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Abstract  
 
We have demonstrated that adaptive responses to BET inhibitors induce a therapeutic 
vulnerability to the combination of BET and MCL1 inhibitors in breast cancer. Our generalizable 
strategy for identification of adaptive responses and therapeutic vulnerabilities integrates our 
novel network analysis method, termed Target Score, with genomics and mechanistic 
perturbation biology studies. In drug resistant cells, adaptive responses to BET inhibitors involve 
upregulation of fatty acid metabolism coupled to changes in membrane fluidity, cell adhesion and 
motility, EGFR/HER2 pathway activation, and subsequent accumulation of MCL1 that drives 
apoptosis evasion. The combined inhibition of MCL1 and BET proteins is highly synergistic in 
diverse breast cancer models. MCL1 inhibition was found to be most effective, either as a single 
agent or in combination in tumors with MCL1 chromosomal amplifications, a frequent driver 
aberration in breast cancer. In conclusion, we have discovered a mechanism of resistance to BET 
inhibition and an anti-resistance combination therapy that can increase the therapeutic benefit for 
a significant fraction of breast cancer patients.  
  
Introduction. 
  
Despite the success of targeted therapies in cancer treatment, response to mono-therapies has 
been transient due to the almost inevitable emergence of resistance. Blocking the routes that lead 
to the emergence of resistance with combination therapy is the most promising strategy to date 
(Holohan et al., 2013, Kim et al., 2018). However, discovery of effective combination therapies is 
a daunting task due to complexity of the molecular landscapes of drug response. A key 
mechanism of resistance is the adaptive activation of compensatory processes, e.g. feedback 
loops in the short-term or secondary oncogenic alterations in the long-term, in response to 
targeting driver oncogenic processes (Taylor and Schlaepfer, 2018). Systematic approaches are 
needed to identify adaptive responses, reveal drug-induced vulnerabilities, and enable the 
development of rational combination therapies.  
 
Epigenetic targeting of gene expression is an emerging therapeutic option for diverse cancer 
types (Bennet and Licht, 2018). Specifically, the Bromodomain and Extra-Terminal (BET) 
proteins, including BRD2, BRD3 and BRD4, are promising targets (Loven et al., 2013). BET 
proteins link epigenetic states to lineage-specific gene expression through binding to acetylated 
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histones and regulating transcriptional initiation and elongation downstream of enhancer sites 
(Figure 1A). Preclinical efficacy of BET-inhibitors (BETis) has led to clinical trials in diverse cancer 
types including triple negative breast cancers (TNBC) (Alqahtani et al., 2019) (Figure 1B). Despite 
its highly variable and context-specific functions, reduction in cell cycle progression in response 
to BET inhibition has been proposed as an underlying mechanism of response in cancer cells 
(Doroshow et al., 2017). BETis also provide the opportunity for discovery of drug-induced 
vulnerabilities and effective drug combinations in cancer. This is evidenced by a shift in molecular 
and phenotypic plasticity in response to BETi, leading to the activation of the WNT pathway in 
adult acute myeloid leukemia (Rathert et al., 2015), induction of homologous recombination 
deficiency through CtIP, a DNA damage response protein, in ovarian cancer (Sun et al., 2018), 
and emergence of BRD4-dependent persistent cells with altered differentiation-states after MEK 
and PI3K/mTOR inhibition in TNBC (Risom et al., 2018). However, the molecular and phenotypic 
response landscape of BETi, which may inform on the discovery of effective drug combinations, 
have not been adequately explored particularly in solid tumors (Andrieu et al., 2016). We 
hypothesize that a systematic analysis of molecular and phenotypic adaptive responses to BET 
inhibition will deliver effective combination therapies in breast and other cancers.  
 
The backbone of our strategy is based on exploiting the adaptive resistance concept whereby 
tumor ecosystems rapidly adapt to stress engendered by targeted therapies. Adaptive responses, 
in turn, induce therapeutic vulnerabilities that can be exploited with rational combination therapies. 
The strength and relevance of the adaptive resistance paradigm have been demonstrated in 
several studies involving discovery of rational combination therapies (Sun et al., 2017, Muranen 
et al., 2012, and Duncan et al., 2012). As adaptive responses occur through protein network 
rewiring, our key component is a novel computational algorithm, termed Target Score that 
capitalizes on the proteomic drug response data and network analysis of adaptive responses. 
Target Score algorithm (i) successfully quantifies and visualizes the collective adaptive resistance 
responses; (ii) nominates combination therapies, involving the agent that induces adaptive 
responses and a second agent that targets the vulnerability induced by the adaptive response. 
Target Score algorithm adds significant value to the conventional analysis pipeline that focuses 
on abundance changes in individual molecules. First, our method nominates functionally related 
multi-molecule modules of adaptive resistance with higher chance of functional relevance. 
Second, the method predicts multiple actionable targets in each module increasing the chances 
for successful validation and translation. Thanks to the network module-based analysis, the 
method reduces the number of false positives by eliminating signals from proteins with no 
functional partners. Target Score can operate even with single sample experiments where the 
sample is treated with a single agent and then profiled. The method scales to thousands of 
samples each treated with hundreds of individual (or combinations of) drugs in multiple doses and 
interrogated for hundreds to thousands of molecular entities across multiple time points.  
 
Here, we use the Target Score method combined with genomic analysis and mechanistic 
perturbation biology studies to identify mechanisms of adaptive responses to BET inhibition.  We 
discovered an anti-apoptotic adaptive response to BET inhibitors and a resultant therapeutic 
vulnerability, which is effectively targeted with a newly discovered combination of BET and MCL1 
inhibitors.  
 
