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Abstract

Blood flow in an artery is a fluid-structure interaction problem. It is widely accepted
that aneurysm formation, enlargement and failure are associated with wall shear stress
(WSS) which is exerted by flowing blood on the aneurysmal wall. To date, the combined
effect of aneurysm size and wall elasticity on intra-aneurysm (IA) flow characteristics,
particularly in the case of side-wall aneurysms, is poorly understood. Here we propose a
model of three-dimensional viscous flow in a compliant artery containing an aneurysm
by employing the immersed boundary-lattice Boltzmann-finite element method. This
model allows to adequately account for the elastic deformation of both the blood vessel
and aneurysm walls. Using this model, we perform a detailed investigation of the flow
through aneurysm under different conditions with a focus on the parameters which may
influence the wall shear stress. Most importantly, it is shown in this work that the use
of flow velocity as a proxy for wall shear stress is well justified only in those sections of
the vessel which are close to the ideal cylindrical geometry. Within the aneurysm
domain, however, the correlation between wall shear stress and flow velocity is largely
lost due to the complexity of the geometry and the resulting flow pattern. Moreover, the
correlations weaken further with the phase shift between flow velocity and transmural
pressure. These findings have important implications for medical applications since wall
shear stress is believed to play a crucial role in aneurysm rupture.

Introduction 1

Brain aneurysms lead to almost 500,000 deaths per year [1]. Physiological flows, such as 2

arterial blood flow, are generally characterized by the transport of fluids in compliant 3

tubes [2], which involves complex fluid-structure interaction problems. The interplay of 4

hemodynamics and elastic arterial vessel walls (e.g. through wall shear stress (WSS) 5

and blood pressure) is believed to play a central role in the aneurysm initiation, growth 6

and rupture [3–7]. 7

It is known that abnormal WSS drives degradation of the vascular wall [8–10]. Flow 8

velocity is one of the principal factors determining the magnitude of WSS. Compared 9

with WSS, in practice, flow velocity is easier to be measured and often acts as a proxy 10

observable for WSS [11–13]. In this work, we study how size, elastic deformation of the 11

aneurysm and the waveform of transmural pressure determine the connection between 12

flow velocity and wall shear stress as an important hemodynamic factor. 13
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Aneurysms can be classified into two major categories: fusiform and saccular 14

aneurysms; the latter is the most common type of aneurysm and the type most prone to 15

rupture [14]. The saccular aneurysm has two subtypes: end-wall and side-wall 16

aneurysms [15]. 17

Intra-aneurysm (IA) hemodynamics is sensitive to morphological factors such as 18

shape and size of the aneurysm [16–19]. It has been reported that an increase of 19

aneurysm size leads to a decrease of the average IA flow velocity, U , and wall shear 20

stress, σw, in the case of side-wall-type aneurysms [20,21]. In these studies, the 21

aneurysm wall is assumed to be rigid [20] or modeled as a stiff hyperelastic wall [21]. To 22

date, however, the effect of wall elasticity and the resulting deformation is poorly 23

studied. 24

Another objective of this work, therefore, is to investigate the combined effect of 25

aneurysm size and wall softness on the variations of the average IA flow velocity and 26

WSS, centering on the side-wall-type aneurysm. 27

We model the interaction of hemodynamics and wall elasticity in an idealized 28

aneurysm using the lattice Boltzmann method (LBM) for the fluid flow, the finite 29

element method (FEM) for the thin-walled vessel dynamics and the immersed boundary 30

method (IBM) for the fluid-structure interaction. 31

The paper is organized as follows. The physical model is introduced in Sect Physical 32

model. The numerical methods are presented in Sect Numerical methods, and 33

benchmark tests are shown in Sect Validation. Simulation results using a curved artery 34

with a side-wall aneurysm are presented and discussed in Sect Results and discussion, 35

with a particular focus on the effect of aneurysm softness on IA hemodynamics. Our 36

work is concluded in Sect Conclusion. 37

Physical model 38

Physical ingredients 39

Aneurysms occur in different sizes and shapes, and their detailed properties depend on 40

the subject and progression state. According to [20,21], the trends of the variations of 41

flow velocity and wall shear stress due to the effect of aneurysm size are not specific to 42

any particular side-wall aneurysm geometry. Therefore, after benchmark studies of flow 43

through a straight cylindrical channel (Fig 1a), we use a representative model of a 44

curved artery segment including a simple side-wall aneurysmal dome (Fig 1b and 1c). 45

Without losing generality, this approach is similar to the simplification used in studies 46

of the end-wall aneurysms [24–26]. 47

Vascular tissues are generally heterogeneous. Healthy arterial walls are normally 48

strain-hardening due to the existence of collagen fiber constituents; aneurysms, however, 49

often exhibit strain-softening behavior [27–30]. The arterial wall in our model is, 50

therefore, divided into different regions (Fig 1b and 1c) with different constitutive laws. 51

Similar to Charalambous et al. [31], we employ the strain-hardening Skalak (SK) 52

model [23] for the healthy arterial wall: 53

ωSK =
κs

12

(
I2
1 + 2I1 − 2I2

)
+
κα
12
I2
2 . (1)

We use the strain-softening Neo-Hookean (NH) law (a special case of the Mooney-Rivlin 54

law) [22] to model the aneurysm dome: 55

ωNH =
κs

6

(
I1 + 2− 1

I2 + 1

)
. (2)

The SK and NH laws are described as areal energy densities ωSK and ωNH, respectively. 56

