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Performance tradeoffs are ubiquitous in both ecological and evolutionary modeling, yet are usually
postulated and built into fitness and ecological landscapes. But tradeoffs depend on genetic back-
ground and evolutionary history, and can themselves evolve. We present a simple model capable
of capturing the key feedback loop: evolutionary history shapes tradeoff strength, which, in turn,
shapes evolutionary future. One consequence of this feedback is that genomes with identical fitness
can have different evolutionary properties, shaped by prior environmental exposure. Another is that,
generically, the best adaptations to one environment may evolve in another. Our minimal model
highlights the need for analysis of simple models capable of incorporating explicit dependence on
environment, and can serve as a rich playground for investigating evolution in multiple or changing
environments.
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Performance tradeoffs, caricatured by “you can’t be
good at everything”, are ubiquitous in both ecology and
evolution. Sometimes modeled explicitly (e.g. as a fixed
total budget of energy or proteome), and often implicitly
(e.g. as fitness costs associated with traits), tradeoffs are
a staple of ecological and evolutionary modeling [1–6].

The rigid tradeoffs assumed in many models implicitly
derive from the assumption that long-acting evolutionary
pressures drive organisms to approximate Pareto opti-
mality [7–9], i.e. to a regime where performance at the rel-
evant tasks cannot all be improved simultaneously. How-
ever, even under this assumption [10], the Pareto front
should be high-dimensional [11, 12] so that the tradeoff
between any subset of traits is not, in fact, rigid. Further-
more, tradeoffs will depend on evolutionary history and
themselves evolve [13–18]. In laboratory experiments,
adapting bacteria to one task can both hinder and im-
prove their performance at another, depending on the ex-
perimental protocol, the studied strain, and the exact na-
ture of the tasks, as well as history of prior exposure [19–
21]. Some phenomena appear non-intuitive and surpris-
ing, for instance, even very weak levels of an antibiotic
can induce resistance to much higher levels [22, 23].

In some cases, the specific mechanisms responsible for
tradeoffs and their plasticity are known, and can be mod-
eled mechanistically [24, 25]. This approach can be very
informative about a particular case of interest, but leaves
aside important broader questions. Which of the ob-
served behaviors depend on the details of a given bi-
ological system, and which are more general? Which
experimental observations should be considered surpris-
ing, and which can be captured already by the simplest
models? What other behaviors might be expected? For
instance, can less frequent exposure to environment X

result in better adaptation to it? Can exposure to X
result in better fitness in environment Y than exposure
to Y itself? More specifically, would a prior exposure to
a milder version of a stress facilitate adaptation to its
stronger form?

Elucidating which behaviors are surprising vs. general
is a key role of theory and simple models. Here, we pro-
pose a minimally structured model capturing some key
experimentally observed behaviors: namely, the model
exhibits performance tradeoffs, but their strength evolves
and depends on evolutionary history. This minimal set-
ting proves sufficient to observe non-trivial ways in which
tradeoff strength shaped by evolutionary past can pre-
dictably influence evolutionary future; in particular, we
identify a mechanism that makes the path towards the
highest fitness in one set of environments is via expo-
sure to a different set. Our basic framework can serve as
a rich null model for evolution in multiple or changing
environments.

TOOLBOX MODEL

The structure of our model is summarized in Fig. 1A.

The environment is represented by a target vector ~E in an
abstract L-dimensional space, and a genome G by a K-
element basis in that space, with K < L, i.e. the basis is
under-complete. The fitness of genome G in environment
~E measures how well the basis (the “tools” available) can
approximate the target.

To motivate this setup, consider the L-dimensional
space as the space of traits (phenotype space). Specify-
ing an environment in our model is equivalent to specify-

ing the optimal phenotype ~E for that environment (here
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and below, the vector notation always refers to the trait
space). An idealized organism with a very flexible phys-
iology, capable of independently adjusting each trait as
necessary, would be able to adopt any phenotype. How-
ever, an organism limited to only K � L adjustable
“knobs” would in general only be able to approximate
the target phenotype. Motivated by this, we caricature
a genome by its pattern of trait co-regulation, specifi-
cally a set of K basis vectors {~gµ}, and posit that an
organism can adopt any phenotype realizable as a lin-
ear combination of its {~gµ} with positive coefficients —
loosely “expression levels”. Target phenotypes outside
this K-dimensional subspace can only be approximated,

and we define fitness F (G, ~E) as the (Euclidean) norm of
the residual:

F (G, ~E) = − min
{aµ≥0}

∥∥ ~E −∑
µ

aµ~gµ
∥∥.

The simplest interpretation of this model is as a carica-
ture of metabolism, where the L “traits” are the required
amounts of a set of metabolites, and the K “knobs” (di-
mensions of internal representation [26]) are the activi-
ties of synthesis pathways. Motivated by this example,

we take all components of ~E and {~gµ} to be positive.
However, we stress that our setup is not intended to be
a realistic model of metabolic regulation, or any other
specific context. Instead, our goal is to construct a min-
imally structured model that allows the same genome to
be good (or not) in many different environments at the
same time. In our setup, for any set of Nenv environments
with Nenv ≤ K there exists, in principle, a genome that is
perfectly fit in all. Conversely, the same environment can
be fit by many genomes. For our purposes, we will take
Nenv

<∼ K � L so that being fit in Nenv environments is
possible, but difficult.

Mathematically, the key feature of our model is that
the expression levels aµ are adjusted to be as good as
possible in each environment separately. This feature is
crucial: An alternative setup, where the values aµ would
be included in the definition of a genome and hence be
the same in all environments, is simply a variant of the
extensively studied Fisher’s geometric model [27]. Allow-
ing the expression coefficients to depend on the environ-
ment – phenotypic plasticity [28–30] – is the key feature
that allows the same genetically encoded “toolbox” to be
useful in multiple environments.

MODELING THE EVOLUTIONARY PROCESS

To study tradeoffs, we must consider more than one
environment; we focus here on the simplest case: Nenv =
2. Thus the central object is an environment pair P ≡
{ ~EA, ~EB}. For simplicity we consider binary genomes,
where all L components of the K vectors {~gµ} are either 0
or 1 (Fig. 1B); with mutations implemented as bit flips
0 7→ 1 or 1 7→ 0. From each genome there are thus KL
possible mutations.

FIG. 1. The toolbox model. (A) A genome, G, consists of
an under-complete set of K basis vectors {~gµ} (“tools”). The

environment is represented by a target vector ~E. The fit-
ness in this environment is a measure of how well this basis
can approximate the target vector, i.e. “fit” the environment.
Specifically, F (G, ~E) is defined as the residual of the best lin-

ear approximation of ~E using the vectors {~gµ} and positive
coefficients (“expression levels”). (B) For simplicity, we con-
sider {~gµ} to be binary vectors of length L, and assume the

components of ~E to be positive.