Results 
  
Breast cancer cells have differential responses to BET inhibition 
 
To address the efficacy spectrum, predictors of response, and mechanisms of resistance to BET 
inhibition, we profiled cellular and proteomic responses to targeting BET in a series of breast  
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Figure 1. Response to BET inhibition in breast cancer. A. BETis bind to acetyl histone binding cavity on BRD4 to 
prevent recruitment of BRD4 to chromatins and effect expression of lineage specific genes including but not limited to 
MYC. B. Chemical structures of BETis used in perturbation experiments. C. The relative responses to BETis JQ1 and 
iBET151 across 28 breast cancer lines and the ovarian line SKOV3 is quantified as area under the curve (AUC) of 
dose-response relationship (dose range 0-10 𝛍M). D. The scatter plot of responses to IBET151 vs. JQ1 across the cell 
lines quantify the similarity in the phenotypic response to the two BETis. E. The landscape of potential driver oncogenic 
events in select breast and ovarian cancer cell lines. F. The dose-dependent response to JQ1 in the cell lines that are 
cultured in spherical matrigel medium. G. Dose-dependent viability responses to BETi in 3D cultures. G. Images of the 
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dose-dependent responses to JQ1 in 3D matrigel cultured cells. H. Proteomic response map of cell lines to BET 
inhibition. The proteomic data is collected with RPPA using antibodies that quantify levels of 218 total or phosphoprotein 
levels (2 time points, 2D and 3D cultures, varying doses of the four BETis). 
 
 
cancer cell lines. The cell viability responses to BET inhibition in 29 breast and ovarian cancer 
cell lines with varying genomic properties (Figure S1A) are quantified by the area under the curve 
(AUC) of dose-response relations (Figure 1C) and IC50 (Figure S1B) for JQ1 and IBET151. The 
comparison of JQ1 and IBET151 reveals a high correlation in cell viability response (R=0.91), 
suggesting that both compounds have similar efficacies and targets in vitro (Figure 1D). A 
correlative genomic analysis of response to BET inhibition did not detect a significant enrichment 
for any recurrent/driver breast cancer genomic aberration within resistant or sensitive cell lines 
consistent with previous studies (Figure S1A) (TCGA, 2012, Meric-Bernstam et al., 2014, Xu et 
al., 2017). Next, we tested cell viability responses in both 2D monolayers and 3D spheroid cultures 
in 5 selected cell lines to demonstrate the effects of matrix attachment on response to BET 
inhibition (Figure 1E-G). The cell lines, HCC1954 (HER2 amplified, basal-like), BT474 
(HER2+/ER+), MDAMB468 (basal-like, HER2-/EGFR amplified), SKBR3 (HER2+) and SKOV3 
(HER2+, ovarian), were selected to cover different levels in the BETi sensitivity spectrum. The 
impact of 3D culture on cell viability was most dramatic for the most sensitive cell line, SKOV3 in 
which IC50 increased from ~200nM to 1.5μM (Figure S1C). The lack of genomic markers 
predictive of response to BETi necessitates a deeper analysis of drug response and resistance 
mechanisms.  
  
We interrogated the proteomic response patterns that mediate the observed sensitivities to BETis. 
Using reverse phase protein arrays (RPPA), we measured the changes in 218 key oncogenic 
signaling molecules in response to BETis (JQ1, IBET151, IBET726, and IBET762) at two time 
points (24 and 48 hours) in 2D monolayer or 3D matrix-attached spheroid cultures of five cell lines 
(Figure 1F). RPPA monitors activity and levels of representative molecules from key pathways 
including PI3K, RAS-MAPK, Src/FAK, RTK signaling axes, DNA repair, cell cycle, apoptosis, 
immuno-oncology, and histone modifications. First, we analyzed the impact of matrix-attachment 
and 3D cellular organization on the proteomic landscape in the untreated state (Figure S1D). The 
ECM-attachment induced significant increases in EGFR/HER2 and SRC phosphorylation and 
lipid metabolism genes in HCC1954 and SKOV3 (SCD, FASN, p-ACC), and histone H3 levels in 
BT474. Significant decreases were observed in S6 phosphorylation in nearly all cell lines tested 
(see Figure S1D for details). Overall, the phosphoproteomic response to BET inhibition in diverse 
cell lines, time points, and conditions generate a comprehensive response map of the epigenetic 
perturbations in breast cancer cells.  
 
Computational network modeling identifies MCL1 upregulation as an adaptive response 
to BET inhibition. 
  
