of proportions observed from the272

data in replicate i, and values for ~πk were initialized using the vector of observed proportions273

for each feature across replicates within k (i.e., the maximum likelihood estimates for ~pi274

and ~πk). θ was left to be initialized internally by rjags and rstan. In rjags, the model275

was subjected to an adaptation period long enough for the sampler to approach optimal276

efficiency as determined via internal heuristics, or for 20,000 iterations, whichever came first.277

Models were updated (“burned in”) for 300,000 steps for rjags and 1000 steps for rstan (with278

a maximum tree depth of 10). This discrepancy in burn in time was needed because in279

preliminary work we observed much quicker convergence with HMC than MCMC sampling.280

We obtained 1000 samples from PPDs by saving every second sample for HMC, and 2000281

samples from PPDs for MCMC by saving every fourth sample.282
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Preliminary inspections of samples showed higher auto-correlation of parameter esti-283

mates for MCMC sampling, hence we discarded more samples (higher thinning rate) from284

the MCMC-derived chains. MCMC convergence was evaluated via the Gelman-Rubin and285

Geweke statistics (Geweke 1991, Gelman and Rubin 1992). We note that the runtime of286

MCMC could likely be improved by optimizing adaptation, burn in, and sampling steps287

within JAGS, or by implementing a custom MCMC procedure in the C (or an equivalent)288

programming language. Data with different dimensions and variance among samples would289

likely require different optimizations, so we have not further pursued optimization of the290

MCMC herein. To perform variational inference we used the functionality included within291

Stan (the “vb” function; Kucukelbir et al. 2015) and collected 1000 samples from the esti-292

mated posterior distributions.293

The ability of models to recover true simulation parameters was estimated via root mean294

square error (RMSE) and the percentage of times the true simulation parameters were within295

the 95% high density intervals (HDIs) of PPDs (as per Kruschke 2015, pg. 727). For uni-296

modal, symmetric PPDs, the HDI and equal-tailed probability interval should be identical297

(Gelman et al. 2013, pg. 38). We measured model bias as the average difference between298

estimated parameters and the truth and we measured model precision as TP
TP+FP , where TP299

refers to true positives and FP to false positives. False positive rate was calculated as FP
FP+TN ,300

where TN is true negatives. Additionally, we calculated Matthew’s Correlation Coefficient301

(MCC; Matthews 1975), which provides a measure of classifier performance in terms of both302

true and false positives and negatives. MCC is the correlation between actual and predicted303

classifications and varies from one (perfect classification) to negative one (completely incor-304

rect classification). An MCC value of zero denotes a classifier that performs no better than305

expected from random guessing.306
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Data simulation307

To evaluate the performance of DMM implementations and alternative statistical methods308

(see below), we simulated and analyzed data with two sampling categories (k), correspond-309

ing to treatment and control groups, or some other blocking factor of interest (Fig. 2). We310

simulated data that possessed three different rank abundance profiles that were meant to311

correspond to the variety of data encountered by practitioners (Fig. 2). We considered312

simulations in which all features were equally abundant ( 1
n
), and two sets of simulations313

in which features were sampled from Pareto distributions with differing shape parameters.314

The Pareto distribution describes data with few abundant features and many rarer features315

(Krishnamoorthy 2006). The skew towards low abundance in this distribution is controlled316

by the shape parameter, with smaller parameters increasing skew (Fig. 2); the location pa-317

rameter defines the minimum value of the distribution. For each simulation, we sampled one318

of these distributions to populate a vector (−→D) of length corresponding to the approximate319

desired number of features (n) within the simulated data:320

−→
D = D1...n = 1

n
−→
D ∼ Pareto(shape = 0.7, location = 1)
−→
D ∼ Pareto(shape = 4, location = 1)

−→
D was duplicated to make a second vector, −→E . Selected features within these vectors321

were multiplied by an effect size (either 1.1, 1.5, or 2, to simulate 10%, 50%, or 100%322

shifts in feature relative abundance), such that those elements differed between −→D and323

−→
E . Features that varied between vectors were chosen randomly from within each of three324

broad abundance classes (abundant, rare, and intermediate; see Electronic Supplementary325

Material) present within −→D and −→E . Only features of intermediate abundance were available326

when constraining all relative abundances to be equal. Effect sizes were applied so that327 ∑−→
D = ∑−→

E . These two vectors were multiplied by a specified intensity parameter S328
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and used as the parameters for two Dirichlet distributions that were sampled to create ~v329

parameter vectors for multinomial distributions corresponding with each replicate. In this330

way, we simulated a replicate by feature matrix where replicates were split into two treatment331

groups and known features differed between treatment groups. Simulated data sets often332

had fewer features than the originally specified value for n, because when drawing deviates333

from multinomial distributions with many rare features, all features would not be observed334

in each deviate (for a visual depiction of simulation approach see Fig. 2).335

Using this approach, we simulated data from each sampling distribution that varied in336

dimensionality (number of features, ∈ {500, 2000}), number of replicates (∈ {10, 50}), the337

total number of observations per replicate (e.g., the number of reads per sample for sequenc-338

ing data; ∈ {10000, 50000}), the variation (noise) among replicates (∈ {0.5, 3}; the intensity339

parameter in notation provided above), and the effect size applied to features that differed340

between sampling groups (∈ {1.1, 1.5, 2}; to apply the effect size transformation, these val-341

ues were multiplied by the original proportion. In total, we created and analyzed 144 data342

sets. Because the same number of observations were used for each replicate, transformation343

of the data to account for unequal sampling effort was not required. After simulating data344

matrices, we added a one to every datum, and thereby avoided numerical errors in JAGS345

that arise with Dirichlet parameters approaching zero.346

For our main simulation, we did not vary read counts among replicates for the sake of347

simplicity, however to ensure that this did not bias our results we simulated data where348

replicates differed by up to two orders of magnitude in total observations (read count).349

To accomplish this, multinomial deviates were obtained as described above, however the350

total number of draws from the multinomial distribution was randomly selected from ∈351

{1000, 10000, 100000}. Data used for this additional analysis were simulated using a rep-352

resentative subset of the aforementioned attributes. Additionally, to better understand the353

false positive rate of DMM, we simulated and analyzed data where no features were expected354

to differ between treatment groups, again using a representative subset of the attributes pre-355
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sented above to simulate data.356

We competed our implementations of DMM against ALDEx2 v1.14.1 (Fernandes et al.357

2014), ANCOM v2.0 (Mandal et al. 2015), DESeq2 v1.18.1 (Love et al. 2014), edgeR v3.20.9358

(Robinson et al. 2010), mvabund v4.0.1 (Wang et al. 2019) and a frequentist approach using359

repeated Wilcoxon rank sum tests with a Benjamini-Hochberg false discovery rate (FDR)360

correction (Weiss et al. 2017). We used multiple comparison correction and typical set-361

tings for all software (see the Supplemental Material). Of the aforementioned methods, only362

ALDEx2 relies upon DMM. ALDEx2 estimates posterior probability distributions of Dirichlet363

parameters, which are subsequently transformed via the centered log ratio (Aitchison 1982).364

Transformed MCMC samples are subjected to a frequentist test of differential relative abun-365

dance between sampling groups, p values calculated, and the distribution of p values across366

MCMC samples obtained (with multiple comparison correction applied as desired by the367

user). The mean of this distribution is used as a point estimate of the significance of treat-368

ment. mvabund relies on a generalized linear model, in our case using a negative binomial369

distribution, to determine differential relative abundance. Each feature in the simulated370

data was a response variable and treatment group was the categorical predictor variable in371

the model. If the effect of the predictor was significant then the feature differed between372

treatment groups in relative abundance. mvabund is thus quite similar to edgeR and DESeq2,373

however those methods use different normalization strategies.374

Our implementation of DMM differs from these methods in several important ways:375

1) most competing methods do not rely on the Dirichlet and multinomial distributions,376

which explicitly model compositions (except ALDEx2); 2) we use a more complex hierar-377

chical structure than the other methods tested to share information among replicates and378

sampling groups; 3) we do not perform repeated frequentist tests to determine differences in379

feature relative abundance, but instead directly subtract posterior probability distributions380

for parameters of interest and observe the location of zero in the resulting distribution of381

differences.382
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For all methods, we evaluated how data attributes (e.g. number of replicates, features,383

etc.) influenced model performance via multiple regression, with either the proportion of384

true positives recovered or false positive rate as the response variable.385

Analyses on empirical data386

To understand how DMM could affect inferences made using previously published, empiri-387

cal data, we analyzed data from Duvallet et al. (2019) describing the lung microbiomes of388

children with and without oropharyngeal dysphagia (swallowing difficulties) induced aspira-389

tion (when a foreign substance enters the lungs). These authors characterized the bacterial390

assemblages in the lungs (obtained via bronchoalveolar lavage; BAL), gastric fluid, and391

oropharyngeal region (OR) of each subject via sequencing of the 16S locus. Aspiration is392

linked to pneumonia in both adults and children (Holas et al. 1994, Marik 2001, Thomson393

et al. 2016), but the provenance of aspirated microbes is poorly understood. Duvallet et al.394

(2019) showed that the lung microbiome of patients with difficulty swallowing is more simi-395

lar to the microbiome of the oropharyngeal region than that of gastric fluid. These authors396

performed differential relative abundance testing using Kruskal-Wallis tests with a multiple397

comparison correction to determine whether certain bacterial taxa shifted in relative abun-398

dance between aspirating and non-aspirating patients. The authors did not find any taxa399

that differed in relative abundance, regardless of substrate examined (BAL, gastric fluid, or400

OR), though they did detect shifts in prevalence (presence across subjects within a sam-401

pling group) with phenotype, and suggested that microbial exchange between the lungs and402

oropharyngeal region is greater than between the lungs and stomach. Using DMM (both VI403

and HMC; implemented as described above) and all aforementioned competing analyses, we404

reanalyzed the publicly available BAL data from aspirators and non-aspirators. The data we405

analyzed were obtained from 66 patients (33 aspirators, and 33 non-aspirators) and included406