Both models have a surface elastic shear modulus κs, and the SK model has an area 57
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Fig 1. Geometries studied in this work. The straight circular tube in (a) is used
to benchmark the code via comparisons with analytical solutions for both steady
Poiseuille and pulsatile Womersley flows. Panels (b) and (c) show a curved blood vessel
containing a side-wall aneurysm with different sizes, differing by a factor of 2.5 in
aneurysm volume. Compared with the radius R of the parent vessel, the radii of the
large (b) and small (c) aneurysm are approximately 1.5R and R, respectively. The
domain colored in blue in (b) and (c) is modeled via a strain-softening Neo-Hookean
law [22], while the remaining part of the vessel (red) obeys the strain-hardening Skalak
law [23].

dilation modulus κα (for the sake of simplicity, we choose κs = κα [31]). I1 and I2 are 58

strain invariants depending on the local principal in-plane stretch ratios λ1 and λ2 as 59

I1 = λ2
1 + λ2

2 − 2 and I2 = λ2
1λ

2
2 − 1. 60

The vessel wall is represented as a two-dimensional surface with zero thickness. 61

However, one important effect closely related to a finite vessel wall thickness is 62

resistance to bending. In order to account for this property in our membrane model, we 63

explicitly introduce a local bending energy with a bending constant κb, which can then 64

give rise to forces normal to the wall (for further details, please refer to [32]). 65

The two free parameters κα and κb are related to the Young’s modulus E, wall 66

thickness d and Poisson ratio ν according to [33] 67

κα =
Ed

2(1− ν)
(3)

and 68

κb =
Ed3

12(1− ν2)
. (4)

Thus, given the two material coefficients, E and ν and the thickness of the tissue, d, 69

it is possible to determine the parameters of our model such that it reproduces the 70

properties of a real vessel. This is explicitly shown below via a benchmark of the present 71
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study versus a 3D model. Obviously, the inverse mapping from a two-parameter model 72

to a three-parameter one is not unique. This is not necessarily a drawback. Rather, it 73

enhances the generic character of our model and allows the results obtained within these 74

simulations to be transferred to vessels with different materials properties and wall 75

thickness. 76

The transmural pressure P tr is the pressure difference between the mean arterial 77

pressure and the intracranial pressure. It is generally believed that, given heterogeneity 78

of elastic properties along the arterial wall, P tr is mainly responsible for the wall 79

deformation and plays a crucial role in the progress of aneurysm growth as well as 80

failure. Therefore, the transmural pressure needs to be taken into account in our model. 81

Although blood is non-Newtonian, it is often treated as an incompressible Newtonian 82

fluid (e.g., [20, 21,34–37]). Since the focus of this work is on the basic understanding of 83

the effect of aneurysm size and softness rather than making accurate predictions, we 84

model blood as a homogeneous Newtonian fluid with constant dynamic viscosity η. 85

Finally, we can assume the no-slip velocity boundary condition at the wall. 86

Hemodynamic observables 87

Wall shear stress (WSS) is a crucial factor for the development of aneurysms. The fluid 88

stress tensor includes pressure (isotropic stress) and viscous contributions (deviatoric 89

stress): 90

Tαβ = −pδαβ + σαβ (5)

where p denotes pressure and σ the viscous stress tensor. The traction vector τ is the 91

projection of the stress tensor onto the wall normal n: 92

τα = Tαβnβ . (6)

Here we are interested in the tangential (shear) component of τ whose magnitude is the 93

WSS (σw = |τ ‖|): 94

τ‖α = τα − (nβτβ)nα = σαβnβ − (nβσβγnγ)nα. (7)

Note that the projection of the normal stress −pδαβ onto the tangential is zero, 95

therefore σw is a function of σ, but not a function of p. 96

For the aneurysm dome Ω (Fig 1b and 1c) with corresponding surface area A and 97

volume V , we define the spatial WSS average 98

σw :=
1

A

∫
∂Ω

dAσw. (8)

Similarly, the volume-averaged IA flow velocity is defined as 99

U :=
1

V

∫
Ω

dV |u| (9)

where u is the fluid velocity. 100

Dimensionless groups 101

Based on the known material and flow properties (Young’s modulus E, artery radius R, 102

transmural pressure P tr, arterial flow velocity U and fluid viscosity η), we can define a 103

series of dimensionless groups characterizing the deformation of the arterial wall. The 104

effect of transmural pressure can be described by 105

Cp =
transmural pressure

elastic stress
=
P tr

E
. (10)
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Viscous stresses may also contribute to the wall deformation as quantified by the 106

capillary number 107

Ca =
viscous stress

elastic stress
=
ηU

ER
. (11)

Finally, inertial deformation effects can be described by the Weber number 108

We =
inertial stress

elastic stress
= Re Ca =

ρU2

E
(12)

where Re = 2ρUR/η is the Reynolds number and ρ is the fluid density. Note that in 109

normal arteries, U ≈ 0.3 m/s and P tr ≈ 10 kPa, and, therefore, both viscous and 110

inertial wall deformation effects are at least two orders of magnitude smaller than the 111

transmural pressure contribution. This is in line with previous reports that the axial 112

motion of vascular walls is negligibly small [38, 39]. We can therefore safely assume that 113

deformation of the vessel wall is mainly due to the action of transmural pressure, rather 114

than flow. 115

Numerical methods 116

We employ a computational scheme combining the lattice Boltzmann method (LBM), 117

finite element method (FEM) and immersed boundary method (IBM) [32] for a study of 118

the coupled hemodynamic-artery problem outlined in Sect. Physical model. This hybrid 119

method has previously been applied to suspensions of deformable red blood cells [40–42]. 120

Elastic wall model and force computation 121

The artery and aneurysm are modeled as thin elastic walls represented by a set of 122

vertices and flat triangular facets. There are four force contributions acting on each 123

vertex: the in-plane elastic shear force F s, the normal bending force F b, the 124

transmural-pressure force F tp and a tether-like spring force F sp. 125

The surface elastic shear energy W s =
∫

dAωs corresponding to the energy densities 126

in Eq (1) or Eq (2) is computed via 127

W s =
facets∑
i

A
(0)
i ωs

i (13)

where i runs over all facets of the vessel wall, A
(0)
i is the undeformed area of facet i and 128