We analyzed the complex BETi proteomic response map using our novel network modeling 
strategy, termed Target Score, to identify collective adaptive responses that likely drive drug 
resistance and resulting drug induced vulnerabilities to combination therapies (Figure 2A-B). The 
algorithm quantifies a network-based Target Score for each molecular entity under the 
perturbations. Highest Target Scores correspond to potential adaptive responses, while the 
lowest Target Scores are associated with direct responses to targeted perturbations. We 
calculated the Target Scores for JQ1, IBET151, IBET726, and IBET762 compounds in HCC1954, 
BT474, MDMB468, SKBR3, and SKOV3 lines using phosphoproteomic data collected 24 and 48 
hours after drug perturbation.  
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Figure 2. The computational Target Score analyses of adaptive responses to BET inhibition in breast cancer. 
A. Target Score algorithm identifies network level adaptive responses to targeted therapies. The method involves, 1. 
Molecular profiling of response to perturbations in samples with varying sensitivity to the perturbation agent. 2. 
Construction of a reference network that captures potential relations between all measured proteomic entities. 3. 
Quantification of a sample specific adaptation (target) score that links protein interactions to drug response on the 
reference network using omics-based drug response data. 4. Identification of network modules that have a significantly 
high target score (i.e., collectively participate in adaptive responses) in each sample. 5. Selection of actionable targets 
that participate in adaptive responses and experimental testing of drug combinations. B. Reference network model 
constructed for 218 phosphoproteomic entities (see methods for construction of the model). C. Network level adaptive 
responses are quantified as Target Scores using the reference network and phosphoproteomic BETi response data. 
The heatmaps capture the scores for 24 and 48 hours post treatment in 3D cultures. The proteomic entities with highest 
and lowest 10 target scores in HCC1954 (left) and BT474 (right) are displayed. The cell lines are ordered from most 
resistant (HCC1954 or BT474) to most sensitive (SKOV3). D. Meta-analysis and statistical assessment of adaptive 
responses (high TS) and mechanisms of action (low TS) to JQ1, IBET151, IBET726, and IBET762 in HCC1954 24 
hours post treatment is shown on a volcano plot. E. Network modules of adaptive responses (red nodes representing 
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high Target Score) and mechanisms of action (blue nodes representing low Target Score) 24 hours post treatment. F. 
Meta analysis of adaptive responses in HCC1954, 48 hours post treatment. G. Network modules of adaptive responses 
and mechanisms of action for BET inhibition, 48 hours post treatment. H. Correlation of MCL1 Target Score (top) and 
BETi sensitivity (bottom). Target Score bar chart represents the mean target score across four BETis and error bars 
represent the 95% confidence interval. I. copy number and mRNA expression status of MCL1 in cell lines. J. The 
frequency of breast cancer samples with high (red) and low (pink) level copy number amplifications in MCL1. K. The 
distribution of MCL1 mRNA levels with varying MCL1 copy number status across breast cancer samples (TCGA).  
 
 
Differential analysis of Target Scores for JQ1 across cell lines identified adaptive responses that 
are either exclusive to most resistant cell types or shared across all samples (Figure 2C). In the 
most resistant line, HCC1954, the anti-apoptotic protein MCL1 had the highest Target Score value 
in response to JQ1, in both 24 and 48 hours among the 218 phosphoproteins. In HCC1954, 24 
hours after JQ1 treatment, MCL1 was followed by series of molecules downstream of receptor 
tyrosine kinase signaling such as mTOR, mTOR_pS2448, MIG6, MEK1/2_pS217/S221, 
P70S6K_pT389, GSK3𝝰/𝝱 _pS21_S9, and AKT1S1_pT246. The enrichment of the listed proteins 
suggests the involvement of RTK signaling in an adaptive response to BET inhibition. At 48 hours, 
molecularly more diverse adaptive responses were observed as proteins involved in apoptosis 
(MCL1, BCL2, BCL-XL), DNA repair (ATR, PMS2), lipid metabolism (SCD, FASN), AKT/mTOR 
signaling (mTOR_pS2448, INPP4B) and TP53, which is mutated in HCC1954, had high Target 
Scores. Target Scores in BT474 carried important similarities to HCC1954. In BT474, MCL1 had 
a high target score (5th highest at 24 hours and the highest at 48 hours). At both 24- and 48-hour 
time points, high Target Scores in BT474 were associated with total protein level changes in 
EGFR and its downstream molecules. In conclusion, the Target Score analysis nominated 
upregulation of anti-apoptotic MCL1 molecule as a key adaptive response to BET inhibition 
exclusively in resistant lines.  
  
We averaged Target Scores for each protein across BETis to detect a statistically robust and 
consistent adaptive response signature (Figures 2D, 2F). Using a bootstrapping based statistical 
assessment method with randomized protein labels, we eliminated high Target Scores that are 
solely driven by network connectivity biases without a significant input from cell type-specific 
response data (FDR-adjusted p > 0.1, see methods). MCL1 (at both 24hr and 48hr), MIG6 (at 
24hr), and mTORpS2448 (at 48hr) had the most significant (Padj < 10e-4) and highest target 
scores in HCC1954. At both time points, various markers of AKT (P70S6K_pT389, PDK1_pS241, 
mTOR_PS2448), MAPK (MEK1/2_pS217/S221), and lipid metabolism (SCD and FASN) 
pathways had high target scores. The FDR-adjusted p-values decreased to less than 0.1 at 48 
hours particularly for the lipid metabolism proteins SCD and FASN. MCL1 Target Score followed 
a near monotonously decreasing trend with increasing sensitivity to JQ1 assuming the lowest 
Target Score in SKOV3 line and highest Target Score in HCC1954 (Figure 2H, Figure S2). The 
trend suggests MCL1 upregulation is correlated with resistance to BET inhibition. Although 
mTOR_pS2448 had high target scores in HCC1954, there was no correlation between Target 
Scores and sensitivity to JQ1 across cell lines. In conclusion, the integrated statistical analysis 
results for JQ1, IBET151, IBET726, and IBET762 were consistent with JQ1-focused analyses 
particularly in nomination of MCL1 as a key driver of adaptive responses (Figure S2).  
 