4006 OTUs (for details of sequence processing see Duvallet et al. 2019).407
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Results408

Dirichlet-multinomial modelling (DMM) provided a good compromise between true positive409

recovery and false positive generation (Fig. 3 & S2), as shown through analysis of data simu-410

lated in the context of a treatment-control experimental design. DMM consistently detected411

many more true positives than competing methods (Fig. 4) and this sensitivity facilitated412

detection of subtle shifts in relative abundance between sampling groups. For instance, when413

analyzing data with a skewed rank abundance profile, DMM detected approximately 15–20%414

of features that were shifted by treatment by just 10% of their relative abundance. None of415

the other methods that we employed were able to reliably detect these subtle effects (Fig. 3).416

When effect sizes were larger, DMM recovered more than 80% of true positives on average,417

which was 20–40% more true positives than were recovered by DESeq2, the next best model418

in terms of sensitivity.419

The sensitivity of DMM came at the cost of a slightly higher false positive rate and a420

loss of precision compared to other methods (Figs. 3 & S1). Precision was generally high421

for uniformly distributed data and when the effect size that described the shift in relative422

abundance of a feature was large, however for data with skewed rank abundance profiles the423

precision of DMM was lower than competing methods. When considering the Matthew’s424

correlation coefficient (MCC), DMM typically performed as well or better than competing425

approaches examined (Fig. S2). MCC is a more holistic index of classifier performance than426

precision because it encompasses true and false positives and negatives. mvabund, ANCOM,427

and, for some data sets, Wilcoxon tests also performed quite well by this metric.428

We observed that the FPR was adversely affected by the rank abundance skew within429

the data. Analysis of data that was simulated such that no features were expected to differ430

among treatment groups revealed that for data simulated from a uniform distribution FPR431

was negligible (0%, Fig. S3). However, FPR for HMC increased to 5.4% on average for432

data simulated such that they had a highly skewed rank abundance profile (Pareto shape433
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parameter of 0.7). When data were of intermediate skew (Pareto shape of 4) then FPR434

increased to 8.2%. We also found that high among-replicate variation in sampling depth435

tended to increase FPR by a few percentage points (Fig. S4). On average, FPR of VI was436

only slightly higher than HMC. By comparison, FPR was often much higher when DMM437

was implemented via MCMC. Indeed, in many cases, MCMC generated an unacceptably438

high FPR of over 20%. This high FPR is at least partially due to the lack of convergence439

we observed for many parameters when using MCMC, even when we employed lengthy run440

times. We observed broadly comparable results from our primary simulation experiment,441

which spanned data with a broader variety of attributes and for which features differed in442

relative abundance among sampling groups (Fig. 3).443

Of the analytical tools examined, DESeq2 and edgeR were the next most sensitive behind444

DMM. DESeq2 maintained a lower false positive rate than DMM. ANCOM, ALDEx2, and445

Wilcoxon tests all exhibited negligible false positive rates, but were only able to identify a446

small fraction of the features that shifted in relative abundance between sampling groups. All447

methods, including DMM, performed poorly when confronted with data where all features448

were equally abundant (denoted as “uniform” in figures). This was unsurprising, because,449

for these data, the expectation of π was approximately one divided by the number of features450

present and large, marginal shifts in relative abundance between sampling groups (such as451

doubling) still resulted in very small differences in proportions (e.g. 1
2000 versus 2

2000 ), which452

were difficult to estimate.453

We used multiple regression to test how data attributes influenced true positive detection454

and false positive rate (Tables S2, S3). For all methods competed, the degree of rank abun-455

dance skew within the data had, by far, the largest effect on model performance. Surprisingly,456

all methods were quite insensitive to variation in other data attributes. Data dimensional-457

ity (number of features), number of replicates, number of observations, and among-replicate458

variation had very minor influences on true positive detection and false positive rate for most459

methods tested (Tables S2, S3).460
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While our primary goal was ascertaining the relative merits of DMM for detecting differ-461

ences in feature abundance, we also asked how well DMM could recover the relative abun-462

dances ( ~D and ~E) that were used to simulate data. We report very low average root mean463

square error (RMSE) for estimates of simulated relative abundances ( ~D and ~E) obtained464

through DMM (Fig. 5). As a complementary test of model performance, we determined465

how often the parameters used to simulate data fell within the high density interval (HDI)466

of PPDs. When feature relative abundances were equal, or modestly skewed (“Equal” or467

“Pareto, shape = 4”), the HDI of PPDs encompassed the value used to simulate data for468

nearly all parameters of interest, regardless of estimation method employed (MCMC, VI, or469

HMC; Fig. S5). Parameter estimation was much more difficult for highly skewed data—when470

using MCMC or VI, the true values for the parameters did not lie within the estimated HDIs471

in some cases. By comparison, HMC did better when confronting these challenging data—on472

average ~90% of simulation parameters fell within the HDI, though there was wide variation473

in model performance depending upon data set (Fig. 3). We observed that the width of474

credible intervals for π parameters was not associated with relative abundance regardless475

of implementation method or dataset (Fig. S16– S18). Bias of DMM differed among im-476

plementations, with HMC having negligible bias (Figs. S7, S8, S9) and VI and MCMC477

exhibiting comparatively more bias. We observed that, for all implementations, bias, when478

present, was typically limited to the most abundant and rarest features within the dataset.479

Specifically, π parameters were occasionally slightly underestimated for abundant features480

and overestimated for rare features. This pattern was more noticeable for highly skewed data481

and can be explained given the prior we used for π parameters, which corresponded to 1
n
,482

where n was the number of features. For skewed data with high among-replicate variation,483

the strength of the prior was not overcome by the likelihood, thus leading to slight overesti-484

mation of marginal features and underestimation of abundant features. If among-replicate485

variation was reduced, then DMM was able to accurately recover true parameters even for486

highly skewed data. The prior we chose was agnostic to rank-abundance curves and thus487
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suitable for a wide-range of applications, but could be substituted for a prior with a specific488

rank-abundance profile if desired by the user.489

Inferences on empirical data490

Reanalysis of data provided by Duvallet et al. (2019) demonstrated the sensitivity of DMM.491

Using HMC, we found that 53 taxa within the lung microbiome (samples were obtained via492

bronchoalveolar lavage) shifted in relative abundance between aspirating and non-aspirating493

children (Fig. S19). This contrasts dramatically with the results we obtained from repeated494

Wilcoxon tests with a Benjamini-Hochberg false discovery rate correction, mvabund, and495

ALDEx2, which suggested no taxa significantly shifted in relative abundance between sam-496

pling groups. By comparison, DESeq2 suggested 17 taxa differed, edgeR suggested ten taxa,497

and ANCOM four taxa.498

Analysis of lung microbiome data using VI and HMC based implementations of DMM499

provided largely similar results; however, VI did report five fewer taxa shifted in relative500

abundance than did HMC. The majority of taxa identified by HMC were also identified by501

VI; the two methods did not agree regarding true positive status for only nine taxa. Of502

the 53 taxa that we found shifted between sampling groups, the most dramatic change was503

in a Streptococcus taxon, which was much more abundant in aspirating children (Fig. S19).504

An increase in this taxon has previously been reported in adult humans with pneumonia505

by Akata et al. (2016). We also found an increase in Haemophilus (Norman M. Jacobs and506

Harris 1979), Moraxella (Claesson and Leinonen 1994), Neisseria (Johnson et al. 1981), and507

Prevotella (El-Solh et al. 2003), all of which have previously been associated with pneumo-508

nia (see citations for examples), but may be present in healthy lung tissue as well (Beck509

et al. 2012). We also observed an increase in Enterobacter, Lactococcus, Leuoconostoc, and510

Acinetobacter taxa in the lungs of non-aspirating subjects.511
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Discussion512

Over the past decade, there has been considerable discussion regarding how molecular ecol-513

ogists should process and analyze compositional data, particularly those generated by high-514

throughput sequencing instruments (e.g., see Knight et al. 2018, Thorsen et al. 2016, Weiss515

et al. 2017). This dialogue has been motivated by the constraints of modern laboratory516

equipment (e.g., the constant sum constraint of sequencers) coupled with a pressing need for517

consensus involving appropriate, sensitive tools to analyze data generated by such instru-518

ments. Through analysis of simulated data spanning the variation in attributes expected519

across many scientific domains, we report that new computational statistical techniques have520

made Dirichlet-multinomial modelling (DMM) an approach that can be applied efficiently in521

many settings. Specifically, we report that DMM is much more sensitive than the competing522

approaches we examined, making DMM particularly well suited to identification of subtle523

shifts in relative abundance among features, such as what might be required in the study of524

rare, but consequential, microbes or metabolites (Lynch and Neufeld 2015, Sachdeva et al.525

2019). Indeed, for some data, DMM identified many times more true positives then certain526

competing methods (up to approximately eight times more in extreme cases; Fig. 3). The527

sensitivity of DMM does, however, come at the cost of an increase in false positive rate528

(FPR) and a loss of precision compared to competing methods, particularly for data with529

skewed rank abundance profiles and large variation in sampling depth among replicates. For530

such challenging data, FPR increased to between 5.5–10% (Fig. S3), which we suggest may531

be acceptable for those practitioners tasked with analyzing challenging data and that wish532

to avoid missing features that truly differ among compositions. The tradeoff between sensi-533

tivity (also referred to as “recall”) and precision is well known (Buckland and Gey 1994) and534

we suggest that the suitability of DMM will depend on the particular needs of the practi-535

tioner. If practitioners are interested primarily in sensitivity, then our results suggest DMM536

is an appropriate method to choose. If, on the other hand, practitioners wish to avoid false537

positives, even at the expense of considerable loss of sensitivity, then other methods may be538