ωs is either ωSK or ωNK, depending on whether the facet i belongs to the healthy artery 129

section or the aneurysmal dome. 130

The present model includes a bending resistance to avoid buckling of the arterial 131

wall. The total bending energy of the artery is numerically approximated by 132

W b =
κb√

3

∑
|i,j|

(
θij − θ(0)

ij

)2

(14)

where θij is the angle between neighbouring facet normals (i.e. facets i and j sharing 133

two vertices), θ
(0)
ij is the angle for the same pair of facets in the undeformed case and κb 134

is the bending modulus [43]. 135

Given the surface elastic shear energy W s and the bending energy W b, the in-plane 136

force F s
i and bending force F b

i acting on vertex i at position xi can be computed via 137

the principle of virtual work: 138

F s
i = −∂W

s({xi})
∂xi

, F b
i = −∂W

b({xi})
∂xi

. (15)
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The transmural pressure P tr is known to be one of the main factors dominating the 139

enlargement and rupture of aneurysms [44–46]. There are basically two ways of 140

modeling the transmural pressure. The most obvious one is to treat the transmural 141

pressure as different pressures on either side of the arterial wall. This approach, 142

however, poses a major challenge when combined with the immersed boundary method. 143

We follow an alternative approach, introducing a transmural-pressure-based force F tp
144

acting on each facet i along its normal direction: 145

F tp
i = P trAini (16)

where Ai is the current area of facet i and ni the outward facing unit normal vector of 146

the facet. F tp acts as a pressure drop across the wall without the necessity of having 147

different pressures on either side of the wall in the numerical model. Note that F tp
148

tends to dilate the artery if P tr is positive. We emphasize that the transmural pressure 149

has to be imposed, and it is generally a function of time: P tr(t). Fluid dynamics inside 150

the deforming artery leads to additional spatio-temporal pressure fluctuations. This 151

means that the local pressure drop across the arterial wall consists of a homogeneous 152

term P tr(t) and a fluctuating term P fluc which emerges from the simulation. 153

The fourth force contribution is a spring force F sp which is used to tether the ends 154

of the artery: 155

F sp
i = −κsp∆xi (17)

where κsp represents the spring constant, i denotes those vertices forming the open ends 156

of the vessel segment and ∆xi is the displacement of these vertices from their desired 157

positions. 158

Flow solver and fluid-structure interaction 159

In order to solve the incompressible Navier-Stokes equations, we employ a standard 160

LBM on a D3Q19 lattice with the multiple-relaxation-time (MRT) collision operator for 161

improved stability and accuracy [47–49]. Forces are included according to the Guo’s 162

forcing scheme [50]. The viscous stress tensor is computed from the non-equilibrium 163

populations according to [51]. 164

Peskin’s IBM is used to couple the arterial wall and fluid dynamics [52]. Elastic 165

forces calculated for each vertex i are spread to surrounding lattice nodes where they 166

are used as input for the LBM. After the updated fluid velocity field has been obtained, 167

fluid velocities are interpolated at the vertex positions via IBM. A tri-linear stencil with 168

23 lattice nodes for each vertex is used during spreading and interpolation. The 169

forward-Euler scheme is used to update all vertex positions. Further details can be 170

found in [32]. 171

Interaction-related elastic energy 172

In addition to parameters such as maximum pressure difference along the blood vessel, 173

which drives the flow, and size as well as flexibility of the aneurysm, the dynamics of the 174

aneurysm wall may also strongly influence the IA flow field and thus lead to significant 175

variations of the wall shear stress. In order to address this aspect, we will monitor the 176

rate of variation of the elastic energy and investigate its correlations with WSS. The 177

rate of elastic energy variation due to fluid-wall interactions can be calculated as 178

Φ̇el =

∫
∂Ω

φ̇el dA = −
∫
∂Ω

F el · u dA = −
∫
∂Ω

(
F s + F b + F sp

)
· u dA (18)

where the integration is performed over the entire aneurysm wall and φ̇el is the rate of 179

change of the areal elastic energy density. For further reference and comparison, it is 180

useful to also define a volume-averaged rate of elastic energy variation via φ̇el = Φ̇el/V . 181

November 28, 2019 6/26

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/711564doi: bioRxiv preprint 

https://doi.org/10.1101/711564
http://creativecommons.org/licenses/by-nd/4.0/


Validation 182

To validate the present model, we perform two different types of simulations: (i) steady 183

and unsteady flow in a rigid tube and (ii) steady flow in an elastic tube. 184

Steady and unsteady flows in rigid tube 185

We consider three-dimensional flow in a stiff tube with circular cross-section (Fig 1a). 186

With the analytical solutions known for steady Poiseuille and pulsatile Womersley flows, 187

this test allows a quantitative analysis of our model. All relevant simulation parameters 188

are given in Table 1. 189

Table 1. Simulation parameters for Poiseuille and Womersley flow
benchmarks. P tr: transmural pressure; p′: pressure gradient; ρ: fluid density; η:
dynamic viscosity; ηB: bulk viscosity; R: tube radius; κs: elastic shear modulus; κα:
area dilation modulus; κb: bending modulus; κsp: spring modulus. Apart from the
period T , parameters are the same in both flow tests. Using the maximum values of the
velocities in the Poiseuille and Womersley flow, the Reynolds numbers are 178 and 125,
respectively. The Womersley number is 2.48 in the case of pulsatile flow.