For simplicity, we analyze the regime of rare mutations
and strong selection. In this regime, evolution proceeds
through a sequence of sweeps (with no clonal interfer-
ence), and only beneficial mutations are relevant. As
a result, we only need to track the mutations accumu-
lated by a single adapting lineage, avoiding the need to
explicitly simulate a population, and eliminating the de-
pendence on population size.

Specifically, given a starting genome G0 and an envi-

ronment pair P = { ~EA, ~EB}, the evolutionary protocol
proceeds as follows. One of two environments is ran-
domly chosen. The fitness in this environment of all sin-
gle mutants is evaluated (re-optimizing the expression co-
efficients every time), and all beneficial mutations identi-
fied. Of these, one “lucky” mutation is drawn with prob-
ability proportional to its fitness effect (i.e. to its fixation
probability). We refer to this as “one mutational step”.

After a mutation is accepted, either ~EA or ~EB is ran-
domly selected for the next exposure, and the process is
repeated. This protocol accepts one mutation per expo-
sure epoch; the validity of this approximation is discussed
in the SI (Fig. S1).

THE TOOLBOX MODEL EXHIBITS
TRADEOFFS

We begin by showing that the toolbox model exhibits
performance tradeoffs. To do so, we start with K = 3
and L = 6, small enough that all 2KL genomes can be
fully enumerated. Panel Fig. 2A shows fitness values
FA, FB of all genomes in two particular random envi-
ronments: vectors of length L = 6, generated by inde-
pendently drawing each component from an exponential
distribution with mean 1, so as to ensure all components
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FIG. 2. Quantifying tradeoffs. (A) The global fitness land-
scape computed for K = 3 and L = 6 (small enough that
all genomes can be fully enumerated) in two randomly cho-

sen environments ~EA and ~EB . The density scatter plot (gray
shading) shows the logarithm of the number of genomes per
fitness bin. No genomes are highly fit in both environments
and the dashed line roughly traces the Pareto front. A ran-
dom initial genome evolving under pressure from one envi-
ronment becomes mediocre in the other (light blue evolving
in A or light green evolving in B) and runs out of benefi-
cial mutations after ∼ L mutation steps. When the same
genome evolves in randomly switching environments, the tra-
jectory does not terminate; steps in dark blue and dark green
correspond to mutations accepted while exposed to respec-
tively ~EA and ~EB ; the first 40 steps are shown (some loci
flip multiple times). (B). Examples illustrating our defini-
tion of the mutational tradeoff χ. Panels show the relative
fitness of all single-step mutants from four example genomes,
all far from the Pareto front. In red are mutations beneficial
in at least one environment. The doubly-deleterious mutants
(gray) cannot fix and are irrelevant for the adaptive evolu-
tionary process studied herein. The examples show: a strong
mutational tradeoff (top), the opposite of a tradeoff (bottom);
no tradeoff (middle left); and a mutationally modular genome
(middle right) where mutations beneficial in one environment
have little effect on fitness in the other; see text and Fig. S2.

are positive. We see that the genomes that perform best
in one environment are mediocre in the other, consistent
with the notion of a tradeoff. However, even at small K
and L as shown here, the set of all genomes is too vast to
be well-sampled by a single (or a few) evolutionary tra-
jectory, reducing the evolutionary relevance of the global
Pareto front (dashed line).

A more important property for evolution in alternat-
ing environments is the mutational tradeoff Fig. 2B, on
which we will focus. (Other ways of quantifying tradeoffs
are discussed in the SI, section “Quantifying tradeoffs”).
The scatter plots show the fitness effects of all KL = 18
single mutations of several sample genomes, evaluated
in the two environments. Mutations deleterious in both
environments are irrelevant for the evolutionary process,
and can be ignored. The remaining mutations (benefi-
cial in at least one environment) can be used to define

mutational tradeoff strength χ:

χ ≡ − 〈δFA · δFB〉ben√
〈δF 2

A〉ben 〈δF 2
B〉ben

,

where the subscript indicates the omission of doubly-
deleterious mutants in the averaging. This definition en-
sures that χ ranges from −1 (no tradeoff in identical en-
vironments: δFA = δFB) to +1, the strongest possible
tradeoff for which δFA = −δFB . A case that will be-
come important shortly is that of a “mutationally mod-
ular” genome, defined by the property that mutations
improving performance in one environment do not affect
the other (for additional discussion, see SI, “Two defi-
nitions of modularity”). Conveniently, by our definition
of χ, modular genomes have mutational tradeoff of zero
(Fig. 2B).

MUTATIONAL TRADEOFF ITSELF EVOLVES

What are our expectations for the behavior of the
mutational tradeoff χ? First, any notion of tradeoff
strength is expected to depend on the difference between
environments. We quantify this difference, ∆E, as the
component-wise root-mean-square difference between the

two target vectors ~EA and ~EB . (This definition is more

convenient than the Euclidean norm ‖ ~EA − ~EB‖ as it
ensures that strongly different environments correspond
to ∆E of order 1 rather than ∆E ∼

√
L.) Second,

one might expect the χ of an evolving genome to in-
crease with time, since the Pareto front intuition suggests
that highly evolved genomes should become depleted for
jointly beneficial mutations.

To test these expectations, we investigate the dynam-
ics of mutational tradeoff strength for random initial
genomes evolving in random environment pairs with var-
ious ∆E. As described above, the relevant parameter
regime of the toolbox model is Nenv

<∼ K � L. Since our
focus is on environment pairs (Nenv = 2), from now on
we will use K = 4 and L = 100. Our starting genomes
will be random binary matrices with each entry set to
1 with probability p = 0.25 (so that initially, on aver-
age, each trait is affected by one regulator: pK = 1).
For each trial, the components of both environment vec-
tors are independently drawn from an exponential dis-
tribution as before (using a Gaussian distribution does
not qualitatively change the results), and the component-
wise differences are then rescaled to achieve a desired ∆E
between the pair (see SI, section “Parameterizing envi-
ronment pairs”). The results are presented in Fig. 3A.

Plotting these data as a function of ∆E (Fig. 3B) ap-
pears to confirm much of our intuition. First, for random
genomes (timepoint 0), mutational tradeoff χ is strongest
when ∆E is largest: as expected, being good at two
tasks is harder when they differ more. Second, genomes
evolved for 250 mutation steps exhibit the expected in-
crease of the mutational tradeoff. For a sense of scale,
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recall that our genomes have KL = 400 loci, so 250 steps
are sufficient for over half of the bits to flip.