The lowest Target Scores correspond to network level responses that are likely associated with 
action mechanisms of the BETis. In both HCC1954 and BT474, cell cycle proteins RB1_pS807, 
CyclinD1, c-Myc, and p27/Kip1 had the lowest target scores (Figure 2E-G, Figure S2). 
Interestingly, in BT474, phosphorylation of MAPK and AKT pathway members were also marked 
with low Target Scores despite increases in total levels and corresponding high Target Scores of 
the total protein expression in EGFR, AKT and MAPK pathways, suggesting the existence of 
alternative routes downstream of EGFR/HER2 in BT474. Consistent with existing literature, our  
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Figure 3. Synergistic responses to combination of BET and MCL1 inhibitors in breast cancer. A. MCL1 protein 
expression in drug naive BETi resistant (HCC1954, BT454, SKOV-JQ1-R) and BETi sensitive (SKOV3) cells (left). 
MCL1 protein level changes in response to BET inhibition (2μM of JQ1, 0 to 48 hours). B. Long term adaptive responses 
and acquired resistance to JQ1. Cell viability responses of SKOV3-JQ1-R and SKOV3 to increasing doses of JQ1 (top). 
The highest amplitude phosphoproteomic changes in response to JQ1 in SKOV-JQ1-R cells (center). The Target Score 
analysis of JQ1 response in SKOV3-JQ1-R determines the network level adaptive responses (bottom). C. Cell viability 
response to inhibitors of MCL1 (S63845) and BET in HCC1954, BT474 and SOKV3 cells in 3D spherical cultures 
supplemented with 2% matrigel. D. The synergistic drug interactions between JQ1 and S63845 are quantified using 
the Bliss independence method. E. The shift in cell cycle stage distribution in HCC1954, BT474 and SKOV3 in response 
to JQ1 (2μM) and S63845 (0.3μM) combination 48 hours post treatment are quantified using flow cytometry. F. The 
western blotting analysis of cleaved PARP levels monitors apoptotic response to JQ1 and S63845, 2 and 12 hours post 
treatment. 
 
 
differential and statistical analyses of Target Scores suggest that BETis act through reduction of 
cell cycle progression (Zhang et al., 2019, Sahni et al., 2016). The analysis of MCL1 copy number 
and transcriptomic status provides orthogonal evidence on roles of MCL1 in drug resistant cells 
(CCLE data source, Barretina et al., 2012). MCL1 is copy-number-amplified and mRNA 
overexpressed in the resistant lines HCC1954 and BT454 (Figure 2I).  MCL1 is copy-number-
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gained and has intermediate mRNA expression in the MDAMB468 line, which has a comparable 
but lower JQ1 resistance. More sensitive cell lines, SKBR3 and SKOV3, have low mRNA 
expression and/or diploid copy number states for MCL1. Indeed, MCL1 is one of the most 
recurrent copy-number-altered oncogenes in breast cancers (Berger et al., 2018). High level copy 
number amplifications and low-level gains in the MCL1 locus are observed in 15% and 57% of 
breast cancer cases in the TCGA cohort, respectively (Figure 2J). Aberrations in MCL1 are 
enriched in the aggressive basal subtype with 32% of cases being copy-number-amplified. The 
HER2+ subtype is intermediate with a 15% MCL1 amplification frequency followed by less 
frequent aberrations in the luminal subtypes (10%). Despite the well-established role of MCL1 
amplifications as breast cancer drivers, little is known of the significance of low-level gains, which 
lead to relatively high mRNA expression compared to MCL1 diploid cases (Figure 2K). Motivated 
by the strong evidence from Target Score analysis, the orthogonal evidence from genomic 
analysis, and driver roles of MCL1 in breast cancer, we decided to experimentally test the 
combined effect of BET and MCL1 inhibition in breast cancer cells, particularly those that are 
most resistant to BET inhibition where effects are most likely to be manifest. 
 
MCL1 protein levels inversely correlate with BETi sensitivity 
 
We profiled MCL1 levels in BET-inhibitor-treated and drug-naive cells with varying JQ1 sensitivity 
(Figure 3A). As it was expected from the copy number and transcriptomic states, HCC1954 and 
BT454 cells (MCL-1 amplified) expressed substantial levels of MCL1 protein in their drug-naive 
state, whereas SKOV3 cells (MCL1 wild-type) had lower MCL1 protein expression. SKOV3-JQ1R 
cells, which acquired resistance to BET inhibition through chronic exposure to increasing doses 
of JQ1 for > 3 months, had upregulated MCL1 levels compared to drug naive SKOV3 cells. The 
increased MCL1 expression in SKOV3-JQ1R provides further evidence that MCL1 has a role in 
resistance to the BETi. In BT454 and HCC1954, treatment with JQ1 led to time dependent 
increase of MCL1 levels as shown by western blots. MCL1 protein level was not upregulated in 
the BETi sensitive SKOV3 cells in response to short term (48 hours) BETi treatment. Interestingly, 
RPPA and Target Score analysis of SKOV3-JQ1-R cells revealed a more complex adaptive 
response landscape involving other oncogenic proteins such as androgen receptor and 
Superoxide dismutase 2 (SOD2) although both MCL1 and BCL2 were among the most 
upregulated proteins (Figure 3D). The comparison of short versus long term adaptive responses 
demonstrates the need for temporal molecular profiling and differential therapeutic approaches 
across disease progression. The molecular validation of MCL1 upregulation in cell lines with de 
novo or acquired resistance to BET inhibition provides an additional rationale for testing 
responses to combined inhibition of BET and MCL1 proteins.  
 
BET and MCL1 inhibitors are synergistic in breast cancer cells 
  
Guided by the computational predictions and genomic evidence, we treated BETi refractory 
HCC1954 and BT454, and relatively sensitive SKOV3 cells with combinations of JQ1 and highly 
selective MCL1 inhibitor (MCL1i) S63845 (Kotschy et al., 2016) (Figure 3). Despite being an 
ovarian cancer line, SKOV3 line is selected as the control line to decode events exclusive to more 
resistant cells for the following reasons. First, SKOV3 originates from a patient with serous 
adenocarcinoma, an ovarian cancer subtype with similarities to basal-like breast cancers (TCGA, 
2012). Second, SKOV3 line also carries major genomic similarities to breast cancers (e.g., TP53-
null, HER2 amplified, PIK3CA-mutated).  
 