Physical units Lattice units

P tr 0 0
p′ 8.44 Pa/cm 9.57 · 10−8

T 1 s 224000
ρ 1.055 g/cm3 1.0
η 4.22 mPa s 0.0006
ηB 11.7 mPa s 0.1665
R 2 mm 11.459
κs = κα 13.6 N/m 0.05
κb 3.5 · 10−8 N m 0.004
κsp 24 N/m 0.09

A body force F along the axis of the tube is applied on all fluid nodes inside the tube 190

to drive the flow. For Poiseuille flow, F is equivalent to the constant pressure gradient 191

−p′ along the axis. For Womersley flow, the body force is given by F (t) = −p′ cos(ωt) 192

where ω = 2π/T is the angular frequency and T is the sampling period. 193

The analytical Poiseuille solution is 194

ux(r) = − p
′

4η

(
r2 −R∗2

)
(19)

where x is the flow direction, r is the radial distance from the central axis, and R∗ is 195

the tube radius. For Womersley flow driven by the force F (t) above, the analytical 196

solution is [53] 197

ux(r, t) = <

{
−p′

iρω

[
1−

J0

(
αi3/2 r

R∗

)
J0

(
αi3/2

) ]
eiωt

}
. (20)

Here, <{·} is the real part of a complex number, and J0(·) is the Bessel function of first 198

kind and order zero. The Womersley number, which characterizes the oscillatory flow, is 199

α := R∗
√
ωρ/η. The viscous shear stress is σ(r) = η ∂ux

∂r . Note that ∂J0(cr)
∂r = −cJ1(cr), 200

where c is a coefficient and J1(·) is the first-order Bessel function of the first kind. We 201

use a Python script to solve the Womersley flow field. 202

The simulated flow velocities and shear stresses agree well with the corresponding 203

analytical predictions in the two flow tests (Fig 2 and Fig 3). However, an 204
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extrapolation-based correction scheme is necessary to reach good agreement near the 205

wall. The velocity and stress in direct wall vicinity are affected by the diffuse nature of 206

the immersed boundary method. The basic idea behind the correction scheme is to 207

enforce the no-slip condition in the diffuse interface IBM [54]. Specifically, fluid velocity 208

and stress at the fluid nodes near the wall (i.e., at |r/R∗| = 11/11.035 in Fig 2 and 209

Fig 3) are corrected using a second-order Lagrange extrapolation from corresponding 210

information of their extrapolation points (i.e., at |r/R∗| = 10/11.035, 9/11.035 and 211

8/11.035). For general geometries, the extrapolation points may be off lattice lines. In 212

such cases, fluid quantities (denoted by f) on each extrapolation node are computed by 213

a linear interpolation of information at neighboring lattice nodes as 214

f = (
∑
i fi/`i)/(

∑
i 1/`i) where `i indicates the distance between the extrapolation 215

node and its neighboring lattice node i. For the sake of stability, when the extrapolation 216

point is very close to a lattice node (e.g., ` < 0.0001), the value at that node is taken 217

(f = fi). With this correction approach, the maximum relative L2 error of the shear 218

stress σ is reduced from 31.2% to 2.2% in the Poiseuille flow and from 32.7% to 3.5% in 219

the Womersley flow. 220

Note that the wall location as recovered from the simulation is not exactly where it 221

is expected to be. Due to the diffuse nature of the IBM, the location of zero velocity (as 222

obtained from a quadratic extrapolation from the interior solution) is shifted with 223

respect to the location of the Lagrangian markers. We treated the tube radius as fit 224

parameter to obtain the best agreement with the simulated velocity profile. For our 225

simulation parameters the apparent tube radius is R∗ = 11.035∆x compared to the 226

input value of R = 11.459∆x. Similar deviations have been reported in the 227

literature [55–57] and are acceptably small. 228

Steady flow in elastic tube 229

In order to show that the numerical model can faithfully reproduce flow in flexible 230

three-dimensional geometries, we simulate steady flow in an elastic tube with a circular 231

cross section (Fig 1a). In contrast to the steady Poiseuille flow, we consider the 232

transmural pressure and the radial deformation of the tube walls. We use the 233

well-developed software SimVascular [58] to generate reference results. SimVascular 234

employs a simple linear elastic model for the walls. 235

To compare results from two different software tools, we need to ensure that the 236

material models and properties used are identical. SimVascular requires the Young’s 237

modulus E, the wall thickness d, and the Poisson ratio ν as input parameters. In the 238

present model, the input parameters are the surface elastic shear modulus κs, the area 239

dilation modulus κα, and the bending modulus κb. Both sets of parameters are related 240

according to Eq (3) and Eq (4). For the sake of stability of simulations with a certain 241

resolution, small values of Young’s modulus E and transmural pressure P tr are utilized. 242

Nevertheless, it is Cp, rather than P tr or E alone, that dominates the wall deformation. 243

Typical values used in SimVascular are E = 0.05 MPa, d = 0.15 mm and ν = 0.45. To 244

match these parameters we set κs = 0.025, κα = 0.025 and κb = 0.002 in simulation 245

units. The other simulation parameters are listed in Table 1. The length-diameter 246

aspect ratio of the tube is 7.5. In all simulations, the ends of the tube are tethered and 247

thus the deformation is not homogeneous along the tube axis; the radial displacements 248

are zero at the ends and maximum in the middle region where the diametric strains 249

(∆R/R) are measured. 250

The combined effect of transmural pressure and elasticity on wall deformation is 251

expressed by the dimensionless parameter Cp, see Eq (10). We vary Cp by changing the 252

transmural pressure P tr in the present test case. Specifically, P tr varies from 5.1 Pa to 253

153.2 Pa (i.e., 0.0001 ≤ Cp ≤ 0.003) in SimVascular simulations. Correspondingly, P tr 254

in our model ranges from 3.3 · 10−6 to 1 · 10−4 in simulation units. The radial strain 255
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Fig 2. Poiseuille benchmark results. The simulation results (symbols) of fluid
velocity ux and shear stress σ are compared with the analytical steady solution of
Poiseuille flow (black lines). Green squares and red circles, respectively, denote results
without and with the extrapolation-based correction scheme. The data are taken along
the z-coordinate axis. The difference is visible near the walls (r/R∗ → 1) and is caused
by the diffuse nature of the immersed boundary method. In particular the shear stress
benefits from the correction scheme.