Curiously, however, Fig. 3A also shows that after∼ 100
mutation steps, genomes evolving at a large ∆E con-
sistently exhibit a counter-intuitive decline in χ. This
behavior is not a peculiarity of our definition of muta-
tional tradeoff; other measures of tradeoff strength ex-
hibit the same phenomenon (Fig. S3). Examining the
evolved genomes in more detail reveals that this decline
in χ is associated with genomes becoming more modular:
Fig. 3C shows the mutant cloud for one of the genomes
evolved at ∆E = 1.5. Its “plus”-like shape is indica-
tive of emergent modularity (cf. Fig. 2B); in particular,
the best mutant in one environment has only a weak fit-
ness effect in the other. Denote the cross-effect of the
two best mutants (one for each environment) as δF best

A
and δF best

B . A mutationally modular genome is one with
δF best

A,B ≈ 0. Panels D and E show histograms of δF best

observed in 100 independent replicates (random start-
ing points, random environment pair with ∆E = 1.5).
Panel E (the later timepoint) shows a clear enrichment
of modular genomes (the peak at δF best ≈ 0), compared
to panel D (the earlier timepoint).

FIG. 3. Evolved tradeoffs are not typical. (A) Mutational
tradeoff (cf. Fig. 2B) as a function of the number of mu-
tation steps (a proxy for time), for evolution in random en-
vironment pairs differing by a given amount, quantified by
∆E. Each curve shows mean ± 1 s.d. over 100 independent
trials (shaded); for each trial, a new random initial genome
was evolved in a new random environment pair (K = 4,
L = 100). Initially, more different tasks are associated with
stronger mutational tradeoff, and tradeoff strength generally
increases with time, with a notable exception at large ∆E.
(B) Tradeoffs after 250 mutational steps versus environment-
difference ∆E. For ∆E = 0 (two identical environments),
the mutational tradeoff is necessarily −1. However, when
the environments differ, evolution drives tradeoff strength to
strongly atypical values. Shown is mean ± 1 s.d. over 100 in-
dependent trials for each ∆E. (C ) The mutant cloud for an
example genome evolved for 250 steps in two very different en-
vironments (∆E = 1.5). Apparent modularity emerges: the
best mutant in one environment has only a weak effect (de-
noted δF best

A,B ) in the other. (D, E) Histograms of δF best over
100 trajectories evolved at ∆E = 1.5, at two timepoints high-
lighted in A. The later timepoint E shows a clear enrichment
of modular genomes (peak at δF best ≈ 0).

One explanation for this enrichment might be that
high-fitness genomes are generally more modular. How-
ever, we will now demonstrate that evolution at a large
∆E specifically promotes tradeoff weakening: even con-
ditioned on having the same high fitness, the χ of evolved
genomes remains atypical [31]. Specifically, we will show
that (a) high-fitness genomes can exhibit a whole range
of mutational tradeoff values; (b) prior evolutionary his-
tory predictably pushes genomes into different regions of
this high-fitness space, and (c) the resulting genomes, al-
though sharing the same fitness, can differ dramatically
in their properties (for instance, in their ability to evolve
further).

EVOLUTIONARY HISTORY SHAPES
MUTATIONAL TRADEOFF

Fig. 3B demonstrated that mutational tradeoff
strength of evolved genomes is not typical of all genomes
(the red curve is clearly distinct from the blue). Es-
tablishing whether evolution specifically promotes muta-
tional tradeoff weakening requires a stronger statement,
namely that the χ arising through evolution is not even
typical of high-fitness genomes. To show this, the most
direct approach would be to compare the evolved χ to
the typical values observed when sampling high-fitness
genomes in an unbiased way. Unfortunately, we have no
procedure for such an unbiased sampling, other than a
complete enumeration which is only viable for extremely
small K and L (cf. Fig. 2). Instead, we will reach the
same conclusion by showing that different ways of evolv-
ing high fitness lead to genomes with different mutational
tradeoff strength.

Consider the following computational experiment.

Generate one random environment pair P∗ ≡ { ~E∗A, ~E∗B}
with ∆E = 1 for concreteness. Define fitness in the envi-

ronment pair as the average over fitness in ~E∗A and ~E∗B :

F (G,P∗) ≡
F
(
G, ~E∗A

)
+ F

(
G, ~E∗B

)
2

.

Throughout the experiment, we will only be concerned
with fitness and mutational tradeoff as measured in this
pair P∗. Under our protocol, the fixation probability of
any mutation depends only on its fitness effect in the one
environment to which the genome is exposed at the time.
However, as exposures alternate, the average fitness in
the pair will typically also increase.

What other evolutionary protocols could lead to in-

creased fitness in P∗ = { ~E∗A, ~E∗B}? One cannot expect
that evolving in some random other pair will increase
the mean fitness in P∗, but one can consider evolving a

genome in similar environments, or the average of ~E∗A and
~E∗B . In our model, for any { ~E∗A, ~E∗B}, one can create sim-
ilar pairs of environments that are closer or further apart
by linear interpolation or extrapolation (in log space to
preserve positivity of components; see SI). This yields
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FIG. 4. Evolutionary history shapes tradeoff structure, and vice versa. (A) For a randomly chosen pair of environments ~E∗
A,

~E∗
B , linear interpolation or extrapolation (in the log space, see SI) is used to exaggerate or soften the difference between them.

This family of pairs is denoted P(∆E), with P∗ the original pair which differ by ∆E = 1. (B) The same 10 random initial
genomes (K = 4, L = 100) were evolved either directly in P∗ (solid black line), or in another environment pair from the P(∆E)
family, with ∆E = 0 (the average environment) or ∆E = 1.5, 2 (exaggerated differences). The mutational tradeoff measured in
the original environment pair P∗ is plotted against the mean fitness in P∗: i.e., genomes are evolved in different environment
pairs, but are all evaluated in the same pair. Data points show the individual genomes every 25 mutational steps; each line
is the average over the 10 trajectories evolved in the same environment pair. We observe that different evolutionary histories
consistently drive genomes to different tradeoff strengths, even when compared at the same fitness. (C ) Mutational tradeoff
shapes the near-term evolutionary future. Here, sets of 10 genomes, prepared by pre-evolving for varying lengths of time at
different ∆E as in panel B, were “transferred” to continue evolution in the pair P∗. For each set, an arrow shows the average
change of fitness and mutational tradeoff in P∗ over the next 20 mutation steps. Trajectories from panel B are shown for
reference. The contrast in outcomes is particularly striking for the highest-fitness genomes (colored dots); see also next panel.
(D) “Evolvability” of genomes with different mutational tradeoff. From each of the 4× 10 trajectories described in panel B, we
selected the genome whose mean fitness in P∗ was closest to −5.6 (within ±0.01), yielding 31 genomes (9 trajectories did not
attain this high a mean fitness). Each was then evolved in P∗ for 20 steps; the mean-fitness gain (over the two environments
in the pair P∗) is plotted against the initial value of mutational tradeoff χ. The genomes with the weakest χ evolve fastest,
whereas genomes with the highest χ actually decline in mean fitness (compare with C). (E) The most evolvable genomes are

also least “versatile”. Same 31 genomes as in D, evaluated in random “intermediate” environments ~Eint between ~E∗
A and ~E∗

B ;
see text. Shown are means ± 1 s.d. over 100 intermediate environments.

a one-parameter family of environment pairs P(∆E) in-
dexed by their difference ∆E (Fig. 4A). For a concrete

analogy, if ~EA and ~EB represent hot and cold seasons,
then P(∆E) is a family of environment pairs where the
intensity of seasonal variation is more mild or more se-
vere (quantified by ∆E). If we pre-evolve the same 10
random starting genomes in these conditions, with ∆E
exaggerated or softened as described, what effect will this
have on the fitness and mutational tradeoff strength as
measured in the pair of interest, P∗?