We measured the cell viability responses to the combination of MCL1 inhibitor (S63845) and BETi, 
(JQ1) (Figure 3B) in cells with varying BETi sensitivity. Consistent with our previous experiments, 
cell viability was not affected by increasing doses of JQ1 in HCC1954 and BT454. Yet, we  
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Figure 4. Molecular determinants of responses to MCL1 and BET inhibition. A. Dose-response curves of BETi 
(JQ1) and MCL1i (S63845) in breast and ovarian cancer cell lines. B. The normalized AUC (AUC/AUC100% viability) for 
S63845 and combination of JQ1 and S63845. Cell lines are classified according to MCL1 copy number status. C. Amax 
(response at maximum dose) for S63845(1μM) and combination of JQ1 (10μM) and S63845 (1μM), classified according 
to MCL1 copy number status. D. The relation between combination therapy Amax, MCL1 mRNA levels and MCL1 copy 
number status as profiled in CLLE project for all tested cell lines. E. The synergy, additivity and antagonism between 
JQ1 and S63845 are quantified with Bliss independence score for increasing doses of drugs for cell lines with varying 
MCL1 copy number status. F. Cell viability responses to JQ1 (1μM) and S63845 (0.1 μM) in 3D cultures of select cell 
lines treated with JQ1 (1μM) and S63845 (0.1 μM). Images are collected 72 hours after drug treatment. 
 
 
observed a substantial response to MCL1 inhibition (0.9 μM S83645) in HCC1954, with a 54% 
reduction of cell viability, while BT474 was relatively more resistant with 13% reduction. Both cell 
lines were highly responsive to combination treatment as evidenced by more than 80% reduction 
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in cell viability when JQ1 and S83645 were introduced at 10 and 0.9 μM, respectively. In contrast, 
SKOV3 showed a relatively higher response with 30% reduction to the 1μM JQ1 treatment, and  
was not responsive to the S83645 or the combination. We quantified the synergy between BET 
and MCL1i using Bliss independence metric, where lower independence scores suggest synergy 
and higher values suggest antagonism (Figure 3C). As a subjective but highly strict criterion, we 
assume a strong synergy between two compounds when Bliss score is less than 0.5. In both 
BT474 and HCC1954, the combination was highly synergistic in diverse doses. In HCC1954, the 
synergies were stronger in increasing doses reaching to a Bliss score of 0.29 at the highest dose. 
The two drugs were highly synergistic for all doses of JQ1 and MCL1i in BT474, with Bliss scores 
below 0.5 at 0.1μM S83645 and 0.3μM JQ1. The relatively low synergy and additive 
characteristics (Bliss scores 0.8 to 1.0) in low drug doses in HCC1954 can be attributed to the 
relatively high sensitivity of HCC1954 to MCL1i as a single agent, which hinders detection of 
synergistic responses to the combination. In SKOV3, no consistent synergy was observed and 
the two compounds were antagonistic in multiple dose configurations with Bliss scores as high as 
1.45. Thus, we validated the Target Score based predictions on co-targeting MCL1 and BET.  
 
To determine the mechanisms underlying synergy, we measured the effects of BET and MCL1 
targeting on cell cycle progression and apoptosis. Cell cycle progression and arrest was quantified 
with DNA content measurements 48 hours after drug perturbations using flow cytometry (Figure 
3E). Consistent with the Target Score calculations, which suggested a reduction of cell cycle 
pathway activities, JQ1 induced an S-phase cell cycle arrest in all samples. In HCC1954, the S-
phase population was enriched from 30% to 59.8% upon 2μM JQ1 treatment. In BT474, we 
observed a similar but intermediate increase in the fraction of cells in S-phase (from 28% to 
41.5%) upon JQ1 treatment. The shift, which was induced by JQ1 in the S-phase population was 
lowest in SKOV3, with an increase from 44.8% to 52.4% after 48 hours. Next, we monitored the 
apoptotic responses with the detection of PARP cleavage (Figure 3F). We observed that 12 hours 
of JQ1 treatment at 2μM induced PARP cleavage in SKOV3 but not in the drug-resistant 
HCC1954 and BT474. The observed cell cycle arrest across all cell lines and the lack of apoptotic 
cells in drug resistant cells explain the static cell viability profiles in response to monotherapy in 
HCC1954 and BT474. Treatment with the single agent S83645 at 0.3μM induced PARP cleavage 
in HCC1954 but not in the SKOV3 and BT474. The cell viability assays also suggested that BT474 
and SKOV3 cells were refractory to single-agent MCL1 inhibition. The JQ1 and S83645 drug 
combination, induced PARP cleavage in all tested cell lines, particularly in HCC1954 and BT474. 
The apoptotic shift and reduced cell count in response to JQ1 and S83645 combination provides 
strong evidence that JQ1-induced MCL1 activity plays a major role in driving resistance to BET 
inhibition in breast cancer (Figure 3E-F). This finding also further validates the utility of predictions 
from the Target Score algorithm.  
 
MCL1 copy number status is a predictor of response to co-targeting MCL1 and BET 
  
Next, we investigated the predictors of response to MCL1 inhibition alone or in combination with 
BET inhibition. We focused on MCL1 copy number status motivated by the computational 
predictions and the subsequent experimental validation of the drug combination in MCL1 
amplified cell lines.  
 