25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/711317doi: bioRxiv preprint 

https://doi.org/10.1101/711317
http://creativecommons.org/licenses/by-nc-nd/4.0/


more suitable.539

Aside from sensitivity, DMM provides several important ancillary benefits including the540

estimation of parameters that describe the data under consideration and the ability to prop-541

agate uncertainty in those estimates to downstream analyses. Propagation of uncertainty542

allows for a precise statement regarding the credibility of an inference and is a particular543

benefit of Bayesian techniques over frequentist methods. For example, to determine the544

extent that specific features shifted from one simulated sampling group to another, we ob-545

tained the difference between PPDs of Dirichlet ~π parameters from each group (Fig. 2d). A546

PPD is a distribution that explicitly describes the probability of certain values for a par-547

ticular model parameter; thus, in the model described here, the mean of the PPD for a548

specific π parameter is a sensible point estimate for that feature’s relative abundance and549

the variation around that mean describes the certainty in that estimate. By subtracting550

PPDs for π parameters obtained from different sampling groups for a focal taxon, we obtain551

a PPD of differences, thus propagating uncertainty in relative abundance estimates through552

to differential relative abundance testing (Fig. 1). This provides a great deal of flexibility553

to practitioners, because the location of zero in this distribution of differences quantifies the554

probability that the two original PPDs differed—in other words, that the feature differed in555

relative abundance between sampling groups. We assumed that, for some feature i present556

in two sampling groups k, if 95% of the PPDs for πik did not overlap, then that feature557

differed in relative abundance between groups (see methods). If a more conservative analy-558

sis is desired, then a more strict criterion could be employed to determine if PPDs of focal559

features are sufficiently divergent, for instance 98% or 99%. Similarly, a less strict criterion560

could be used (e.g., 90%) for exploratory analyses. Moreover, because we precisely quantify561

uncertainty in parameter estimates derived from a single model, multiple comparison testing562

is unneeded for our implementation of DMM. A final benefit of quantifying uncertainty for563

each feature of interest is that, with some creativity, this uncertainty can be propagated to564

other downstream analyses, including those using derived parameters of interest such as di-565
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versity entropies (see Supplemental Material and Marion et al. 2018). The benefits provided566

by uncertainty propagation are primary differences between DMM as we describe it here and567

the competing approaches we tested that rely on some form of frequentist testing.568

Another important benefit of the approach to DMM we describe is the hierarchical shar-569

ing of information among replicates from sampling groups (also see Fordyce et al. 2011).570

Hierarchical models make thorough use of the information present within the data, which571

can improve parameter estimates and propagate uncertainty, particularly when sampling572

effort is inconsistent among replicates and sampling groups (Coblentz et al. 2017). As de-573

scribed in the methods, hierarchical modelling can be used in a way analogous to frequentist,574

mixed effects modelling to account for non-independence among replicates through the use575

of a random effect (Bates et al. 2015, Björk et al. 2018). Hierarchical modelling also allows576

for novel inferential opportunities, given sufficient data, because parameter estimates can be577

extracted from any level in the model hierarchy.578

Additional considerations pertaining to Dirichlet-multinomial modelling579

A downside to Bayesian modelling is its computational expense. While JAGS (Plummer580

2003), BUGS (Lunn et al. 2012), Stan (Carpenter et al. 2017), and PyMC3 (Salvatier et al.581

2016) have greatly simplified Bayesian model specification and implementation, Bayesian582

analysis can require much more computational time then frequentist methods. Users should583

be aware that as the number of parameters to estimate increases, so too does modelling time.584

For data sets of low to moderate dimensionality (i.e. less than a thousand features), the model585

described herein can be run on a desktop computer within several hours using any of the586

three PPD estimation methods (VI may take only a few seconds to run for such small data).587

However, for larger data sets of many thousand features, convergence when using MCMC588

or HMC may require a multiple days. For larger data, MCMC sampling should probably589

be avoided because HMC, as implemented in Stan is much faster and results in convergence590

for more parameters and, thus, a lower false positive rate (Fig. S6). For extremely large591
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data, VI may be the only viable option for efficient parameter estimation. Unfortunately,592

we observed heightened variation in the performance of VI compared to MCMC or HMC593

when confronting data with a dramatic rank abundance skew—in some cases VI did as well594

as HMC, but in other cases it was unable to recover a high proportion of the true positives595

present (Fig. 3). Computational implementations of VI are a topic of current research596

and will undoubtedly improve over coming years (Blei et al. 2017). For most users, we597

suggest performing an initial analysis using both HMC and VI. If parameter estimates are598

largely congruent between techniques (as we generally observed), then VI could be used for599

subsequent analyses using similar data, thus taking advantage of VI’s efficiency.600

For HMC or MCMC sampling, time to convergence can be improved through initializing601

the chains at sensible values for all parameters. We initialize chains for multinomial and602

Dirichlet parameters at their maximum likelihood values ( ~xi

Ni
, the proportion of each feature603

within a sampling group). Additional performance gains can be achieved by combining604

features that are consistently infrequent across replicates to form a composite feature. This605

composite feature should be included in modelling, otherwise proportion estimates will be606

distorted and incorrect. This approach could be particularly appropriate for analysis of607

high-throughput sequencing of microbiomes and transcriptomes, which often rely on data sets608

characterized by many features of extremely low relative abundance. Estimates of the relative609

abundance of very infrequent features will be imprecise, thus precluding effective comparison610

of relative abundances among sampling groups. Therefore, for some questions, combining611

these features will not lessen inferential opportunity and can greatly reduce computation612

time.613

Some authors have suggested that the expected negative covariance of feature propor-614

tions (~p) in a Dirichlet distribution is a drawback that makes this distribution undesirable615

(Grantham et al. 2017, Mandal et al. 2015, Weiss et al. 2016). Specifically, the elements of616

~p in a deviate from a Dirichlet distribution are expected to negatively covary (Mosimann617

1962) according to: Cov[pi, pj] = −αiαj

α2
0(α0+1) , where ~p is the vector of expected proportions for618
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features in the composition and ~α represents the Dirichlet parameter vector. Indexing of ~p619

and ~α across features is achieved via i and j, and α0 =
n∑
i=1

αi, where n is the number of620

features. For even modest values of α0, the expected negative covariance between elements621

in ~p is small and diminishes rapidly with increasing α0, approaching zero in the limit of large622

α0. The negative covariance structure is a fundamental limitation of compositional data,623

as one or more features increase, other features must decline to maintain a constant sum.624

Thus, the Dirichlet distribution assumes a reality that mirrors the data.625

There are many problems associated with the analysis of compositional data that cannot626

be handled by DMM alone (see Aitchison and Egozcue 2005, Gloor and Reid 2016, Quinn627

et al. 2017, Tsilimigras and Fodor 2016, van den Boogaart and Tolosana-Delgado 2013). The628

most intuitive challenge posed by compositional data is that spurious correlations among629

features can arise because of the data’s inherent covariance structure (Pearson 1897). For630

instance, shifts in the relative abundance of a dominant microbial taxon along an abiotic631

gradient causes shifts in the relative abundance of co-occurring taxa, even if the actual632

abundances of those taxa are invariant across the gradient (Fig. 1). In such a scenario, com-633

positionality could induce associations between the relative abundances of certain taxa and634

the gradient that are not biologically supported. Other issues that can arise when analyzing635

compositional data include “sub-compositional incoherence”, which means that omission of636

features from the composition necessarily changes the relative abundances of the remain-637

ing features after they are renormalized to their constant sum (e.g., one for proportions;638

Pawlowsky-Glahn and Egozcue 2006).639

The technique most relied upon to address these problems is log ratio transformation:640

log
(
pi

g(~p)

)
, where pi is the ith feature within ~p, which is composed of either counts or propor-641

tions, and g(~p) is a function. When g(~p) is the geometric mean of all feature abundances,642

this transformation is called the “centered log ratio” (CLR; Aitchison 1982). Division by643

the geometric mean places all replicates on the same scale and, therefore, is useful when644

variation in sampling effort exists among replicates. Alternatively, g(~p) can be an indexing645
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function and output the value of a feature, pj, that has a constant absolute abundance among646

replicates. This approach is called the “additive log ratio” (ALR) transformation (Aitchison647

1982) and can be useful when an internal standard can be added to samples prior to data648

generation (e.g. during library preparation for next-generation sequencing; Jiang et al. 2011,649

Munro et al. 2014, Tourlousse et al. 2017, Tkacz et al. 2018) or when certain features are650

expected to be invariant among replicates (e.g. “housekeeping genes”; Eisenberg and Lev-651

anon 2013). By converting information from each feature into a ratio, both ALR and CLR652

avoid the sub-composition incoherence problem (Morton et al. 2019). To understand this,653

consider conducting the ALR transformation on replicates that each include a feature with654

identical absolute abundance that is used as the denominator in the transformation (it does655

not matter whether we consider counts or proportions for this example). The ratio between656

any specific feature within a replicate and the denominator will not be affected by removing657

other features from the composition (i.e., if the ratio is 2:1 it will remain so after omitting658

features from the composition and re-normalizing to maintain a constant sum). Either the659

CLR or ALR transformation can be applied to each MCMC sample of parameters of interest660

to obtain transformed PPDs for analysis (see Fernandes et al. 2014, for an example).661