The results are presented in Fig. 4B; showing the mu-
tational tradeoff versus average fitness, both measured in
P∗. The black solid line corresponds to the simplest sce-
nario, where the 10 initial genomes are evolved directly
in P∗. The evolutionary time runs left to right, reflected
in increasing fitness. If our hypothesis is correct, evolving
the same initial genomes at a larger ∆E should promote
a more modular genome architecture and thus a weaker
tradeoff; this is indeed what we observe (Fig. 4A; ma-
genta and red). Conversely, if instead of exaggerating
the differences we soften them to ∆E = 0 (i.e. replace
the environment pair P∗ with a single environment, their

mean), we obtain the trajectory in blue. (Note that the
mutational tradeoff evaluated in an environment “pair”
with ∆E = 0 is always −1, but panel Fig. 4B shows
the mutational tradeoff evaluated in the original pair of
interest P∗)

Fig. 4B directly demonstrates that, within our model,
manipulating evolutionary history predictably pushes
evolving genomes towards stronger or weaker mutational
tradeoff. In particular, if we pick similarly-performing
genomes from the right-hand side of this plot, we will find
that they all attain the same mean performance in dif-
ferent ways, with a wide range of tradeoff values. These
differences must clearly have consequences for their evo-
lutionary properties. Since by the process of evolving
in pairs of environments whose differences are exagger-
ated or softened one can generate genomes anywhere on
the mean-fitness vs. mutational tradeoff plane, we can
ask: how does the near-term evolutionary future differ
for genomes starting at different points of this plane?
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TRADEOFF STRENGTH SHAPES EVOLUTION

To address how the evolutionary history and current
tradeoff strength affect future evolution, we used the
protocol of Fig. 4B (computationally pre-evolving the
same 10 initial genomes in different environment pairs
for a varying length of time) to obtain a collection of 10-
genome sets evenly populating a region of the fitness vs.
mutational tradeoff plane. Each such 10-genome set was
then evolved for 20 further mutational steps in our pair
of interest P∗. The result is presented in Fig. 4C, where
each arrow describes the change in the mean fitness and
tradeoff strength in P∗ observed over the 20 mutation
steps (one arrow per 10-genome set).

First, notice that arrows in the vicinity of the black
trajectory are tangent to it. This, of course, is exactly
what we expect, since the black trajectory (copied from
Fig. 4B) traces the evolution in this same pair P∗. How-
ever, arrows starting elsewhere on this plane (pre-evolved
at a different ∆E, then transferred into P∗) show differ-
ent behaviors. It is especially interesting to compare the
arrows on the far-right side of the plot. And as a re-
minder, under our protocol, these four 10-genome sets
(colored dots) were obtained from the same 10 initial
genomes and differ only by evolutionary history. Yet
evolving them in the same environment P∗ for the same
amount of time (20 mutation steps) leads to very dif-
ferent outcomes. The low-tradeoff genomes obtained by
pre-evolving at an exaggerated ∆E (red dot) exhibit a
dramatically faster speed of subsequent evolution in P∗,
compared to similar-fitness genomes that never left this
environment pair (black dot). In contrast, attempting
to further evolve the highest-tradeoff genomes (blue dot)
actually leads to a decrease in mean fitness. For these
genomes, mutations beneficial in one environment of the
pair are so strongly deleterious in the other that the mean
fitness declines. To summarize, genomes with different
evolutionary history have predictably different evolution-
ary future.

This observation is further illustrated in panel D,
where the mean-fitness gain over 20 generations is shown
for 31 individual genomes (all with the same initial mean
fitness −5.60 ± 0.01), plotted against their initial mu-
tational tradeoff strength. The plot directly confirms
that weak-tradeoff genomes evolve fast, whereas for the
strongest-tradeoff genomes fitness gain dips into the neg-
ative.

The relation observed in Fig. 4D is consistent with
the previously proposed idea that modular architecture
is more “evolvable” [32–34]. Intriguingly, however, our
framework allows the benefits of modularity to be nu-
anced. For example, rather than continuing evolution in

the pair P∗ = { ~E∗A, ~E∗B}, consider instead generating a

large number of “intermediate” environments ~E, where
each component is independently and uniformly drawn

to be between the respective component of ~E∗A and ~E∗B .
Fig. 4E shows the average fitness of the exact same 31

genomes in the intermediate environments. The trend
is now reversed: the “best” genomes as judged by panel
D perform worst in this test. Intuitively, while a modu-
lar architecture (for a given environment pair) facilitates
continuing adaptation to that same pair (Fig. 4D), it also
suffers from a form of “overfitting”: the non-modular ar-
chitectures may be more versatile when evaluated across
a range of similar environments (Fig. 4E).

In summary, Fig. 4 demonstrates that evolution shapes
mutational tradeoff, and conversely, mutational tradeoff
shapes evolution. We will conclude by exhibiting a qual-
itatively nontrivial phenomenon arising as a consequence
of this important feedback loop.

BEST ADAPTATION FOR ONE ENVIRONMENT
PAIR EVOLVES IN ANOTHER

Consider the problem in which a pair P∗ is given, and
we would like to evolve a random starting genome G0

towards a high mean-fitness in this particular pair of en-
vironments. The most natural approach, of course, would
be to evolve G0 directly in P∗. However, the results of
Fig. 4 suggest that evolving instead in a different envi-
ronment pair, with differences exaggerated or softened,
might offer a more efficient path towards P∗-fitness in-
crease. Fig. 5A confirms this by re-plotting the trajecto-
ries from Fig. 4A, showing fitness in the environment pair
of interest P∗ (with ∆E = 1) as a function of time, for
genomes evolving under 3 different values of ∆E. Impor-
tantly, in this example, genomes evolving directly in P∗
are typically less fit than those evolved from the same
initial genomes, and for the same number of mutation
steps, but in a different environment pair (blue or red).

A more detailed visualization of this phenomenon is
presented in Fig. 5B. In the hot-and-cold season anal-
ogy, think of the ∆E axis in panel Fig. 5B as a transect
through a continent, running from a region with no sea-
sonal variation (∆E = 0) through regions where it is
increasingly more severe; we are focussing on a particu-
lar temperate region P∗ with moderate seasonal variation
(∆E∗ = 1). Imagine populating this continent with an
initially clonal population (the initial genome G0). Ini-
tially neglecting migration, we let these genomes inde-
pendently evolve in their respective environments. How-
ever, every 10 mutation steps, we consider potential im-
migrants to the temperate region of interest: namely, we
evaluate the performance of all the lineages in the pair
P∗ and plot it on the Y axis.