∆R/R of the wall is linearly proportional to Cp in SimVascular simulations due to the 256

underlying linear elastic model. In order to investigate the strain-hardening behavior of 257

the tube in the present model, five additional simulations with P tr up to 6.5 · 10−4 in 258

simulation units are carried out. 259

We find that simulation results using our model compare well with those obtained 260

from SimVascular within the small strain regime (Fig 4a). In the large strain range, 261

however, the strain-softening and strain-hardening features of the Neo-Hookean and 262

Skalak models, respectively, become dominant and deviate from the behavior of the 263

linear elastic model used in SimVascular. 264

Our simulation results also compare well with the so-called tube law (Fig 4b). In 265
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Fig 3. Womersley benchmark results. The simulation results (symbols) of fluid
velocity ux and shear stress σ are compared with the analytical solution of Womersley
flow (lines). Only extrapolation-corrected results are shown. Each curve represents a
different time step. Due to the correction scheme, the shear stress at the wall matches
the analytical solution well.

cases of wall expansion (A/A0 > 1), the tube law is [59,60] 266

P tr/Kp = κ(A/A0 − 1) (21)

where, Kp is a constant proportional to bending resistance and can be expressed as 267

Kp = κb/R
3 = E(d/R)3/[12(1− ν2)] (see Eq (4)). A0 and A are the reference and 268

deformed cross-sectional areas. The constant κ can be calculated as κ = 1.5(2R/d)2. 269

Results and discussion 270

In the following, the combined effect of aneurysm size and wall softness on the flow 271

characteristics within the side-wall aneurysm dome is investigated, to our best 272

knowledge, for the first time. Brief introductions to both characteristic parameters and 273

simulation setup are given before results are reported. 274
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Fig 4. Benchmark of the elastic wall model. (a) The diametric strain, ∆R/R,
versus Cp (the ratio of transmural pressure to Young’s modulus). SimVascular uses a
linear elastic model and thus predicts ∆R/R ∝ Cp. We use both the strain-hardening
Skalak law and the strain-softening neo-Hookean model for the straight circular tube
(Fig 1a). The parameters of these models are related via Eqs (3) and (4). As seen from
the inset, in the limit of small strains (∆R/R ≤ 0.1), these models produce the same
linear behavior. (b) Validation of the model used in this work with the analytical result
of reference [60]. The plot shows transmural pressure P tr (normalized by Kp) as a
function of the cross-sectional area A (normalized by A0). As expected, simulation
results using the Skalak model are in good agreement with the theoretical prediction,
Eq (21).

Characteristic parameters 275

Blood and artery properties show variations among patients, but reference values based 276

on a reasonable number of measurements have been reported. In general, the radius R 277

of the cerebral artery ranges from 1.5 to 2.5 mm [21,61,62]. Young’s modulus E and 278

Poisson’s ratio ν of the healthy cerebral artery are approximately 1–2 MPa and 0.45, 279

respectively [21, 63]. The wall thickness is between 0.03 and 0.2 mm in most aneurysms, 280

and is here assumed to be uniform and 0.15 mm, as adopted by [63]. There is no 281

uniform ideal value for the transmural pressure P tr. However, its range lies roughly 282

between 50 and 70 mmHg (i.e., between 6.7 and 9.3 kPa). Blood density ρ and dynamic 283

viscosity η are within the range of 1–1.06 g/cm3 and 3–4 mPa s, respectively [21,63]. 284

The flow velocity u in cerebral arteries ranges from 0.1 to 1.0 m/s, and those in the 285

common carotid and middle cerebral arteries are approximately 0.4 and 0.6 m/s, 286

respectively [64–67]. 287

In order to better highlight the effects arising from the interplay between elasticity, 288

complex geometry and the time-dependent forces acting on the wall and on the fluid, it 289

is useful to express physical quantities in such a way that trivial effects such as 290

quadratic dependence of the maximum flow velocity and the linear dependence of 291

maximum shear stress on tube radius as well as their linear dependence on the applied 292

pressure gradient are “divided out”. A way to achieve this goal is to divide the 293

quantities of interest such as flow velocity, u, wall shear stress, σw, and viscous 294

dissipation rate, φ̇, by their corresponding characteristic values in a straight cylindrical 295

channel subject to a stationary Poiseuille flow, u∗, σ∗w and φ̇∗. Throughout the paper, 296

we will use the following reference values to make the corresponding quantities 297

dimensionless: u∗ = −p′R2/(4η) = 0.355 m/s, σ∗w = −p′R/2 = 1.42 Pa, and 298

φ̇∗ = (σ∗w)2/(2η) = 252 W/m3. In this estimate, we used the values of the mean 299

pressure gradient, p′ = 14.2 Pa/cm (Fig 5), vessel radius, R = 2 mm and dynamic blood 300

viscosity, η = 4 · 10−3 Pa s. 301
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Fig 5. Imposed waveforms of pressure gradient, p′, and transmural
pressure, P tr, over one period. The driving force is applied at the inlet as a force
density, f = −p′. The transmural pressure is realized as a constant force per unit area of
the wall acting in the direction of its normal vector. The profiles are taken from [46,68].