To investigate the role of MCL1 amplification, we tested the effect of MCL1 and BET inhibitors on 
cell viability in 10 cell lines (9 breast lines and SKOV3) with varying cancer subtypes and genomic 
backgrounds (Figure 4A). The response to therapy was quantified and evaluated by (i) normalized 
area under the curve (nAUC = AUCobserved/AUC100% viability at all doses) for drug efficacy across multiple 
doses, (ii) Amax for responses at high doses, and (iii) drug synergy (Bliss independence) for drug 
interactions. The weakest responses to MCL1 inhibition were observed in HCC1937, HCC1419  
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Figure 5. Molecular mechanisms of response to combined BET and MCL1 targeting. A. Differential analysis of 
phospho-proteomic response to BETis in resistant (HCC1954, BT474) and sensitive (SKOV3) cells. The heatmap 
represents the average log fold difference (log[Xperturbed/Xunperturbed]) across four BETis (JQ1, IBET151, IBET726 and 
IBET762). “R to S deviation” is the difference of fold changes between resistant (HCC1954 and BT474) and sensitive 
(SKOV3) cells (see methods for RPPA analysis). B. MCL1, AKT signaling and HER2 activity changes in response to 
pathway and BET inhibition in HCC1954, BT474 and SKOV3 are measured. Responses to pathway inhibitors applied 
as single agents (top panel) and combinations with JQ1 are monitored to demonstrate the role of signaling pathways 
linking BET and MCL1 activity. C. Differential analysis of transcriptomic responses to BET inhibition in resistant vs. 
sensitive cell lines. The first three columns in the heatmap demonstrates fold changes of mRNA species that change 
in opposite directions in resistant versus sensitive lines. The red/white columns on right represent involvement of each 
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differentially expressed gene in different molecular processes according to a GO-term enrichment analysis. D. 
Transcriptomic responses in key genes of the lipid metabolism pathway as identified by the differential response 
analysis. E. Differential total protein analysis is performed with focus on only total protein changes. F. The analysis of 
SCD, MCL1 and p-EGFR/p-HER2 levels in response to inhibitors of BET (JQ1 at 1μM) and SCD (A939572). The SCD, 
MCL1 and p-EGFR/p-HER2 levels are measured 48 hours after drug perturbation in HCC1954 and SKOV3 cells. G. 
Correlation analysis of proteomic and transcriptomic levels involved in the proposed associations linking BET to 
EGFR/HER2 within HER2+, basal and ovarian cancer patients. Each analysis reflects a particular step in the pathway 
-i.e., BET to fatty acid synthesis, fatty acid enzymes to RTK signaling. All correlations are in the range of -0.5 to 0.5, 
consistent with relatively low correlations observed between omic entities in other TCGA studies. As a reference, the 
average correlation between mRNA and protein levels of a given gene is estimated within a range of 0.3-0.6 across 
whole genome in different studies (Liu et al., 2016, and Gry et al., 2009). G. The proposed mechanism of BET induced 
vulnerability to combined BET and MCL1 targeting in the context of MCL1 chromosomal amplifications or gains based 
on the integrated multi-omics, network and perturbation analyses. The marked genes and proteins are identified and 
validated in molecular perturbation response analyses.  
 
 
and SKOV3, which have either diploid or single copy of MCL1 gene (Figure 4B-C). Normalized 
AUC (mean=0.93) and Amax (mean =83%) were significantly higher in HCC1937, HCC1419 and 
SKOV3 compared to other lines (p-val=0.007, Ho: nAUCMCL1i(MCL1wt/hetloss) = 
nAUCMCL1i(MCL1gain/amp); p-val<0.001, Ho: Amax

MCL1i (MCL1wt/hetloss)=Amax
MCL1i(MCL1gain/amp)). Cell 

lines with either low level gain or high-level amplification in MCL1 gene were more responsive to 
MCL1 inhibition with effective eradication of tumor cells (Amax 𝛍= 0.19) at high doses and 
significantly low AUC (𝛍= 0.59). The combination of MCL1 and BETis augmented cell viability 
responses in all tested cell lines. The mean nAUC across cell lines with MCL1 copy number 
alterations was reduced from 0.59 for MCL1 mono-therapy to 0.33 for the combination. For cell 
lines with wild type or heterozygous loss of MCL1, the nAUC was reduced from 0.90 to 0.60 with 
combination therapy. A more dramatic response was observed in Amax. In cells with MCL1 
amplification, a near-complete eradication of tumor (Amax 𝛍= 0.05) was observed in contrast to 
cell lines carrying no MCL1 amplification (Amax 𝛍= 0.36) (Pval < 0.001, Ho: Amax

MCL1i+JQ1 
(MCL1wt/hetloss) = Amax

MCL1i+JQ(MCL1gain/amp)). Next, we analyzed the association between MCL1 
copy number status, mRNA levels, and Amax for response to JQ1 and S63845. The copy number 
and mRNA expression values for each cell line were extracted from the CCLE database. The 
analysis demonstrates MCL1-low (mRNA and copy number) cell lines are clearly separated in 
their response to the combination from the MCL1-high cell lines, which have much lower Amax 
(i.e., higher sensitivity) (Figure 4D). In a parallel analysis of 10 cell lines, we did not observe any 
significant enrichment of increased MCL1i and/or MCL1 + BETi sensitivity in tumors with other 
recurrent oncogenic aberrations (Figure S4). The separation based on MCL1 copy number and 
mRNA levels suggest a clear association with MCL1 levels and response to the drug combination. 
  
Next, we computed drug synergy using the Bliss independence score for all drug doses across 
all cell lines and detected three clusters with distinct JQ1 and MCL1i synergy (Figure 4E). The 
first cluster (HCC1937, SKOV3, HCC1419) consisted of MCL1 inhibitor resistant lines and is 
characterized by additive drug interactions between BET and MCL1 inhibitors (0.5 < Bliss score 
< 1.0). In the second cluster (SKBR3, MCF7), an antagonistic interaction (Bliss score > 1.0), which 
can be attributed to the high efficacy of JQ1 as a single agent, was observed. In the third cluster 
(HCC70, BT20, MDAMB468, HCC1954, and BT474) a strong synergy was observed with Bliss 
synergy scores below 0.5. The cells in the third cluster were highly resistant to JQ1 and also carry 
MCL1 copy number gains. Finally, we confirmed that synergistic interactions between JQ1 and 
S63845 were also preserved in 3D spheroid cultures (Figure 4F). In summary, a robust and strong 
synergy exists between targeting MCL1 and BET in the BETi resistant and MCL1 amplified 
context.  
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We conclude, based on the drug responses and synergies across cell lines with varying MCL1 
levels, MCL1 copy number status is a predictor of response to the drug combination that could 
potentially be translated to the clinic to identify patients likely to benefit. 
 