By construction, initially all genomes are the same,
and their performance in P∗ is also the same. How-
ever, 100 mutation steps later (purple), the highest fit-
ness in P∗ is exhibited by genomes that evolved at
∆E = 0. These genomes were evolved under selection
pressure from a single, averaged environment and can-
not, of course, develop any hot- or cold-specific adapta-
tions, but at the early stages, evolution proceeds very
efficiently as there are no conflicting pressures from the
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FIG. 5. Best adaptation for one environment evolves in an-
other. (A) The same 20 random initial genomes (K = 4,
L = 100) are evolved at different ∆E, and evaluated at
∆E = 1. Shown is mean fitness ± 1 s.d. over the 20 tra-
jectories. Remarkably, the genomes evolving directly in the
environment pair of interest (black) are typically less fit than
those evolved from the same initial genomes, and for the same
number of mutation steps, but in one of the other environ-
ment pairs with softened (blue) or exaggerated (red) differ-
ences. (B) Same as (A), re-plotted versus ∆E. The same ini-
tial genome is evolved in different environment pairs; contour
lines spaced by 10 mutation steps show the mean fitness eval-
uated in the environment pair of interest (P∗ with ∆E = 1).
Plot averaged over 20 random instances of the initial genome.
The three arrows correspond to the three trajectories shown
in panel A. We see that generically, the genomes with the
highest fitness at ∆E = 1 were evolved in other environment
pairs: after 100 mutation steps, the genomes performing best
at ∆E = 1 are those evolved at ∆E = 0, while at 250 muta-
tion steps, the best were evolved at ∆E = 1.5. See text for
explanation.

two environments.

As evolution proceeds, the behavior inverts. After 250
mutation steps (orange), the highest fitness in P∗ is ex-
hibited by genomes that evolved at ∆E ≈ 1.5. Initially,
the increase in mean fitness under such harsh seasonal
variations was very slow, with beneficial mutations in one
environment undoing the gain made in the other. How-
ever, eventually the lineages evolving under this large ∆E
develop a weakened mutational tradeoff (cf. Fig. 4): this
enables them to gain fitness more efficiently, overtaking
the lineages evolving in P∗. In this model, modularity is
thus good for evolvability, but takes time and the right
conditions to itself evolve.

It is worth noting that in this situation with a con-
tinuum of possible pairs of environments, the lineages
evolving directly in the environment of interest are not,
in fact, privileged: one generically expects the best fit-
ness to be achieved at a different ∆E, even in the long
run (shown in yellow for 1000 steps). One implication of
this in our spatial / seasonal metaphor is that in the pres-
ence of migration, the phenomenon described will lead to
a qualitative change in the expected genealogy structure
of the long-term surviving lineages. In particular, the
environment pairs with large variations turn into sources
of evolutionary innovation, promoting the development

of ~EA- and ~EB-specific adaptations capable of invading
other environments and out-competing the resident lin-
eages. Importantly, in our model this is true even though
we have explicitly excluded the effects of diversity that
would in general be created in each environment.

DISCUSSION

Understanding evolution in multiple or changing envi-
ronments requires developing an understanding of which
phenomena observed in the laboratory (or the wild) de-
pend on specific details (at molecular, cellular, or higher
order level), and which are more general; which experi-
mental outcomes are truly surprising, and which can be
found in a very simple model. We presented a toy model
able to capture the key feedback loop of evolutionary
tradeoff plasticity, whereby organisms evolving in differ-
ent environments are constrained by performance trade-
offs, but such tradeoffs themselves depend on the evolu-
tionary history. By defining fitness through a regulatory
or physiological optimization problem, our approach is
reminiscent of asking evolutionary questions from within
the framework of flux balance analysis [35–41]. How-
ever, our “toolbox” model abstracts away any specifically
metabolic (or other) detail, retaining only the flexibility
of regulation, i.e. the fact that genome-encoded tools can
be used in an environment-dependent manner. Remark-
ably, this simple model already exhibits qualitatively rich
phenomena, including effects that change sign during the
course of evolution.

One of the effects we studied by example shows how
the best adaptation for one environment may be ex-
pected to first emerge in another. Examples of this phe-
nomenon are known experimentally: for instance, the
fastest way to evolve resistance to a high dose of antibi-
otic is through a series of exposures to increasing doses,
rather than direct pressure from the environment of in-
terest (see also [19, 23]). Our results suggest that for
evolution considered across multiple environments, this
scenario may well be generic. If true, this is likely to
impose a strong constraint on the predictive power of
single-environment evolutionary models: successful lin-
eages coming from elsewhere are beyond their scope, yet
successful invaders can have a profound impact, including
on genealogical structures, a key observable used for in-
ferences from data. This highlights the need for simple il-
lustrative models able to incorporate explicit dependence
on environment. We hope the model presented here will
help develop null-model phenomenological expectations,
against which experimental (and genealogical) results can
be compared (e.g. [21]).

The phenomena reported here did not require fine-
tuning of model parameters; they arise because the space
of high-fitness genomes is naturally large and diverse. As
a result, different evolutionary histories generically bias
evolved genomes towards different corners of the high-
fitness space. In our model this property is ensured by
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choosing the number of tools that can be independently
regulated to be larger than the number of environments
probed (K > Nenv), but the observation that there are
many ways to be fit should surely not be model-specific.
Establishing the generality of our observations, extending
them to multiple environments (rather than just pairs),
and relating the predictions of our framework to exper-
iments, all constitute productive directions for future
work. Furthermore, our simple model assumed organ-
isms sense their environment perfectly and regulate their
physiology optimally. Relaxing these assumptions offers

natural directions in which our model could be extended.
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SUPPLEMENTARY INFORMATION

S1. THE TOOLBOX MODEL

The toolbox model defines a genome as a set of “tools” (basis vectors), whose ability to approximate a given target
is interpreted as fitness. The two key parameters here are K (the number of basis vectors) and L (the length of these
vectors). In this section, we discuss the role of these parameters, as well as the one-mutation-per-exposure-epoch
assumption of our evolutionary protocol, and the choice to parameterize environment pairs by their difference ∆E.

K sets the largest number of environments where a genome can be fit

In the toolbox model, K is the dimensionality of the phenotype space a genome can access. We described it in the
main text as the number of regulatory knobs an organism has at its disposal. Thus K specifies the largest number of
“independent” environments in which a genome can be perfectly fit.

In more formal terms, imagine we draw M target vectors, and ask if there exists a genome perfectly fit in all M .
To the first approximation, the answer is that such a genome would exist if and only if M ≤ K. (This answer would
be exact if we did not require genome entries to be binary, and expression coefficients to be positive.)