Conclusions662

The challenges posed by many modern molecular ecology data sets—extreme dimensionality,663

compositionality, and, often, stark differences in the abundance of features—have motivated664

the rapid development of new analytical tools and techniques. Indeed, new methods and665

software are published on a near monthly basis and practitioners are left to wonder which tool666

is best suited for the job at hand. While we do not claim DMM addresses all the challenges667

associated with compositional data, we do report that it is a sensitive, flexible technique668

that facilitates feature-specific analyses and should be added to ecologist’s toolkits (Fordyce669

et al. 2011). It is likely to be broadly useful and sensitive for analyses of microbiomes,670

other DNA barcoding, gene expression, metabolomics, and other applications in molecular671
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ecology (Table S1). To facilitate use of DMM, we have provided an expository vignette in672

the Electronic Supplemental Material that provides an example of how to perform DMM673

using both Stan and JAGS in the R environment.674

The success of DMM for relative abundance estimation, as demonstrated herein, coupled675

with the aforementioned benefits of hierarchical Bayesian modelling, justifies extension of676

the DMM to determine the effects of covariates on relative abundances and to characterize677

mixtures of compositions (sensu Chen and Li 2013, Holmes et al. 2012, Knights et al. 2011,678

Shafiei et al. 2015, Tang and Chen 2018). We look forward to continued method development679

along these lines.680
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Figure 1: Visual depiction of hierarchical Bayesian modelling of the relative abundance of
features within compositional data. Panels (a) and (b) represent two different sampling
groups–a treatment group and a control group. The colored bars at the bottom of the plot
show two hypothetical compositions that differ between those sampling groups. These com-
positions differ by virtue of the first feature, shown in pastel green, shifting dramatically
in relative abundance, thus all other features are shifted in relative abundance as well (be-
cause these are proportion data and must sum to one). This interdependency represents an
opportunity for statistical modelling because parameters that describe relative abundance
are mutually informative. However, interdependency also poses many challenges (see main
text). Replicates within sampling groups are denoted as xi, where i is in an integer in the
range [1,10] (row 1). Replicates consist of data that are multinomially distributed (see Box
1). Therefore, each replicate is modeled using a unique multinomial distribution with param-
eters ~pi and Ni (row 2), where the vector ~p describes the probabilities that an observation
would be assigned to a particular feature and the N parameters denote the total number of
observations per replicate. Multinomial parameters are modeled as a deviate from a Dirichlet
distribution unique to the treatment group (row 3). The ~π parameters of the Dirichlet are
estimates of proportional abundance for all features within the group. The θ parameter is
a scalar intensity parameter that describes the amount of among-replicate variation present
within each sampling group. The prior imposed on the Dirichlet distributions of both sam-
pling groups has the expectation 1

n
for each feature, where n is the number of features. If

desired, additional Dirichlet distributions could be added between rows three and four to
share information as dictated by more complexly nested experimental designs.
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Figure 2: Visual description of simulation approach. (a) Deviates from either of two Pareto
distributions, or a point density, defined as one divided by the number of features (j), were
used to simulate values used to parameterize Dirichlet distributions. The use of these three
approaches generated deviates with parameters that differed dramatically in rank abundance
profiles, as shown in the left portion of panel (a). These deviates were, in turn, used to
parameterize a Dirichlet distribution (with intensity parameter θ). A deviate of this Dirichlet
distribution served as the parameter vector of a multinomial distribution that was sampled
(b) to generate a feature (j) by replicate (i) matrix that emulated an OTU or transcript
table (see the right portion of panel a for an example frequency distribution of multinomial
deviates). This matrix encompassed samples belonging to two sampling groups. Dirichlet
parameters for each group were made to differ such that certain features varied in relative
abundance between groups by a known effect size. (c) Hierarchical Bayesian modelling
(Fig. 1) was used to estimate the Dirichlet parameters (πj,k) describing the relative abundance
of each feature (j) in each sampling group (k). (d) To determine if a feature (πj) differed
in relative abundance between treatment groups (k), the posterior probability distribution
(PPD) for the feature of interest from one treatment group, πj,k=1, was subtracted from
the PPD for that feature from the second treatment group, πj,k=2. If the resulting PPD
of differences indicated zero difference was improbable, then there was high certainty that
πj differed between treatment groups. Additionally, the location of zero within the PPD
quantified the certainty of a non-zero effect of treatment.
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Figure 3: Performance of Dirichlet-multinomial modelling (DMM) and competing methods
when confronted with simulated data from a treatment-control experimental design. Each
point denotes the results from analysis of a simulated dataset. Panel a depicts true positive
rate and panel b depicts false positive rate. The x axis describes the methods competed,
which are each given a unique color. Each panel is split into three sections that correspond
with the three rank abundance profiles used to simulate data (see Fig. 2). “Uniform” refers
to data where the expected relative abundance of all features was equivalent; “pareto (shape
= 4)” refers to data with an intermediate rank abundance skew; “pareto (shape = 0.7)”
were highly skewed data with very few abundant features and many rare features. Features
were made to shift in relative abundance between treatment groups by different effect sizes
(an effect size of 1.1 corresponded with a 10% shift in relative abundance). Panels are split
by row to show results for a specified effect size. Rectangles in the boxplots delineate the
central 50% of the data (1st to 3rd quartiles, also called the interquartile range) and contain
the median (delineated by a horizontal line). Whiskers extend an additional 1.5 times the
interquartile range beyond the first and third quartiles. These are the defaults for boxplots
in base R.
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Figure 4: Relative ability of competing methods to detect true positives within simulated
data. Each point represents the results from a simulated data set and each panel compares
the proportion of true positives identified by Bayesian Dirichlet-multinomial modelling (using
HMC) to the proportion of true positives identified by a competing method: (a) ANCOM,
(b) DESeq2, (c) edgeR, (d) Wilcoxon rank sum test. The line bisecting each plot denotes
equal performance of both models—so if a point lies above this line then HMC detected more
true positives than the competing method for that data set. The summed numbers of points
on either side of this line are shown to demonstrate relative performance of methods across
datasets. For instance, in panel (a), the Dirichlet-multinomial model (DMM) detected more
true positives than ANCOM for 100 data sets, while ANCOM was the more sensitive model
for zero data sets. The sum numbers of simulations for each panel differ (and do not always
reflect the 144 total data sets analyzed) because in some cases both DMM and the competing
method exhibited equal performance. This was mostly the case for extremely challenging
data when neither method was able to detect any true positives. Marginal histograms in
each plot denote frequency distributions of results along the parallel axis.
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Figure 5: Comparison of DMM performance when using different methods to estimate pos-
terior probability distributions (PPDs) of parameters describing feature relative abundance
within sampling groups (~π; see Fig. 1). The results shown in panel (a) are from a single,
illustrative simulation. Features are indexed along the horizontal axis and associated ~π es-
timates are shown on the vertical axis. The means of PPDs are shown as shaded circles
and the 95% high density interval (HDI) of the PPD is delineated by dotted lines. The true
proportions (+ symbols) fall within the HDI of the PPD for almost all features, regardless
of PPD estimation method. Average root mean square error (RMSE) for π parameters for
all simulated data sets for each method is shown in panel (b).

Supplementary Material
Supplemental Methods

Determination of feature abundance class
Deviates used to simulate data were divided into abundance classes to ensure that features
of each abundance class were made to differ between sampling groups. All features were
assigned to the intermediate abundance class when Dirichlet ~π parameters were assigned
a constant value. When the Pareto distribution with shape parameter of four was used,
deviates greater than or equal to five were assigned to the abundant class, deviates in the
intermediate class were between two and five, and deviates within the rare class were less
than two. When the Pareto distribution with shape parameter of 0.7 was used, deviates
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greater than 1000 were assigned to the abundant class, deviates between 1000 and 100 to
the intermediate class, and deviates less than 100 to the rare class. These thresholds were
chosen through visual examination of frequency distributions of deviates from distributions.
Recall that the location parameter (minimum value) of the Pareto distributions was set to
one.

Implementation of competing software
For analyses conducted using ALDEx2 v1.14.1 (Fernandes et al. 2014) we drew 1000 MCMC
samples, which were transformed using the CLR (denom = all). Welch’s t tests and gen-
eral linear models were used to determine differential relative abundance. We used a p
value threshold of 0.05 to determine significance after applying a Benjamini-Hochberg FDR
correction.

Options used for ANCOM v2.0 (Mandal et al. 2015) included a significance value of
0.05, a “less stringent” multiple comparison correction (multcorr = 2), “prev.cut” was set
to 0.99 (meaning features that were not observed in 99% or more of samples were omitted),
and “repeated” was set to “False”. During analysis we uncovered an apparent error in the
ANCOM v1.1-3 software. On occasion, ANCOM would suggest that all features within a
data set differed significantly between groups. This error was not stable, though errors did
seem to only occur when data were generated using the Pareto distribution. Upon further
research, we found others have reported this error on the QIIME forums (Caporaso et al.
2010). To work around this problem, during the very rare cases when ANCOM reported
≥ 90% of features were significant, we identified significantly differing features as those with
non-zero w parameters (the test statistic used by ANCOM). This resulted in very similar
results among replicate analyses of data simulated using the same parameters, but that did
not trigger the aforementioned error. Subsequently, we shifted analyses to rely on ANCOM
v2.0, but we left this solution in place in the event that v2.0 suffered from the same error
we observed in v1.1-3.

We used default options for DESeq2 v1.18.1 (Love et al. 2014). The “nbinomWaldTest”
function was used to determine differential relative abundance. Significant differences were
defined at p ≤ 0.05 after a multiple comparison correction that was calculated by DESeq2.

Default options were used for edgeR v3.20.9 (Robinson et al. 2010). After disper-
sion estimates were calculated using the “estimateDisp” function, the “glmQLFit” and
“glmQLFTest” functions were used to determine differential relative abundance. Features
differing in relative abundance were determined using the “topTags” function with a Benjamini-
Hochberg FDR correction and p ≤ 0.05 threshold.