Simulation setup 302

We consider pulsatile flow in seven different cases: 303

1. Reference channel: straight cylindrical artery (Fig 1a) with elastic Young’s 304

modulus E0 = 2 MPa. In the following, we will refer to this choice of E0 as the 305

“Normal Elastic” (NE) case. 306

2. LA/stiff: large aneurysm (Fig 1b) with P tr = 0 307

3. LA/NE: large aneurysm (Fig 1b) with normal elasticity E0 308

4. LA/RE: large aneurysm (Fig 1b) with reduced elasticity E0/3 309

5. SA/stiff: small aneurysm (Fig 1c) with P tr = 0 310

6. SA/NE: small aneurysm (Fig 1c) with normal elasticity E0 311

7. SA/RE: small aneurysm (Fig 1c) with reduced elasticity E0/3 312

The initial (equilibrium) volume of the large aneurysm is approximately twice as large 313

as that of the small aneurysm. The cases with zero transmural pressure mimic nearly 314

rigid walls and allow to focus on the effects of size and deformability separately. All 315

relevant parameter values used in the following simulations are given in Table 2. 316

Pulsatile flow is generated by applying a time-dependent body force (equivalent to 317

the pressure gradient p′) at the inlet. The transmural pressure is applied on the entire 318

wall. In reality, it is challenging to obtain both pressure gradient (or flow velocity) and 319

transmural pressure waveforms from the same underlying mechanism (heart beat). 320

Therefore, they are fed separately into the present model. 321

In practice, fluid velocity is often used as a proxy observable for wall shear 322

stress [11–13]. While obvious in the case of a straight cylindrical channel, the complex 323

shape of the aneurysm and its deformability introduce new aspects whose effects on the 324

connection between flow velocity and wall shear stress needs a thorough investigation. 325

Here, we address this issue via two different classes of spatially and temporally resolved 326

simulations using the present hybrid model. 327
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Table 2. Simulation parameters for pulsatile flow in artery with/without
aneurysm. Nx, Ny, Nz: size of simulation box; see Fig 5 for waveforms of pressure
gradient p′ and transmural pressure P tr; see Table 1 for other parameters. The values of
κs, κα and κb correspond to E0 = 2 MPa. For the softer aneurysm (E0/3), their values
become three times smaller.

Physical units Lattice units

(Nx, Ny, Nz) – (128, 64, 100)
T 1 s 427657
ρ 1.055 g/cm3 1.0
η 4 mPa s 0.0003
ηB 22.2 mPa s 0.1666
R 2 mm 11.634
κs = κα 272.7 N/m 0.278
κb 7.05 · 10−7 N m 0.024
κsp 98 N/m 0.1

1. First we employ realistic waveforms (Fig 5) for both the pressure gradient and the 328

transmural pressure. Given the chosen input parameters, the Reynolds, 329

Womersley and Cp values inside the parent artery region with normal elasticity 330

are approximately 350, 3 and 0.005, respectively. Within the aneurysm dome, the 331

Reynolds number is almost 10 times smaller and Cp changes according to the 332

variation of aneurysmal wall elasticity. 333

2. In the second class of simulations, to simplify the analysis, we assume sinusoidal 334

waveforms for the pressure gradient, p′(t) = p′(0) sin(2πt/T ), and the transmural 335

pressure, P tr(t) = P tr(0) sin(θ + 2πt/T ). We introduce a phase shift θ between 336

both waveforms in order to quantify the individual contributions of both 337

waveforms to the flow field. 338

Simulations are repeated for six cycles, which is sufficient to reach a time-periodic flow 339

field. In all the simulations whose results are reported below, the open ends of the blood 340

vessel are tethered. A body force (equivalent to pressure gradient p′ in Fig 5) is imposed 341

at the inlet, and periodic boundary conditions are applied along the vessel axis. 342

Realistic waveforms: effect of aneurysm softness 343

Figure 6 shows the time evolution of the space-averaged WSS and flow velocity in the 344

straight artery (reference case). A comparison with the imposed waveforms in Fig 5 345

reveals that the time evolution of the hydrodynamic observables in the reference case 346

basically follow the pressure gradient and transmural pressure. This is to be expected 347

since the straight artery does not have complex geometrical features that could affect 348

the flow. The average flow velocity and WSS are similar to those obtained for the 349

corresponding steady Poiseuille flow. 350

The time evolution of the intra-aneurysm (IA) WSS and flow velocity for the large 351

(LA) and small (SA) aneurysm cases are shown in Fig 7. Similar to the straight tube 352

case, the key features of the temporal variations of WSS and flow velocity stem from the 353

pulsatility of flow rather than the existence of the aneurysm (compare Fig 5 and Fig 7). 354

However, both the aneurysm size and wall softness impact the finer details of the IA 355

hemodynamic characteristics as will be discussed in the following. 356

For the small-deformation cases (normal elasticity, LA/NE and SA/NE, and 357

non-deformable, LA/stiff and SA/stiff), we find that the spatial average wall shear 358

stress, σw, and flow velocity, U , decrease with increasing the aneurysm size. In these 359
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Fig 6. Space-averaged wall shear stress and flow velocity in a straight
artery (reference case). Both WSS, σw, and flow velocity, U , are averaged over a
circular cross section in the midway between inlet and outlet and normalized by their
reference values σ∗w and u∗, respectively (page 11).