Note that the existence of a perfect genome is a different question from whether it would emerge through evolution,
or what path the evolutionary trajectory would take. For much of this work, we considered genomes with K = 4
evolving in environment pairs. In these circumstances, the question of whether good genomes exist is trivial: in fact,
the space of high-fitness genomes is guaranteed to be large. It is precisely this property that makes it possible for
evolutionary history to shape the outcome in interesting ways: since the space of high-fitness genomes is large, a
genome’s history can influence which corner of this space it will come to occupy. Thus, for the purposes of this work,
we want K to be larger than the number of environments Nenv. At the same time, it should not be much larger, as
K � Nenv would make accommodating Nenv environments too easy (no tradeoffs). This is why, as stated in the main
text, the ideal regime for uncovering interesting phenomenology of tradeoff evolution is K >∼ Nenv. Incidentally, this
discussion shows than for a fixed K, one may expect a qualitative change in behavior as a function of Nenv in the
vicinity of Nenv ' K, highlighting an interesting avenue for future work.

L and the frequency of environment switching

The main text introduces L as the dimensionality of the trait space. The role played by this parameter can be
understood as follows. In a given environment, it will take of order L mutations to substantially improve fitness (and
if the environment is held static, it will take ∼ L mutation steps for a genome to run out of beneficial mutations;

cf. Fig. 2A). If L is small, even a single mutation while exposed to environment ~EA may substantially hurt the

performance in the other, ~EB . In contrast, when L is large, the fitness effect of any one mutation is small.
If we focus on expression coefficients rather than fitness, the situation is similar: After each mutation, the optimal

expression coefficients are determined anew, but for a large L and a genome close to random the change of optimal
expression is adiabatic, with each mutation inducing a change of order ∼ 1/L. Thus the timescale for any significant

change in genome architecture, e.g. a basis vector becoming specialized to environment ~EA (with a close-to-zero

expression when exposed to ~EB), is again L mutations. During this time the organism will have experienced L
environment switches, so a larger L corresponds to more switches over the relevant timescale. For instance, the
simulations for Fig. 3-5 in the main text used L = 100 and all trajectories are shown on the scale of ∼ 100 mutation
steps, while environment has a 50% switching probability after each. To study the slow-switching regime, one could
decrease L and/or increase the number of mutations accepted at each exposure.

The one-mutation-per-exposure-epoch assumption

As shown above, the limit of L → ∞ effectively corresponds to increasingly frequent environment switching.
However, we should stress that this switching never becomes “infinitely fast”: by construction, every exposure is long
enough for a mutation to occur. We see this as a feature, not a bug. One might have imagined that if environments
are switched sufficiently rapidly, one should recover evolution in a single environment, namely the average of the
two. However, this limit is poorly defined, since such high switching frequency violates the approximation of an
environment-defined fitness landscape, and cannot be accessed from within a model using this term. In addition to
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simplifying the simulations, the one-mutation-per-exposure-epoch assumption made in our model prevents us from
accessing this ill-defined regime: even the fastest-switching regime remains just slow enough to allow calling our
protocol as “evolution in a pair of environments”. We thank A. Murugan for helpful discussions on this topic.

For all its benefits, this assumption is an approximation, and we should comment on its validity. First, here is an
example where such an assumption would be disastrously incorrect. Imagine a genome G0 that has plenty of room

for improvement in environment ~EA, but is almost perfect in environment ~EB ; in the former, many strong beneficial
mutations are available; in the latter, let’s say there is only a single beneficial mutation µ∗ with a very small fitness

effect. In these circumstances, we should expect many mutations beneficial in ~EA to fix before µ∗. Under our protocol,
however, the probability of µ∗ to fix by the next step is 50%.

This example illustrates how the validity of our approximation should be assessed. Denote {µA} the beneficial

mutations available in environment ~EA, and similarly for environment ~EB . If, forgoing approximations, we were to
simulate a sequence of short exposure epochs of length τ (short enough that many would elapse without any mutation
fixing, long enough that any selection sweep can still be considered instantaneous), what is the probability that the
first fixed mutation will be from the set {µA} (as opposed to {µB})? In the limit of rare mutations, each mutation,
when arises, will escape drift with probability proportional to its fitness effect, at which point it will deterministically
sweep through the population and fix. The probability that the next fixed mutation will be from the set µA is thus
given by

pA =

∑
α∈µA

fA(α)∑
α∈µA

fA(α) +
∑
β∈µB

fB(β)
,

where fA(x) and fB(x) are the fitness effects of mutation x in environments ~EA and ~EB , respectively.
Our approximation is to assume that the availability of beneficial mutations in the two environments is balanced,

and pA ≈ 1/2. Since the initial genomes and environments are all drawn randomly, one expects this to be a good
approximation at least at the initial stages. Let us examine its validity for the longest time-trajectories in this work,
namely the simulations of Fig. 5 (up to 1000 mutation steps).

Instead of simply comparing pA to 1/2, it is more informative to look directly at the “total mutation potential” in

the two environments: tA ≡
∑
α∈µA

fA(α) for environment ~EA, and similarly for ~EB . Our approximation is valid as
long as tA ≈ tB .

Fig. S1 plots tB versus tA for the three sets of evolutionary trajectories in Fig. 5A. A random genome has a low
fitness and strong beneficial mutations are plentiful. (Of course, the effects of mutations are always evaluated in the
environments where a genome evolves.) As time goes on, fitness improves and availability of beneficial mutations
decreases. (We measure time in mutation steps, but in absolute units each step becomes increasingly longer.) Still,
for mutation steps up to ∼ 250 (purple, orange) used through most of this work, the two environments remain well

FIG. S1. The total mutation potential (sum of effects of all beneficial mutations available) in the two environments in which a
genome is evolving, for the trajectories of Fig. 5A in the main text. The left, middle and right panels correspond to respectively
the blue, black and red traces on Fig. 5A. Colors as in Fig. 5B: first 100 steps in purple, steps 100-250 in orange, steps 250-1000
in yellow. The plot confirms that through the first ∼ 250 mutation steps, the availability of beneficial mutations in the two
environment remains balanced (trajectory follows the diagonal). This justifies our procedure of accepting one mutation per
environment exposure epoch; see accompanying SI text.
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balanced, and our one-mutation-per-exposure epoch approximation is justified. Beyond 250 mutation steps (yellow),
we are beginning to observe periods of strong imbalance, alerting us that our approximation is starting to fail: if
strong mutations in one (and only one) of the environments are depleted, our protocol confers an unfair advantage to
the weak ones. We must, therefore, stress that none of the conclusions of this work relied on this long-time regime:
these extended simulations were used only in Fig. 5B and exclusively for illustration purposes, to highlight that even
in the long term, evolving directly in the environment pair of interest is not guaranteed to be the best strategy to
achieve highest fitness. All the phenomena discussed in this work were observed in the early stages of evolutionary
trajectories, a regime where our simplifying approximation remains valid.