Default options were used for mvabund v4.0.1 (Wang et al. 2019). Simulated data were
converted into an mvabund object using the “mvabund” function. The “manyglm” function
was used to implement a non-hierarchical linear model where each taxon was the response
and treatment group was a categorical predictor variable. A negative binomial distribution
was used for the GLM and the parameter “cor.type” set to “shrink” to account for correlation
among response variables. Results from the GLM were determined using the “anova” func-
tion with a Wald test and a multiple comparison correction using a step-down resampling
algorithm described in Wang et al. (2012) and Westfall and Young (1993).

R was used to implement all software.
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Examples of possible derived parameters
Derived parameters can be calculated from the output of Dirichlet-multinomial modelling

while preserving the uncertainty quantified by the model. For example, many microbial and
community ecologists wish to compare diversity indices among sampling groups (Jost 2007,
Marion et al. 2015). Diversity indices can be calculated for each sample of the Dirichlet’s
~π parameter vector, thus generating a PPD of diversity statistics for each sampling group.
PPDs of diversity could then be compared between sampling groups through subtraction
(see Harrison et al. 2019 for an example). This conceptual approach was first described by
Marion et al. (2018), though the model in that study relied upon a multivariate normal prior
with softmax transformation, instead of the Dirichlet prior we use here.
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Table S1: Scientific domains that often rely on compositional data with brief examples of
such data with associated methods (if applicable). This table is not meant to be exhaustive,
but to draw awareness to the ubiquity of compositional data across the sciences. Asterisks
denote data often consisting of proportions rather than counts.

Domain Example data
Molecular biology gene expression characterization (RNA sequencing)

chromatin immunoprecipitation sequencing (ChIP-Seq)
flow cytometry*

Analytical chemistry chemical concentrations as determined through various methods
(e.g., mass spectrometry)*
elemental composition*

Microbiology/Microbial ecology colony/cell counts*
amplicon sequencing

Ecology species counts*
DNA barcode based community characterization
foraging preference assays*
allele frequencies*
haplotype counts
chemical concentrations*
elemental composition*

Paleolimnology pollen counts*
foraminifera counts*

Geology mineral composition*
sediment composition*

Psychology behavioral characterization*
Economics budget composition

portfolio composition
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Table S2: Influence of data attributes on true positive recovery. Results shown are beta
coefficients and 95% confidence intervals from a multiple regression analysis. The response
variable was the proportion of true positives recovered. The rank abundance profile of the
data was a categorical variable, with point mass as the reference condition. The table is split
into two panels of results to aid visualization. *** denotes p < 0.01, ** p < 0.05, * p < 0.1.

Method Intercept Pareto (shape = 0.7) Pareto (shape = 4)
MCMC 0.01 (0.11, -0.1) 0.35 (0.43, 0.28)*** 0.46 (0.53, 0.39)***
Wilcoxon -0.08 (-0.02, -0.14)*** 0.03 (0.07, -0.01) 0.05 (0.09, 0)**
DESeq2 -0.2 (-0.07, -0.33)*** 0.33 (0.43, 0.24)*** 0.22 (0.31, 0.12)***
edgeR 0.02 (0.04, 0)** 0.03 (0.05, 0.02)*** 0.02 (0.03, 0)***
ANCOM -0.07 (-0.02, -0.13)*** 0.03 (0.07, -0.01)* 0.04 (0.08, 0)**
DMM HMC -0.18 (-0.03, -0.32)** 0.52 (0.62, 0.42)*** 0.47 (0.57, 0.37)***
DMM VB -0.19 (-0.04, -0.33)*** 0.43 (0.53, 0.33)*** 0.47 (0.57, 0.36)***
Aldex T-test 0.18 (-0.06, -0.29)*** 0.14 (0.22, 0.06)*** 0.14 (0.22, 0.06)***
mvabund -0.02 (0.01, -0.05) 0.03 (0.05, 0.01)*** 0.01 (0.03, -0.01)
Method Num. of features Num. of observations Num. of replicates Noise
MCMC 0 (0, 0) 0 (0, 0) 0 (0, 0)*** 0.01 (0.03, -0.02)
Wilcoxon 0 (0, 0) 0 (0, 0) 0 (0, 0)*** 0.01 (0.02, -0.01)
DESeq2 0 (0, 0) 0 (0, 0) 0 (0, 0)*** 0.07 (0.1, 0.04)***
edgeR 0 (0, 0)*** 0 (0, 0) 0 (0, 0)* 0 (0.01, 0)**
ANCOM 0 (0, 0) 0 (0, 0) 0 (0, 0)*** 0.02 (0.03, 0)***
DMM HMC 0 (0, 0) 0 (0, 0) 0 (0.01, 0)*** 0.04 (0.08, 0.01)***
DMM VB 0 (0, 0)** 0 (0, 0) 0.01 (0.01, 0)*** 0.04 (0.07, 0.01)***
Aldex T-test 0 (0, 0) 0 (0, 0) 0 (0.01, 0)*** 0.03 (0.06, 0.01)**
mvabund 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0.01, 0)
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Table S3: Influence of data attributes on false positive rate. Results shown are beta co-
efficients and 95% confidence intervals from a multiple regression analysis. The response
variable was the average false positive rate among the three replicates for a unique combina-
tion of data attributes. The rank abundance profile of the data was a categorical variable,
with point mass as the reference condition. The table is split into two panels of results to
aid visualization. *** denotes p < 0.01, ** p < 0.05, * p < 0.1.

Method Intercept Pareto (shape = 0.7) Pareto (shape = 4)
MCMC 0.09 (0.11, 0.07)*** 0.14 (0.15, 0.12)*** 0.19 (0.21, 0.18)***
Wilcoxon -0.02 (0.02, -0.05) 0 (0.02, -0.02) 0.02 (0.04, -0.01)
DESeq2 0.01 (0.03, -0.01) 0.05 (0.06, 0.03)*** 0.01 (0.02, 0)
edgeR 0.01 (0.01, 0.01)*** -0.01 (-0.01, -0.01)*** -0.01 (-0.01, -0.01)***
ANCOM 0 (0, 0) 0 (0, 0) 0 (0, 0)
DMM HMC 0.01 (0.02, -0.01) 0.1 (0.11, 0.09)*** 0.1 (0.11, 0.09)***
DMM VB -0.02 (0, -0.04)* 0.1 (0.12, 0.09)*** 0.11 (0.13, 0.1)***
Aldex T-test 0.09 (0.11, 0.07)*** 0.14 (0.15, 0.12)*** 0.19 (0.21, 0.18)***
mvabund -0.01 (0.01, -0.02) 0.01 (0.02, 0)* 0 (0.01, -0.01)
Method Num. of features Num. of observations Num. of replicates Noise
MCMC 0 (0, 0)*** 0 (0, 0) 0 (0, 0)** -0.01 (-0.01, -0.02)***
Wilcoxon 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0.01, 0)
DESeq2 0 (0, 0)* 0 (0, 0)*** 0 (0, 0)*** 0 (0.01, 0)***
edgeR 0 (0, 0)*** 0 (0, 0) 0 (0, 0) 0 (0, 0)
ANCOM 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
DMM HMC 0 (0, 0) 0 (0, 0)* 0 (0, 0)*** 0 (0, 0)
DMM VB 0 (0, 0)** 0 (0, 0) 0 (0, 0)*** 0 (0.01, 0)
Aldex T-test 0 (0, 0)*** 0 (0, 0) 0 (0, 0)** -0.01 (-0.01, -0.02)***
mvabund 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
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Figure S1: Precision of all methods competed. Precision was calculated as TP
TP+FP , where

TP stands for true positives and FP for false positives. This is a measure of how many of
the positives suggested by the model are actually true. Precision is shown on the y axis and
model type on the x axis. Rows describe model performance when identifying features that
differ between treatment groups by a certain effect size (e.g., 1.1 in the top row). Each row
is broken up into three columns that are separated by a dotted line. These columns show
results for data with differing rank abundance profiles.
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Figure S2: Matthew’s Correlation Coefficient (MCC) of all methods competed. MCC is
the correlation between actual and predicted classifications and varies from one (perfect
classification) to negative one (completely incorrect classification). An MCC of zero de-
notes the classifier performed no better than random guessing. MCC was calculated as