BETi induced MCL1 upregulation is mediated by EGFR/HER2 signaling activity 
 
To elucidate signaling mechanisms underlying adaptive MCL1 protein upregulation in the 
presence of MCL1 amplification and BETi resistance in breast cancer, we searched for the 
phosphorylation cascades that links BET inhibition to MCL1 accumulation and subsequent 
apoptotic evasion. We quantified differential phosphorylation of each protein based on RPPA data 
from resistant and sensitive lines (Figure 5A). The most differentially phosphorylated proteins 
were predominantly driven by the difference between the most resistant line HCC1954 and the 
sensitive line SKOV3. The analysis revealed enrichment of the HER2/EGFR downstream 
signaling in BETi resistant cells as phosphorylation of HER2, EGFR, SHC, SRC, AKT, GSK3𝝰/𝝱, 
MEK1/2 and 4EBP1 were increased in response to BET inhibition in HCC1954 but not in SKOV3. 
In addition to the RTK and downstream signaling, we observed increased phosphorylation of 
Myosin II and NDRG1. Based on the results, we hypothesized that BETi induced MCL1 increase 
and subsequent apoptosis evasion through HER2/EGFR activation and subsequent downstream 
signaling. 
 
To test this hypothesis and generate causal links from HER2/EGFR signaling to MCL1 
upregulation, we performed perturbation experiments coupled to MCL1 and signaling profiling 
(Figure 5B). First, we treated HCC1954, BT474, and SKOV3 cells with inhibitors of BET (JQ1), 
EGFR/HER2 (lapatinib), AKT (MK-2206), P38/MAPK14 (Doramapimod), PKC (Dequalinium 
Chloride), and MEK1/2 (trametinib) applied as single agents. In BT474 and HCC1954, both MCL1 
and GSK3𝝰/𝝱_pS9/S21 levels were increased in response to JQ1 and substantially decreased in 
response to lapatinib. Inhibitors of downstream effector molecules (AKT, MAPK14, MEK1/2, PKC) 
had either partial or no impact on MCL1 levels. To test whether the inhibition of individual signaling 
routes downstream of EGFR/HER2 can reverse adaptive responses to BET inhibition, we treated 
the cells with combinations of pathway and BET inhibitors. In BT474 and HCC1954; MCL1, 
AKT_pS373/pT308 and GSK3𝝰/𝝱_pS9/S21 levels decreased in response to lapatinib and JQ1 
combination suggesting HER2/EGFR inhibition reverses adaptive responses to BET inhibition. In 
contrast, MCL1 and GSK3𝝰/𝝱 _pS9/S21 levels were modestly increased in response to paired 
combinations of JQ1 with all other agents (i.e., inhibitors of AKT, MEK1/2, PKC and MAPK14/P38) 
suggesting each signaling axis has limited participation in the BETi adaptive response or 
alternatively that inhibition of one mediator results in activation of the other pathways. Indeed, 
adaptive responses were blocked only when a cocktail of three signaling inhibitors was combined 
with JQ1 (i.e., combination of JQ1 with cocktails of PKCi+P38i+AKTi or PKCi+P38i+MEK1/2i). In 
HCC1954 and BT474, the molecular responses to combinatorial perturbations suggest that 
EGFR/HER2 activation is necessary and sufficient for increased MCL1 in HCC1954 and BT474. 
However, the downstream signaling cascades are highly redundant such that none of the tested 
inhibitors other than lapatinib could completely block the adaptive response to BET inhibition, 
suggesting that parallel routes downstream of EGFR/HER2 converge to regulate MCL1 levels.  
  
A BETi induced transcriptional program activates HER2/EGFR through membrane 
reorganization 
 
To identify potential links between BET inhibition and EGFR/HER2 activation, we measured 
transcription and total-protein changes in response to BET inhibition. Transcriptomic responses 
are profiled with 1μm JQ1 treatment for 48h in HCC1954, BT474 and SKOV3 cells with mRNA 
sequencing (Figure 5C). The mRNA analysis identified 127 differentially responding transcripts in  
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Figure 6. Phenotypic responses to BET inhibition in resistant and sensitive cells. A. representative images (20X, 
brightfield) of cellular morphology changes in response to BETi in JQ1 resistant (HCC1954) and sensitive (SKOV3) 
cells. B. The BETi induces increased motility of HCC1954 (top) and no substantial difference in SKOV3 (bottom) as 
monitored across time points with a wound scratching assay. C. Drug induced changes in membrane fluidity in 
HCC1954 and SKOV3 cells based on fluorescent lipophilic pyrene probes that are enriched in excimer state (emission 
l = 470nm) with increasing membrane fluidity and enriched in monomers (emission l= 400nm) with decreasing 
membrane fluidity. The membrane fluidity is increased with JQ1 treatment in HCC1954 and decreased in SKOV3. SCD 
inhibition decreases membrane fluidity as expected. D. The representative images of HER2 localization changes in 
response to BET and SCD inhibition in HCC1954 and SKOV3 cells. Images are collected using fluorescent confocal 
microscopy. BETi induced increased and polarized fluorescence signals from HER2 (green) in HCC1954. Whereas the 
HER2 signal was unchanged in response to therapy in SKOV3 cells. SCD inhibition induced punctuated HER2 patterns 
in cell membrane of HCC1954, possibly corresponding to disruption of cell membranes due to increased lipid saturation.  
 