The role of initial genome density p

Our evolutionary simulations also use a parameter p. Unlike K and L, the parameter p describes not the model,
but the initial state: it is the probability with which we set each genome entry to 1 at the initial timepoint (the initial
genome density). Intuitively, p connects regimes where each trait is affected by at most a single regulator (small p)
and one where “everything affects everything” (large p). For all our simulations, for the sake of concreteness we set
p = 1/K = 0.25 (each trait affected by one regulator on average). We did not systematically vary this parameter or
explore its effect. As soon as the evolutionary process begins, the genome entries are free to change as they please,
so this initial density is not maintained over time. However, it may still have biasing effects on evolutionary future.
Intuitively, one might perhaps expect that a low-density starting genome may be more likely to evolve into a modular
architecture, while a high-density starting point might favor “generalist” genomes, with all basis vectors used in all
environments. We leave these questions for future work.

Parameterizing environment pairs

Figs. 4 and 5 in the main text refer to a procedure for “exaggerating” or “softening” the differences between the

two environments in a given pair (Fig. 4A). The simplest way to implement it would be to define ~E as the arithmetic

mean ~E ≡ ~EA+~EB

2 , and posit:

~EA(δ) = ~E +
δ

2
( ~EA − ~EB)

~EB(δ) = ~E − δ

2
( ~EA − ~EB)

This defines a one-parameter family of environment pairs (indexed by δ), where δ = 1 returns the original pair, and
δ = 0 reduces it to a single environment (their mean). The only issue with this approach is that at δ > 1 (when
differences are exaggerated), some components of the environment vectors may become negative.

In principle, allowing negative components in the target vector (while still requiring expression coefficients to be
positive) would merely impose an extra fitness penalty on every genome. Therefore, we could have adopted the
procedure above, and the results would be qualitatively similar. However, for consistency, we opted for a protocol
preserving the positivity constraint, applying the same procedure as above, but in log space:

log ~EA(δ) = log ~E +
δ

2
(log ~EA − log ~EB)

log ~EB(δ) = log ~E − δ

2
(log ~EA − log ~EB)

(S1)

where logarithms are applied to each vector component, and ~E is now the geometric mean (=arithmetic mean in log
space). (S1) is the simplest procedure that respects the positivity constraint, and was used throughout this work. The
indexing by δ is trivially converted into indexing by ∆E, since ∆E(δ) is monotonically increasing and thus invertible.

The procedure we just described seems quite natural, but it is by no means unique or privileged (as already apparent
from the discussion above, since the choice to use linear or logarithmic scale was rather arbitrary). Our goal was to
demonstrate that different ways of obtaining highly fit genomes result in genomes differing in tradeoff strength and
other evolutionary properties; any other family of evolutionary protocols supporting this observation would have been
an equally good choice for Fig. 4 and 5.

Separately, an interesting more general question worth considering is: what features of the 2L-dimensional space of

environment pairs { ~EA, ~EB} matter for an evolving genome? In the limit of large K and L, the problem of positive-
coefficient fitting of a given target by a random basis is amenable to methods of statistical physics such as replica
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theory [1]. In particular, one can compute the expected typical fitness of a random genome (random binary matrices

with density p) in a close-to-homogeneous environment ~E ≈
−−−−−−−→
{1, 1 . . . 1}, and one finds that the control parameters in

the problem are p, α = K/L, and σ2 = the variance of the components of ~E. By analogy, for the fitness of a typical

genome in two environments ~EA, ~EB one may expect the control parameters to include the two variances σ2
A, σ2

B and
the component-wise covariance σ2

AB . When the genome starts evolving and thus becomes atypical, it is likely that
additional features of the environments and/or their relation to each other will become relevant, beyond these basic
statistics. In short, whether or how the 2L-dimensional space of environment pairs can be reduced to a smaller set of
key factors shaping the evolutionary process is not obvious.

Nevertheless, it is clear that the difference between environments is a relevant characteristic. Conveniently, it is
also the least model-specific: any model of two-environment evolution and any experimental setup will have a natural
counterpart. At the same time, however we define ∆E, the argument above demonstrates that it will never be the only

relevant feature: even assuming ~EA and ~EB are drawn from the same ensemble (so that σA = σB), we still expect the
space of control parameters to be at least two-dimensional (σA and σAB). Thus, we do not necessarily expect evolution
in two environment pairs to look statistically the same simply because they share the same ∆E, and the approach
of Fig. 3 grouping random environment pairs based solely on their ∆E is only an educated guess. Fortunately, for
the coarse characterization of the dynamics of χ this approach proved sufficient: the standard deviation over 100
replicates (shaded on the plot) is remarkably small.

These considerations provide the additional motivation behind our approach of “exaggerating” or “softening” the
differences in a given (randomly chosen) pair. This procedure changes ∆E while preserving much of the structure of
the two environments in relation to each other that could be relevant for evolution, such as whether the largest or

smallest entries of ~EA, ~EB align with each other, etc. As a result, in Fig. 4 and 5, evolving a genome in an environment
pair P(∆E) with an exaggerated or softened ∆E tends to also increase its fitness in the original pair of interest P∗.

S2. QUANTIFYING TRADEOFFS

In this work, we largely focused on a single metric for quantifying tradeoffs, namely the mutational tradeoff χ:

χ ≡ − 〈δFA · δFB〉ben√
〈δF 2

A〉ben〈δF 2
B〉ben

, (S2)

where δFA, δFB are the two fitness effects of each mutation, and the averaging omits doubly-deleterious mutants.
This definition was adopted for its three key strengths:

1. Mutational tradeoff χ is a property of a single genome (not a population of genomes), simplifying simulations;

2. Computing χ requires only a local knowledge of the fitness landscape (the immediate vicinity of the genome
considered);

3. Mutational tradeoff is directly related to expectations for near-term evolutionary future of a genome (cf. Lande’s
theory of selection on correlated traits [2]).

Let us also highlight some of its caveats. First, our definition is “scale-invariant”: scaling δFA and δFB by the same
positive factor leaves χ intact. In other words, the mutational tradeoff χ characterizes only the shape of the mutant
cloud, and is not sensitive to the absolute magnitude of the underlying fitness effects. In many respects, this is an
advantage. However, it does mean that judging the relevance of χ changing along an evolutionary trajectory requires
an independent verification that the underlying fitness effects are not negligible. In particular, when interpreting the
dynamics of χ observed in Fig. 3A we must reassure ourselves that the genomes we are tracking are not running out
of beneficial mutations. This reassurance is provided by Fig. 5A, which confirms that genomes continue evolving in
fitness throughout the considered time period. In Fig. 4 the reassurance is automatic, as we are plotting χ against
fitness, rather than time.