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, where TP stands for true positives, FP for false posi-
tives, TN for true negatives, and FN for false negatives. MCC is shown on the y axis and
model type on the x axis. Rows describe model performance when identifying features that
differ between treatment groups by a certain effect size (e.g., 1.1 in the top row). Each row
is broken up into three columns that are separated by a dotted line. These columns show
results for data with differing rank abundance profiles.
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Figure S3: False positive rate of DMM as implemented via HMC (top row), VI (middle
row), and MCMC (bottom row) when confronted with data where no features were expected
to differ between sampling groups. The distribution used to simulate the data is shown on
the x axis (see main text). Each point is the result from a different simulated data set;
data were simulated using a variety of parameters encompassing a representative subset of
the attributes considered in our main simulation (number of features ∈ {500, 2000}, 10000
samples per replicate, number of replicates ∈ {10, 50}, intensity parameter ∈ {0.5, 3}). FPR
was calculated as the proportion of features that were incorrectly estimated to vary between
treatment groups (false positives divided by the sum of false positives and true negatives).
For a subset of the simulated data, sampling depth was made to vary by as much as two
orders of magnitude between replicates (i.e., a sum of 1000 in one replicate and a sum of
100,000 in another replicate within the same sampling group). The results from analysis of
data with variation in sampling depth are shown in blue.
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Figure S4: Effect of variation in sampling effort on model performance. Replicates were
made to differ in sampling effort by up to two orders of magnitude (see main text) and the
results from analysis of these data are shown in the first box of each panel (“variable”).
Subsequent boxes show results from data where among replicate sampling effort was fixed
at either 10,000 or 50,000 samples. Gray lines connect results from data sets that were
simulated using identical parameters, except for sampling effort. Data were simulated using
a representative subset of the parameters used for our main simulation experiment. Boxplots
follow the format described in Fig. 3.
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Figure S5: Proportion of times that high density intervals of posterior probability distribu-
tions for Dirichlet parameters (~π parameters) included the true, simulated parameters (left
column). In the right column, the proportion of true positives recovered is shown. Boxplots
are shown for results from data simulated to have differing rank abundance curves (“Pareto,
0.7” was most skewed, “Equal” was least skewed; see main text). Boxplots follow the format
described in Fig. 3.
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Figure S6: Comparison of true positive rate among the three parameter estimation methods
tested (panels a,c,e). Comparison of false discovery rate between the same three methods
(b,d,f). This figure corresponds in format to Fig. 4. Marginal histograms are provided to
aid visualization. For details of model implementation and parameter estimation methods,
see the main text (VI: variational inference; HMC: Hamiltonian Monte Carlo; MCMC: JAGS
model implementation).
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Figure S7: Bias of DMM as implemented via HMC as a function of feature relative abundance
for data sets simulated using a uniform rank abundance distribution. Percentiles of relative
abundances for each dataset were calculated and are shown on the x axis of bias plots (left
column), thus normalizing for the differences in numbers of features among datasets. Bias
(defined as the difference between predicted values and the truth) in π parameters is shown
on the y axis. Marginal bias was calculated as absolute bias divided by the relative abundance
of the focal parameter. Plots in the right column show probability densities for the different
bias values shown in the left column. Each line denotes results from a simulated dataset.
Results shown here are from a representative subset of the datasets simulated as part of our
main experiment including 99 datasets with variable counts among replicates (see Methods)
and 45 datasets with invariant counts among replicates. All values that we considered as
part of our main experiment for number of features, number of observations, number of
replicates, precision (θ), and effect sizes were included in the subset of the datasets analyzed
here. 56
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Figure S8: Bias of DMM as implemented via HMC as a function of feature relative abundance
for data sets simulated using a moderately skewed rank abundance distribution (Pareto =
4). Percentiles of relative abundances for each dataset were calculated and are shown on
the x axis of bias plots (left column), thus normalizing for the differences in numbers of
features among datasets. Bias (defined as the difference between predicted values and the
truth) in π parameters is shown on the y axis. Marginal bias was calculated as absolute bias
divided by the relative abundance of the focal parameter. Plots in the right column show
probability densities for the different bias values shown in the left column. Each line denotes
results from a simulated data set. Results shown here are from a representative subset of the
datasets simulated as part of our main experiment including 99 datasets with variable counts
among replicates (see Methods) and 45 datasets with invariant counts among replicates. All
values that we considered as part of our main experiment for number of features, number of
observations, number of replicates, precision (θ), and effect sizes were included in the subset
of the datasets analyzed here. 57
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Figure S9: Bias of DMM as implemented via HMC as a function of feature relative abundance
for data sets simulated using a highly skewed rank abundance distribution (Pareto = 0.7).
Percentiles of relative abundances for each dataset were calculated and are shown on the x
axis of bias plots (left column), thus normalizing for the differences in numbers of features
among datasets. Bias (defined as the difference between predicted values and the truth)
in π parameters is shown on the y axis. Marginal bias was calculated as absolute bias
divided by the relative abundance of the focal parameter. Plots in the right column show
probability densities for the different bias values shown in the left column. Each line denotes
results from a simulated data set. Results shown here are from a representative subset of the
datasets simulated as part of our main experiment including 99 datasets with variable counts
among replicates (see Methods) and 45 datasets with invariant counts among replicates. All
values that we considered as part of our main experiment for number of features, number of
observations, number of replicates, precision (θ), and effect sizes were included in the subset
of the datasets analyzed here. 58
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Figure S10: Bias of DMM as implemented via VI as a function of feature relative abundance
for data sets simulated using a uniform rank abundance distribution. Percentiles of relative
abundances for each dataset were calculated and are shown on the x axis of bias plots (left
column), thus normalizing for the differences in numbers of features among datasets. Bias
(defined as the difference between predicted values and the truth) in π parameters is shown
on the y axis. Marginal bias was calculated as absolute bias divided by the relative abundance
of the focal parameter. Plots in the right column show probability densities for the different
bias values shown in the left column. Each line denotes results from a simulated data set.
Results shown here are from a representative subset of the datasets simulated as part of our
main experiment including 99 datasets with variable counts among replicates (see Methods)
and 45 datasets with invariant counts among replicates. All values that we considered as
part of our main experiment for number of features, number of observations, number of
replicates, precision (θ), and effect sizes were included in the subset of the datasets analyzed
here. 59
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Figure S11: Bias of DMM as implemented via VI as a function of feature relative abundance
for data sets simulated using a moderately skewed rank abundance distribution (Pareto =
4). Percentiles of relative abundances for each dataset were calculated and are shown on
the x axis of bias plots (left column), thus normalizing for the differences in numbers of
features among datasets. Bias (defined as the difference between predicted values and the
truth) in π parameters is shown on the y axis. Marginal bias was calculated as absolute bias
divided by the relative abundance of the focal parameter. Plots in the right column show
probability densities for the different bias values shown in the left column. Each line denotes
results from a simulated data set. Results shown here are from a representative subset of the
datasets simulated as part of our main experiment including 99 datasets with variable counts
among replicates (see Methods) and 45 datasets with invariant counts among replicates. All
values that we considered as part of our main experiment for number of features, number of
observations, number of replicates, precision (θ), and effect sizes were included in the subset
of the datasets analyzed here. 60
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Figure S12: Bias of DMM as implemented via VI as a function of feature relative abundance
for data sets simulated using a highly skewed rank abundance distribution (Pareto = 0.7).
Percentiles of relative abundances for each dataset were calculated and are shown on the x
axis of bias plots (left column), thus normalizing for the differences in numbers of features
among datasets. Bias (defined as the difference between predicted values and the truth)
in π parameters is shown on the y axis. Marginal bias was calculated as absolute bias
divided by the relative abundance of the focal parameter. Plots in the right column show
probability densities for the different bias values shown in the left column. Each line denotes
results from a simulated data set. Results shown here are from a representative subset of the
datasets simulated as part of our main experiment including 99 datasets with variable counts
among replicates (see Methods) and 45 datasets with invariant counts among replicates. All
values that we considered as part of our main experiment for number of features, number of
observations, number of replicates, precision (θ), and effect sizes were included in the subset
of the datasets analyzed here. 61
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Figure S13: Bias of DMM as implemented via MCMC (via JAGS) as a function of feature
relative abundance for data sets simulated using a uniform rank abundance distribution.
Percentiles of relative abundances for each dataset were calculated and are shown on the x
axis of bias plots (left column), thus normalizing for the differences in numbers of features
among datasets. Bias (defined as the difference between predicted values and the truth)
in π parameters is shown on the y axis. Marginal bias was calculated as absolute bias
divided by the relative abundance of the focal parameter. Plots in the right column show
probability densities for the different bias values shown in the left column. Each line denotes
results from a simulated data set. Results shown here are from a representative subset of the
datasets simulated as part of our main experiment including 99 datasets with variable counts
among replicates (see Methods) and 45 datasets with invariant counts among replicates. All
values that we considered as part of our main experiment for number of features, number of
observations, number of replicates, precision (θ), and effect sizes were included in the subset
of the datasets analyzed here. 62
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Figure S14: Bias of DMM as implemented via MCMC (via JAGS) as a function of feature
relative abundance for data sets simulated using a moderately skewed rank abundance dis-
tribution (Pareto = 4). Percentiles of relative abundances for each dataset were calculated
and are shown on the x axis of bias plots (left column), thus normalizing for the differences
in numbers of features among datasets. Bias (defined as the difference between predicted
values and the truth) in π parameters is shown on the y axis. Marginal bias was calcu-
lated as absolute bias divided by the relative abundance of the focal parameter. Plots in
the right column show probability densities for the different bias values shown in the left
column. Each line denotes results from a simulated data set. Results shown here are from
a representative subset of the datasets simulated as part of our main experiment. Results
shown here are from a representative subset of the datasets simulated as part of our main
experiment including 99 datasets with variable counts among replicates (see Methods) and
45 datasets with invariant counts among replicates. All values that we considered as part of
our main experiment for number of features, number of observations, number of replicates,
precision (θ), and effect sizes were included in the subset of the datasets analyzed here.
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Figure S15: Bias of DMM as implemented via MCMC (via JAGS) as a function of feature
relative abundance for data sets simulated using a highly skewed rank abundance distribution
(Pareto = 0.7). Percentiles of relative abundances for each dataset were calculated and are
shown on the x axis of bias plots (left column) of bias plots (left column), thus normalizing
for the differences in numbers of features among datasets. Bias (defined as the difference
between predicted values and the truth) in π parameters is shown on the y axis. Plots in the
right column show probability densities for the different bias values shown in the left column.
Plots in the right column show probability densities for the different bias values shown in
the left column. Each line denotes results from a simulated data set. Results shown here
are from a representative subset of the datasets simulated as part of our main experiment
including 99 datasets with variable counts among replicates (see Methods) and 45 datasets
with invariant counts among replicates. All values that we considered as part of our main
experiment for number of features, number of observations, number of replicates, precision
(θ), and effect sizes were included in the subset of the datasets analyzed here.64
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Figure S16: Width of credible intervals for π parameters estimated using DMM as imple-
mented via HMC (using the Stan software) as a function of feature relative abundance and
rank abundance profile of the data (see Fig. 2). Percentiles of relative abundances for each
dataset were calculated and are shown on the x axis of bias plots (left column), thus nor-
malizing for the differences in numbers of features among datasets. Credible interval width
(defined as the absolute value of the difference between the 2.5 and 97.5 percentiles of the
estimated posterior probability distribution) of π parameters is shown on the y axis. Plots
in the right column show probability densities for the different bias values shown in the left
column. Each line denotes results from a simulated data set. Results shown here are from a
representative subset of the datasets simulated as part of our main experiment including 99
datasets with variable counts among replicates (see Methods) and 45 datasets with invariant
counts among replicates. All values that we considered as part of our main experiment for
number of features, number of observations, number of replicates, precision (θ), and effect
sizes were included in the subset of the datasets analyzed here.
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Figure S17: Width of credible intervals for π parameters estimated using DMM as imple-
mented via VI (using the Stan software) as a function of feature relative abundance and
rank abundance profile of the data (see Fig. 2). Percentiles of relative abundances for each
dataset were calculated and are shown on the x axis of bias plots (left column), thus nor-
malizing for the differences in numbers of features among datasets. Credible interval width
(defined as the absolute value of the difference between the 2.5 and 97.5 percentiles of the
estimated posterior probability distribution) of π parameters is shown on the y axis. Results
shown here are from a representative subset of the datasets simulated as part of our main
experiment including 99 datasets with variable counts among replicates (see Methods) and
45 datasets with invariant counts among replicates. All values that we considered as part of
our main experiment for number of features, number of observations, number of replicates,
precision (θ), and effect sizes were included in the subset of the datasets analyzed here.
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Figure S18: Width of credible intervals for π parameters estimated using DMM as imple-
mented via MCMC (using the JAGS software) as a function of feature relative abundance
and rank abundance profile of the data (see Fig. 2). Percentiles of relative abundances for
each dataset were calculated and are shown on the x axis of bias plots (left column), thus
normalizing for the differences in numbers of features among datasets. Credible interval
width (defined as the absolute value of the difference between the 2.5 and 97.5 percentiles
of the estimated posterior probability distribution) of π parameters is shown on the y axis.
Plots in the right column show probability densities for the different bias values shown in
the left column. Each line denotes results from a simulated data set. Results shown here
are from a representative subset of the datasets simulated as part of our main experiment
including 99 datasets with variable counts among replicates (see Methods) and 45 datasets
with invariant counts among replicates. All values that we considered as part of our main
experiment for number of features, number of observations, number of replicates, precision
(θ), and effect sizes were included in the subset of the datasets analyzed here.
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Figure S19: Lung inhabiting bacteria that shifted in relative abundance between aspirating
and non-aspirating subjects. Data analyzed were made publicly available by Duvallet et al.
(2019). The estimated relative abundance of taxa in non-aspirating patients (~π parameters)
was subtracted from the relative abundance of taxa in aspirating patients and this difference
is shown on the vertical axis. Thus, points on either side of zero (shown as absolute values)
correspond with a taxon that was more abundant in that sampling group (non-aspirators
below zero, aspirators above zero). Points are means of PPDs of differences; whiskers show
the 95% equal tailed probability intervals of PPDs. Bacteria are indexed along the horizontal
axis and ordered by effect size.
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How to implement Bayesian Dirichlet-multinomial
modeling in R