cases the IA flow can be approximated by flow in a rigid cavity. The larger aneurysm 360

has more potential to result in flow regions of recirculation and stagnation which are 361

generally accompanied by lower WSS. This is in line with reported results in [20] 362

and [21]. 363

In real aneurysms, arterial wall stiffness may decrease due to tissue degradation. For 364

the softer aneurysm (cases SA/RE and LA/RE), we find that σw and U increase with 365

aneurysm size (solid and dashed red lines in Fig 7). Note that the size of the initially 366

larger aneurysm (LA) always remains larger than that of the smaller aneurysm. The 367

variation of aneurysm volume (i.e., volumetric strain) directly follows the time evolution 368

of the transmural pressure in Fig 5. The maximum volumetric strains are 61% and 86% 369

in the cases SA/RE and LA/RE, respectively. Apparently, the aneurysm size no longer 370

dominates the IA WSS and flow velocity behavior if the aneurysm is sufficiently soft. 371

We can, therefore, conclude that there are at least two independent mechanisms 372

controlling the IA flow properties: (i) size and (ii) deformability of the aneurysm dome. 373

Focusing on either the large or the small aneurysm, Fig 7 demonstrates that, the 374

softer the aneurysm, the larger the IA WSS and the flow velocity, all averaged within 375

the aneurysm domain. In order to gain more insight into the problem, a detailed view of 376

the velocity field is shown in Fig 8 for three choices of a non-deformable (rigid) wall 377

(indicated as stiff in the plot), a membrane with an intermediate (‘normal’) elastic 378

constant, E0, and a soft aneurysm tissue with reduced elasticity. The plot shows that 379

the flow velocity within the soft aneurysm reaches higher values than the two other 380

cases. This observation may be rationalized as follows. Since the velocity of fluid at the 381

wall is equal to that of the wall (stick boundary condition), a rigid and immobile vessel 382

acts like a sink with respect to fluid momentum and thus decelerates the flow. A 383

deformable tissue, on the other hand, can move under the action of transmural pressure 384

and thus represents a less severe obstacle to the flow. In fact, depending on the phase of 385

the flow with respect to the motion of the membrane, a partial enhancement of the fluid 386

velocity is also possible. One possibility here would be that an elastic wall can store 387

energy during one period of a cycle and release it during a different period again. This 388

effect becomes stronger as the membrane softens further and its deformability increases. 389

Such correlation between wall softness and flow parameters may, however, be 390

reduced or even violated to some extent when effects of input waveforms become 391
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Fig 7. Time evolution of space-averaged wall shear stress and flow velocity
inside the aneurysmal dome. Both (a) WSS, σw, and (b) flow velocity, U , are
normalized by their reference values in a straight cylindrical tube (page 11). Acronyms
in the legends: SA=Small Aneurysm; LA=Large Aneurysm; NE=Normal Elasticity
(using E0); RE=Reduced Elasticity (using E0/3) (page 12).

significant, as will be discussed in the following section. 392

From the viewpoint of energy, the effect of wall softness can be indicated by the 393

variation of elastic energy. The elastic energy follows the transmural pressure (Fig 9a) 394

since the shear and inertial contributions are relatively negligible (at least two orders of 395

magnitude smaller) compared with the transmural-pressure contribution. As expected, 396

the elastic contribution disappears in the case of a stiff wall (zero transmural pressure) 397

(Fig 9a). 398

In the case of side-wall aneurysms with realistic waveforms, we find a linear 399
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Fig 8. Flow field analysis. Upper row: (a) A view of the flow domain. The green
plane shows the 2D cut through the aneurysm (Fig 1b) within which the flow field is
visualized. (b) Average velocity (rescaled by u∗ = 0.355 m/s) within the aneurysm for
three different choices of wall elasticity. Acronyms refer to: LA=Large Aneurysm;
NE=Normal Elasticity (using E0 as given on page 12); RE=Reduced Elasticity (using
E0/3); stiff=non-deformable. The three lower rows illustrate the velocity field (again
rescaled by u∗ = 0.355 m/s) within aneurysm at different stages of a cycle as indicated
by vertical lines in (b). White arrows indicate velocity vectors. Green line represents
the aneurysm wall. It is clearly visible that the fastest flow develops within the softest
aneurysm. An animation of the velocity field is available in S1 Appendix.
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Fig 9. Elastic energy variation and correlation with wall shear stress. (a)

Time evolution of volume-averaged variation rate of elastic energy, φ̇el, and (b) its

relation to wall shear stress, σw, inside the aneurysmal dome. Both φ̇el and σw are
computed as averages over the entire aneurysm region and are normalized by their
reference values in a straight cylindrical tube (page 11). Acronyms in the legends:
SA=Small Aneurysm; LA=Large Aneurysm; NE=Normal Elasticity (using E0);
RE=Reduced Elasticity (using E0/3) (page 12).

correlation between the rate of elastic energy variation and the wall shear stress 400

(Fig 9b). No clear relation between the IA flow velocity and the rate of change of elastic 401

energy has been found, though. Note, however, that it might be impossible to find a 402

universal correlation between elastic energy rate and wall shear stress for all types of 403
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aneurysm geometries and input signals because the hemodynamics in aneurysms is 404

sensitive to a number of conditions, including shape parameters such as inflow angle. 405

Naively, the IA WSS should follow the imposed pressure gradient. The deformation 406

of the aneurysm, largely caused by the transmural pressure waveform, however, modifies 407

the flow field in the aneurysm, which in turn affects the WSS. In order to investigate 408

this effect, we consider sinusoidal input waveforms for the large aneurysm (Fig 1b) in 409

the following. 410

Sinusoidal waveforms: correlations between WSS and fluid 411

velocity 412

Using sinusoidal waveforms for both pressure gradient p′ and transmural pressure P tr, 413

together with a phase shift θ for the latter, we consider the following cases: 414