The second caveat we must highlight is that mutant clouds do not always look like the examples shown in Fig. 2B.
A representative cross-section is shown in Fig. S2. The figure draws on the extensive simulations performed for Fig.
3 in the main text to display randomly selected examples with mutational tradeoff strength scoring close to -1, 0 or
0.5. In each group, examples are ordered left to right by time at which they were observed. Note the two highlighted
examples where the value of χ is not informative for reasons we just discussed, because the beneficial mutations are
too weak / too few (blue “x”). However, overall, at the timescales investigated here (∼ 250 mutation steps), the
genomes do not exhibit any significant depletion of available mutations (as they would at later stages of evolution;
compare to Fig. S1). Note also some, but not all of the middle panels exhibit the “cross shape” characteristic of
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5

FIG. S2. Mutant clouds for examples genomes grouped by their mutational tradeoff score χ (compare to Fig. 2B); within
each group, examples are ordered by timepoint when observed (earlier timepoints on the left, later timepoints on the right).
Individual panels as in Fig. 2B: only mutations beneficial in at least one of the environments (in red) contribute to the tradeoff
score; doubly deleterious mutations in gray are ignored. Shown are 21 example per group; in each group axis ranges are the
same; labels not shown to reduce clutter. In two cases (identified here by eye, and marked with a blue x) with only a few
beneficial mutations available, the mutational tradeoff score is unreliable. At K = 4 and N = 100 (400 datapoints in each
mutant cloud), and for early stages of evolution (Fig. S1), such cases are rare.
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a modular architecture (cf. Fig. 2B). This point is further discussed below, section “Mutational modularity is not
equivalent to χ = 0”.

Other metrics for quantifying tradeoff strength

The metric we use (mutational tradeoff) is certainly not the only way to quantify the notion of a “tradeoff strength”.
For example, another perfectly reasonable approach might be to consider the population-level tradeoff : sampling extant
organisms, and asking whether those better at task A tend to be worse at task B, and whether perhaps the observed
phenotypes trace out a Pareto front one would associate with a tradeoff [3, 4].

Specifically in the context of our model, imagine drawing 100 random starting genomes, and consider the scatter
point of their fitness values in the two environments, both initially and as a function of time as these genomes
are independently evolved (Fig. S3A). (In other words, rather than sampling organisms in a population, we sample
multiple independently evolving populations, but we will still call it “population tradeoff” for conciseness.) We
observe that initially, the dominant axis of variation was that some genomes were better at both tasks, while other
were worse at both tasks. After 250 mutation steps, the pattern is transformed into an anti-correlation: genomes

better in environment ~EA tend to be worse in ~EB . The degree of anticorrelation of this evolving cloud can also be said
to capture the intuitive notion of a performance tradeoff, and is distinct from the mutational tradeoff χ considered in
the main text.

Fig. S3B shows the population tradeoff as a function of time, computed across 100 independently evolving popula-
tions from 100 random starting points, evolving at different ∆E (but unlike the setting of Fig. 3, now the environment
pair is of course the same for all 100 replicates). This figure should be compared with Fig. 3A in the main text. We
see that the evolution of this measure of tradeoff exhibits the exact same qualitative trends discussed in the main
text, namely: (1) for random genomes (timepoint 0), tradeoff is strongest when ∆E is largest; (2) tradeoff strength
generally increases with time; and (3) for genomes evolving at a large ∆E, the initial increase is followed by a decline
in tradeoff strength. The figure confirms that the observations of Fig. 3A in the main text are not an artifact of the
one definition on which we chose to focus.

The curve ∆E = 0.1 in Fig. S3B deserves a special comment. Just like for ∆E = 0.5 (panel A), as mutational
tradeoff becomes strong, the initial cloud (strongly diagonally elongated) starts to “bunch up” (genomes at the front
stall, the ones at the back catch up) and will eventually become antidiagonal. But since at ∆E = 0.1 the random initial
genomes start out very correlated in fitness, for ∆E = 0.1 this bunching-up process takes much longer. By generation
∼ 150, individually, each of the evolving genomes is already facing a strong mutational tradeoff (as demonstrated
in Fig. 3A in the main text). However, at the population level, some genomes are still ahead of others in both

FIG. S3. A different definition of tradeoff strength exhibits the same qualitative behavior of initial increase in tradeoff strength
and a subsequent decrease if evolving at large ∆E (compare to Fig. 3A in the main text). Left: Define population-level tradeoff
as the degree of anticorrelation of the fitness values across a population of 100 genomes evolving independently from random
starting points. Shown is the scatter plot for the entire simulated population at 3 time points. Right: The analog of Fig. 3A,
showing the evolution of population-level tradeoff strength as a function of time for a population evolving at different ∆E.
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environments. While this tradeoff will eventually propagate to the population level, there is an extended transient
during which the population-level fitness remains correlated (mutational tradeoff is masked). This is why, in the
main body of the paper, we chose to focus on the mutational tradeoff, as it is the first to change, and is also the
property most directly linked to shaping evolutionary future. Conveniently, its evaluation is also much less costly
computationally, as it is a property of a single genome and not a population. Still, the nontrivial relation and interplay
between the local (mutational) picture and the global (observed across extant organisms) is extremely interesting, and
the “masking effect” described above becomes particularly important when trying to infer tradeoffs from experimental
observations [5].

Beyond these considerations, yet another approach to quantifying tradeoffs might be in terms of the “cost of being

a generalist”: to what extent does evolving a genome under pressure from both ~EA and ~EB hurt its performance,
compared to what would be achievable by evolving in either environment alone? Such questions are also addressable
in our framework, but are left for future work.

Ultimately, no strategy of characterizing tradeoff strength by a single number could adequately capture this mul-
tifaceted notion. The approach adopted here is meant as a reasonable starting point to illustrate the theoretical
framework we present.

S3. MODULARITY

Two definitions of modularity

The term “modularity”, while widely used, lacks a consensus definition. In our context, one could in fact define
modularity in two distinct ways. First, as a mutational property: a perfectly modular genome is one where a mutation
improving performance in one environment does not affect the other. Alternatively, modularity could refer to the
usage of regulators across environments: a modular genome is one where each regulator (basis vector) is specialized
to (only used in) one or the other environment. We stress that in either case, modularity is defined in reference to a
particular set of environments.

The two definitions are related, but distinct. If a given basis vector is perfectly specialized, a mutation in it will only
affect performance in one environment but not the other. However, for weakly modular genomes, one might imagine
either property arising first. The ability to define modularity in both ways, allowing the relation between them to
be characterized, is one of the advantages of a framework like ours, where expression coefficients are both explicit
and environment-dependent. However, for the purposes of this work, we use the term “modularity” exclusively in its
mutational sense above, because (a) this definition is measurable experimentally, and (b) the mutational perspective
on modularity is the one most obviously linked to the notion of “evolvability”, allowing us to comment on this relation
(and nuance it) in Fig. 4D, E.

Mutational modularity is not equivalent to χ = 0

It is important to stress that although mutational modularity in the sense described above necessarily entails χ ≈ 0,
the converse is not true: as illustrated in Fig. 2B, a genome with χ ≈ 0 is not necessarily modular. We can see this in
the middle panels of Fig. S2, some, but not all of which exhibit the cross shape characteristic of mutational modularity
(Fig. 2B).

For this reason, the weakening of mutational tradeoff cannot be directly interpreted as the emergence of modularity,
unless additional analysis is performed, as we did in Fig. 3. To avoid confusion, in the main text we preferentially use
the former phrasing.
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