Joshua G. Harrison, W. John Calder, Vivaswat Shastry, C. Alex Buerkle

When a finite number of observations can be ascribed to categories (e.g., observations of taxa or transcripts),
the counts of observations of each category can be appropriately modeled using the multinomial distribution.
Multinomial parameters define the probability that a given observation belongs to a particular category and
these probabilities correspond to the relative abundance of that category in the population that was sampled.
Because it accounts for the probability of all categories, the sum of the multinomial parameter vector (~p) is
one. For instance, if 50

100 of the birds one observed on a long hike were American robins then the maximum
likelihood estimate of the multinomial parameter for robins would be 0.5 ( x

n = 50
100 ) and other parameters

would correspond to the relative abundance of the other bird taxa observed. Here we describe how to model
multinomial data using a hierarchical Bayesian approach that shares information among replicates via the
Dirichlet distribution. The parameters of the Dirichlet distribution allow inference regarding the relative
abundance of each category, or feature, within the sampling group.

The goal of the analysis demonstrated here is to identify features (i.e. taxa, transcripts, behavioral preferences)
that differ in relative abundance across treatment groups. However, once estimates for feature relative
abundance are obtained, these estimates can be passed to additional analyses. We implement modeling
using three frameworks (variational inference and Hamiltonian Monte Carlo in Stan, and MCMC [Gibbs and
Metropolis-Hastings] sampling in JAGS) to demonstrate the differences and similarities of each.

Be advised that modeling large data sets is computationally expensive, therefore we use a simple, simulated
data set for this example. For smaller datasets, say of a few hundred to a thousand features, the model shown
here can be run on a desktop system. For larger datasets, computation will take several days, so one may wish
to run the model remotely. One trick that can be used to reduce computational expense is to sum uncommon
features into a single, composite feature. The counts of this composite feature should be included during
modeling, otherwise proportional estimates will be incorrect. Also, run time can be reduced by initializing
sampling at values that are likely to be closer to the true values of the parameters to be estimated (e.g., π
parameters in the Dirichlet could be set to the maximum likelihood estimate of the frequency of that feature
across replicates). See documentation for Stan or rjags for information on how to initialize chains.

Simulation

We start this example by simulating some data. Note that the intensity parameter of the Dirichlet distribution
controls the degree of among-replicate variation within the data. Higher values for this parameter lead to less
variation among replicates. Also, we add a one to every datum so that there are no zero values within the
data. This is necessary because zeros can cause infinite density errors in JAGS, due to their contribution to
the Dirichlet probability density function. If zeros exist in one’s data, then add a one to every count.
# library(gtools)
# library(rstan)
# library(rjags)
# library(shinystan)
# library(VGAM)

notus <- 50
nsamples <- 5000
nreps <- 100
intensity <- 1
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comprop <- matrix(0, ncol = notus, nrow = 2)
indprop <- matrix(0, ncol = notus, nrow = nreps)

#Assemblage 1
comprop[1, ] <- rdirichlet(1, c(rep(15, 5), rep(1, notus - 5)))
#Assemblage 2
comprop[2, ] <- rdirichlet(1, c(rep(1, notus - 5), rep(15, 5)))

#Construct data matrix
com <- matrix(0, ncol = notus, nrow = nreps)
for (i in 1:(nreps / 2)) {
indprop[i, ] <- rdirichlet(1, comprop[1, ] * intensity)
com[i, ] <- rmultinom(1, nsamples, prob = indprop[i, ])
}
for (i in (1 + nreps / 2):nreps) {
indprop[i, ] <- rdirichlet(1, comprop[2, ] * intensity)
com[i, ] <- rmultinom(1, nsamples, prob = indprop[i, ])
}
com <- com + 1
nsamples <- nsamples + 50

Stan model specification

Now we run the model. See the main text for model exposition. First, we load the Stan specification of the
model, which, in this case, is in a text file located within the working directory. This can take a few seconds.
DM <- stan_model("DM.stan", model_name = "DM")

#This file has the following model within it:

# // Model specification for Dirichlet-Multinomial
# data {
# int<lower=1> N;
# int<lower=1> nreps;
# int<lower=1> notus;
#
# int<lower=1> start[N];
# int<lower=1> end[N];
#
# int datamatrix[nreps, notus];
# }
#
# parameters {
# real<lower=0> theta[N];
# simplex[notus] pi[N];
# simplex[notus] p[nreps];
# }
#
#
# model {
# for(i in 1:N){
# target += exponential_lpdf(theta[i] | 0.001);
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# target += dirichlet_lpdf(pi[i] | rep_vector(0.0000001, notus));
# for(j in start[i]:end[i]){
# target += dirichlet_lpdf(p[j] | theta[i]*pi[i]);
# target += multinomial_lpmf(datamatrix[j,] | p[j]);
# }
# }
# }

Variational inference in Stan

Now we implement variational inference (VI) to learn parameters of interest. Note how the data are passed
in as a named list, the algorithm specified, and the number of samples to be extracted from the estimated
posterior specified (“output samples”). For more, see the Stan documentation.
ptm <- proc.time()
fitstan_VI <- vb(DM,

data = list("datamatrix" = com,
"nreps" = nrow(com),
"notus" = ncol(com),
"N" = 2,
"start" = c(1, nreps/2),
"end" = c((nreps/2) - 1, nreps)

),
algorithm = "meanfield",
output_samples = 500,
check_data = T,
seed = 123,
pars <- "pi")

viTime <- c(proc.time() - ptm)[3]

Variational inference took 5.959 seconds.

Hamiltonian Monte Carlo sampling in Stan

Now we implement Hamiltonian Monte Carlo (HMC) using the no U-turn sampling algorithm. Note that the
number of chains and cores can be specified (use one core per chain). “warmup” controls model burn in (and
should probably be increased for larger data sets). “iter” controls total iterations, so the difference between
iter and warmup specifies how many samples of the posterior probability distribution will be extracted. “thin”
specifies how many samples to skip before saving another sample (if thin=2 then every other sample will be
saved). For more, see the Stan documentation.
ptm <- proc.time()
fitstan_HMC <- sampling(DM,

data = list("datamatrix" = com,
"nreps" = nrow(com),
"notus" = ncol(com),
"N" = 2,
"start" = c(1, nreps/2),
"end" = c((nreps/2) - 1, nreps)

),
chains=2,

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/711317doi: bioRxiv preprint 

https://doi.org/10.1101/711317
http://creativecommons.org/licenses/by-nc-nd/4.0/


warmup = 500,
iter = 1000,
thin = 2,
algorithm = "NUTS",
cores = 1,
pars <- "pi",
verbose = T)

hmcTime <- c(proc.time() - ptm)[3]

Hamiltonian Monte Carlo took 278.297 seconds. Note that this time could be reduced by optimizing “warmup”
and “iter”, running each chain on a different core, and providing sensible initialization values. When optimizing
run time be sure to check model convergence statistics to ensure that convergence upon a stable posterior
probability distribution has been achieved.

Stan estimation diagnostics

Checking model convergence can be done easily for HMC, but at the time of writing there was no simple way
to test effectiveness of VI.