1. θ = −π/2: cosine-type P tr, i.e., p′ and P tr are uncorrelated 415

2. θ = 0: sine-type P tr, i.e., p′ and P tr are positively correlated 416

3. θ = π: sine-type P tr with inverse amplitude, i.e., p′ and P tr are negatively 417

correlated 418

We begin with an analysis of the flow in the parent vessel before moving on to the 419

aneurysmal dome. Well away from the aneurysm, flow velocity and WSS are governed 420

by the input pressure gradient, and the phase shift between this driving force and the 421

transmural pressure does not play any significant role (Fig 10). The cross-sectional 422

average values of the flow velocity and wall shear stress are linearly correlated in the 423

parent vessel (Fig 11a). There also exists a linear correlation between maximum velocity 424

and average WSS and between maximum velocity and maximum WSS (the 425

corresponding data is very similar to Fig 11a and is thus not shown). This strong 426

correlation is also reflected in a high Pearson correlation coefficient, which turns out to 427

be close to unity outside the aneurysm domain for all the investigated cases: 428

0.98, 0.99, 0.99 for θ = 0, −π/2 and π, respectively. Other combinations of size and 429

transmural pressure give similarly large correlation coefficients: 0.99 (LA/NE/θ = π), 430

0.96 (LA/stiff) and 0.98 (SA/stiff). For the fluid outside the aneurysm, therefore, one 431

can safely use the flow velocity as a proxy for wall shear stress. 432

Within the aneurysmal domain, however, the flow has a more complex pattern so 433

that a one-to-one correspondence between characteristic flow velocity and wall shear 434

stress is no longer ensured. This is particularly the case for different values of the phase 435

shift θ between pressure gradient and transmural pressure waveforms (Fig 12). From 436

Fig 11b it is evident that the correlation between the velocity and WSS within the 437

aneurysm is deteriorating with increasing phase shift angle θ. In terms of Pearson 438

correlation coefficient, one obtains 0.91 (θ = 0), 0.76 (θ = −π/2), 0.67 (θ = π), 0.84 439

(LA/NE/θ = π), 0.72 (LA/stiff) and 0.93 (SA/stiff). One contributing factor to this 440

deterioration is that the transmural pressure directly controls the aneurysm wall motion, 441

which in return affects the IA flow and WSS. 442

Results shown in Fig 11b also reveal effects of the aneurysm size on the correlations 443

between flow velocity and WSS. It can be seen from this data that the proxy role of flow 444

velocity as an estimate of WSS is less justified in the case of larger and more flexible 445

domes. This finding is of great practical importance as serious pathological cases are 446

often associated with large aneurysm sizes and an advanced state of degradation, which 447

leads to a weak elasticity and hence large deformability. 448
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Fig 10. Time evolution of wall shear stress and flow velocity in parent
vessel. The cross-sectional averages of (a) WSS, σw, and (b) flow velocity, U , are
computed in the parent vessel region (i.e., sufficiently far from the aneurysm) and
normalized by their reference values in a circular tube (page 11). The flow is driven by a
simple sine-type pressure gradient, p′. Transmural pressure, P tr, is also a sine wave but
has a phase shift, θ, with respect to p′ as indicated. Acronyms in the legends: SA=Small
Aneurysm; LA=Large Aneurysm; NE=Normal Elasticity (using E0) (page 12).

Conclusion 449

In this work, an immersed-boundary-lattice-Boltzmann-finite-element method is 450

employed to simulate three-dimensional viscous flow in an elastic vessel containing a 451

side-wall aneurysm, with a special focus on the relevance of the aneurysm deformability. 452
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Fig 11. Relation between wall shear stress and flow velocity. The spatial
averages of WSS, σw, and flow velocity, U , are computed (a) outside and (b) within the
aneurysmal region. Acronyms in the legends: SA=Small Aneurysm; LA=Large
Aneurysm; NE=Normal Elasticity (using E0); RE=Reduced Elasticity (using E0/3)
(page 12). For fluid in the parent vessel, the Pearson correlation coefficients between the
average flow velocity and WSS in different cases are close to unity (≥ 0.95; see text for
more details). For the fluid inside the aneurysm, however, the Pearson correlation
coefficients can become as small as 0.7. The WSS σw and velocity U are normalized by
the characteristic value σ∗w and u∗, respectively.

Accuracy of the method is shown through steady Poiseuille and pulsatile Womersley 453

flow tests in a circular rigid tube. Furthermore, the deformation behavior of an elastic 454

pipe under the effect of transmural pressure is studied using the present model and 455
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Fig 12. Same quantities as in Fig 10 but evaluated as spatial averages
within the aneurysm dome.

validated by comparisons to both SimVascular and the tube law. 456

Hemodynamic quantities, such as flow velocity and wall shear stress (WSS), play a 457

crucial role in the development and failure of aneurysms. Using the above described 458

simulation tool, we investigate the combined effect of aneurysm size and wall softness on 459

intra-aneurysm (IA) flow parameters. Under the rigid wall assumption, the IA flow 460

velocity and WSS decrease with increasing aneurysm size. However, the situation 461

becomes more complex when the aneurysm deformation becomes important. 462

The central result of our investigation concerns the connection between WSS and 463

flow velocity, the latter often used as a proxy observable to estimate the former. While 464

an indirect evaluation of the WSS via the flow velocity is a reliable method for regular 465

geometries (planar or cylindrical), the present study reveals that the correlation 466
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between the two quantities deteriorates within the aneurysmal domain. The situation 467

becomes more problematic in the case of large and easily deformable aneurysms. 468

In aneurysms, arterial wall stiffness can significantly decrease due to tissue 469

degradation. This is often accompanied by an increase of the aneurysm’s size. Our 470

results suggest that, in such serious pathological cases, fluid velocity is no longer a 471

reliable proxy for WSS. 472

Supporting information 473

S1 Appendix. Temporal variation of fluid velocity field within a planar 474

cut of the aneurysm. 475
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