For HMC, the number of effective samples and R̂ can be checked using the following code.
summary(fitstan_HMC, pars = "pi", probs = c(0.025, 0.975))$summary

The shinystan application is an excellent interface to dig deeper into model performance. See https:
//mc-stan.org/users/interfaces/shinystan

Model specification and MCMC samples in JAGS

Now we use a very similar specification of the model for the JAGS software to estimate π parameters of the
Dirichlet.

Model specification is as follows:
community.model.level <- "model{

for(i in 1:N){
for(j in start[i]:end[i]){

datamatrix[j,] ~ dmulti(p[j,], nreads[j])
p[j,1:notus] ~ ddirch(pi[i,]*theta[i])

}

pi[i,1:notus] ~ ddirch(alpha)
theta[i] ~ dunif(0, 4000)

}

for(k in 1:notus){
alpha[k] <- 0.0000001

}
}"

Compile and run the model.
ptm <- proc.time()

sim.mod.jags <- jags.model(
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textConnection(community.model.level),
data = list(

datamatrix = com,
notus = dim(com)[2],
nreads = rowSums(com),
N = 2,
start = c(1,nreps/2),
end = c((nreps/2)-1,nreps)

),
n.chains = 2,
n.adapt = 0

)

#Adapt model
iter_needed <- 0
y = FALSE
while(y == FALSE){

y <- adapt(sim.mod.jags,
n.iter = 1000,
end.adaptation = FALSE)

iter_needed <- 1000 + iter_needed
if(iter_needed > 4000){break}

}

#Burn in
update(sim.mod.jags,

n.iter = 3000)

#Extract samples
sim.mod.sam <- jags.samples(model = sim.mod.jags,

variable.names = "pi",
n.iter = 4000,
thin = 4)

jagsTime <- c(proc.time() - ptm)[3]

JAGS took 77.208 seconds. This time could possibly be reduced by optimizing burn in and adaptation and
providing sensible initialization values.

To test for MCMC convergence, one can use the functions within the Coda R package. Be advised, that
statistics should be calculated parameter-wise when there are many parameters, else memory requirements
become burdensome. The following function can be used to accomplish this task.
#Compute the Gelman-Rubin and Geweke statistics
mcmcdiag <- function(x, nparams) {

#x is an mcmc object
#nparams is number of params in the object
Gr <- vector(length = nparams)
GK <- vector(length = nparams)
k <- 1
a <- character(0)

while (k <= nparams) {
m <- x[1:length(x)][, k]
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gr <- gelman.diag(m)
print(paste("Feature", k, sep = " "))
print("Gelman-Rubin")
print(gr)
if (gr[[1]][1] <= 2) {

Gr[k] <- "passed"
} else{

Gr[k] <- "failed"
}

gk <- geweke.diag(m,
frac1 = 0.1,
frac2 = 0.5)

suspectGK <- names(which(2 * pnorm(-abs(gk[[1]]$z)) < 0.08))
if (identical(a, suspectGK)) {

GK[k] <- "passed"
} else if (suspectGK == "var1") {

GK[k] <- "failed"
}

k <- k + 1
}
return(list(Gr,

GK))
}

diagout <- mcmcdiag(as.mcmc.list(sim.mod.sam$pi), dim(com)[2])

We have noticed that for large datasets (many thousands of parameters), JAGS can require many days to
achieve convergence. By comparison, HMC is much faster. To avoid impractically long run times, VI may be
the only viable option for extremely large data sets.

Use of parameter estimates

Now we extract π parameters from each sampling group and subtract them. The location of zero within this
distribution quantifies the probability of no effect of sampling group. If desired, the mean of this distribution
of differences can be extracted and used as a point estimate for the effect of sampling group, though we
advocate for using samples characterizing the entire distribution for analyses whenever possible, thus utilizing
our measures of uncertainty. We present a simple function to determine if 95% or more of the distribution of
differences lies on either side of zero. If so, then we suggest this is high certainty of an effect of sampling
group on the relative abundance of that feature.
calc_certain_diffs <- function(mcmc_of_diffs, dimension){

positives <- vector()
negatives <- vector()

for(i in 1:dim(mcmc_of_diffs)[dimension]){
if(dimension == 2){

perc <- length(which(mcmc_of_diffs[,i] > 0 ))/ length(mcmc_of_diffs[,i])
}else{

perc <- length(which(mcmc_of_diffs[i,] > 0)) / length(mcmc_of_diffs[i,])
}
if(perc >= 0.95 | perc <= 0.05){
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positives <- c(positives, i)
}else{

negatives <- c(negatives, i)
}

}
return(list(positives = positives,

negatives = negatives))
}
est.pi <- extract(fitstan_HMC,"pi")
diffs_HMC <- est.pi$pi[,1,] - est.pi$pi[,2,]
outHMC <- calc_certain_diffs(diffs_HMC,2)

est.pi <- extract(fitstan_VI,"pi")
diffs_VI <- est.pi$pi[,1,] - est.pi$pi[,2,]
outVI <- calc_certain_diffs(diffs_VI,2)

diffs_jags <- sim.mod.sam$pi[1,,,1:2] - sim.mod.sam$pi[2,,,1:2]
outJAGS <- calc_certain_diffs(cbind(diffs_jags[,,1],

diffs_jags[,,2]), 1)

Next we make a plot to determine which features shifted in relative abundances. Points correspond to
estimated differences in feature relative abundance between sampling groups. The blue dots correspond with
those features that we expected to shift. Lines extending from each point denote 95% high density intervals,
and are colored purple for those features suggested to differ.
#Code from Kruschke's Doing Bayesian Data Analysis book (cited in main text).
HDIofMCMC = function(sampleVec, credMass=0.95) {

# Computes highest density interval from a sample of representative values,

# estimated as shortest credible interval.

# Arguments:

# sampleVec

# is a vector of representative values from a probability distribution.

# credMass

# is a scalar between 0 and 1, indicating the mass within the credible

# interval that is to be estimated.

# Value:

# HDIlim is a vector containing the limits of the HDI
sortedPts = sort(sampleVec)

ciIdxInc = ceiling(credMass * length(sortedPts))

nCIs = length(sortedPts) - ciIdxInc

ciWidth = rep(0, nCIs)

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/711317doi: bioRxiv preprint 

https://doi.org/10.1101/711317
http://creativecommons.org/licenses/by-nc-nd/4.0/


for(i in 1:nCIs) {

ciWidth[i]= sortedPts[i + ciIdxInc] - sortedPts[i]

}

HDImin = sortedPts[which.min(ciWidth)]

HDImax = sortedPts[which.min(ciWidth) + ciIdxInc]

HDIlim = c(HDImin, HDImax)

return(HDIlim)

}

notus <- dim(com)[2]
colorPoints <- rep("black", notus)
colorPoints[c(1:5,(notus-4):notus)] <- "blue"

#Plot differences in pis
plotr <- function(x, y, z, whatitis){

plot(1:notus, apply(x, y, mean),
cex = 1.5,
ylim = c(-0.06,0.06),
ylab = "Difference in rel. abund.",
xlab = "Feature",
main = whatitis,
pch = 16,
col = colorPoints,
las = 2)

abline(h = 0, col = "red")
segs <- apply(x, y, HDIofMCMC)
colorLines <- rep("black", notus)
colorLines[z$positives] <- "purple"
segments(1:notus, segs[1,],

1:notus, segs[2,],
col = colorLines)

}

par(mfrow=c(1,3))
plotr(x = diffs_VI, y = 2, z = outVI, whatitis = "VI")
plotr(x = diffs_HMC, y = 2, z = outHMC, whatitis = "HMC")
plotr(x = diffs_jags, y = 1, z = outJAGS, whatitis = "JAGS")
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DMM can be extended easily to encompass more than two sampling groups. Simply order data (in a matrix
or dataframe format) so that replicates from the same sampling groups are neighboring rows. For instance,
say one was analyzing measurements from eight sampling groups denoted numerically. One should order the
associated data for these sampling groups like so that the data looked like this:
exampleData <- round(runif(16,1,1000))
groups <- c(rep("group1",2),

rep("group2",2),
rep("group3",2),
rep("group4",2),
rep("group5",2),
rep("group6",2),
rep("group7",2),
rep("group8",2))

cbind(exampleData, groups)

## exampleData groups
## [1,] "766" "group1"
## [2,] "347" "group1"
## [3,] "134" "group2"
## [4,] "686" "group2"
## [5,] "90" "group3"
## [6,] "539" "group3"
## [7,] "244" "group4"
## [8,] "799" "group4"
## [9,] "232" "group5"
## [10,] "349" "group5"
## [11,] "751" "group6"
## [12,] "936" "group6"
## [13,] "586" "group7"
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## [14,] "201" "group7"
## [15,] "940" "group8"
## [16,] "865" "group8"

Then one can simply pass in the indices that describe which rows bound which group to the “start” and “end”
portions of the function. For our toy example, the start indices would be:
c(1,3,5,7,9,11,13,15)

## [1] 1 3 5 7 9 11 13 15

and the end indices would be:
c(2,4,6,8,10,12,14,16)

## [1] 2 4 6 8 10 12 14 16

These values would then be substituted into the model and the “N” parameter changed to reflect the number
of sampling groups used (in this case N = 8). Note that you cannot pass in the grouping column if it is
included in your data. See above for another example of how data should be formatted.
fitstan_HMC <- sampling(DM,

data = list("datamatrix" = as.matrix(exampleData),
"nreps" = 16,
"notus" = 1,
"N" = 8,
"start" = c(1,3,5,7,9,11,13,15),
"end" = c(2,4,6,8,10,12,14,16)

),
chains=2,
warmup = 500,
iter = 1000,
thin = 2,
algorithm = "NUTS",
cores = 1,
pars <- "pi",
verbose = T)
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