 
HCC1954/BT474 versus SKOV3. A GO-term analysis of the differentially expressed genes 
identified 85 statistically significant pathways with enrichment of biosynthetic pathways 
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particularly lipid metabolism, cell adhesion, and motility in resistant lines (suppl. table 1). The  
enrichment profiles suggest that the BETi transcriptional program is associated with lipid bilayer 
cell membrane changes in drug resistant samples. Indeed, stearoyl-CoA desaturase (SCD), 
which catalyzes the rate limiting step in monounsaturated fatty acid (MUFA) synthesis and 
regulates lipid membrane fluidity in cells (Röhrig et al., 2016, Stubbs et al., 1984, and Roongta et 
al., 2011), was part of 43 out of 85 significant pathways. In addition to SCD, other key lipid 
metabolism enzymes, including SREBF1 - a master transcription factor that regulates expression 
of key fatty acid enzymes (e.g., SCD, FASN), ELOVL7, SC5D, ACSF2, and ACAT1 are 
differentially overexpressed in response to BET inhibition in resistant cells (Figure 5C-D). 
Moreover, differential analysis of total protein expression suggests the involvement of cell 
adhesion and fatty acid metabolism in BETi response, with E-cadherin and SCD as the highest-
ranked differentially expressed genes in resistant cells (Figure 5E). BETi also differentially 
increased MyosinII_pS1943 and decreased AMPKa_pT172 supporting the hypothesis that BET 
inhibition alters motility and lipid metabolism, respectively.  
 
Motivated by the roles of SCD as a rate limiting step in monounsaturated fatty acid formation and 
a regulator of membrane fluidity, we focused on SCD involvement in modulating EGFR/HER2 
activity and MCL1 protein levels in response to BET inhibition. The treatment of HCC1954 cells 
with the SCD inhibitor (SCDi, A939572) decreased both p-HER2/EGFR and MCL1 levels, 
suggesting a role of SCD upstream of the HER2/EGFR - MCL1 signaling axis (Figure 5F). To 
identify whether the BETi-induced MCL1 accumulation depends on SCD, we treated HCC1954 
with JQ1 and A939572. Both HER2 phosphorylation and MCL1 were decreased upon combined 
BET and SCD inhibition suggesting that SCD inhibition can reverse adaptive responses to BET 
inhibition. In conclusion, BETi induced SCD transcription and activity is an intermediate event 
between BET inhibition and HER2/EGFR to MCL1 signaling axis.  
 
Next, we asked whether the relationships between BET inhibition, fatty acid synthesis and RTK 
activation, which we have demonstrated that leads to MCL1 upregulation in cell lines, were also 
valid across larger patient cohorts. Using TCGA breast and ovarian cancer data, we performed a 
correlation analysis of mRNA and protein levels in therapy naive ovarian, HER2+ breast and basal 
breast tumors (Figure 5G). We calculated correlations between (i) BRD4 protein versus key 
partners of fatty acid synthesis pathway (SREBF1, FASN, SCD) to profile the impact of BRD4 on 
transcription of fatty acid pathway members, (ii) mRNA levels of SREBF1 versus SCD and FASN 
to capture the transcriptional activity of SREBF1, which is the key transcription factor regulating 
expression of fatty acid synthesis enzymes, and (iii) protein levels of SCD and FASN enzymes 
versus p-RTK (HER2, EGFR, MET) to capture the effect of fatty acid synthesis pathway on RTK 
signaling. In all cancer types, BRD4 protein level was negatively associated with SREBF1, SCD 
and FASN (-0.43 < R < -0.05). This was consistent with the increased expression of fatty acid 
synthesis genes with BET inhibition in HCC1954 cells. SREBF1, for which no proteomic data was 
available, was quantified based on mRNA levels. Consistent with prior reports on the role of 
SREBF1 on transcription of lipid metabolism genes (Kim et al., 1996), SREBF1 and the two key 
enzymes FASN and SCD are strongly correlated (0.28 < R < 0.59). RTK activation was analyzed 
based on available p-RTK measurements (i.e., p-HER2, p-EGFR and p-MET). The relation 
between SCD, the rate limiting enzyme in fatty acid synthesis, with RTK expression was highly 
context dependent: In HER2+ cells, SCD was highly correlated with p-HER2 (R=0.42) but not with 
p-EGFR or p-MET. In basal cancers, in which HER2 activity is not a driver, the correlation between 
SCD and p-HER2 was diminished, while a high correlation between SCD and p-MET was 
observed (R=0.47). In ovarian cancers, weak correlations between SCD and the measured p-
RTK species were observed but no individual RTK demonstrated a strong association (0.06 < R 
< 0.2). We did not observe similar associations between BRD4 and fatty acid metabolism in 
luminal A and B breast tumors. Thus, TCGA analysis suggests that the mechanistic link between 
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BRD4, fatty acid metabolism and RTK activation is relevant across a large fraction of HER2-
amplified and basal breast cancers and to a lesser degree, serous ovarian cancers.  
 
Finally, we profiled BETi induced phenotypes which are potentially associated with the 
transcriptomic and proteomic responses in resistant lines. In HCC1954 but not in SKOV3, BETi 
treatment (48 hours,1μM JQ1) induced morphology changes involving a transformation from a 
less structured and spread form to a more ordered and contracted state, while no substantial 
difference was observed in SKOV3 (Figure 6A). Wound scratch assays in monolayer cultures 
showed that 24 hours after BET inhibition (1μM JQ1) cell motility increased in BETi resistant cells 
(HCC1954) but not in sensitive cells (SKOV3) (Figure 6B). Consistent with BETi induced SCD 
upregulation, HCC1954 membrane fluidity was increased upon JQ1 treatment (48 hours,1μM 
JQ1) as quantified by the ratio of monomer to excimer fluorescence of lipophilic pyrene probes 
(Abcam), which undergo excimer formation with increasing membrane fluidity. SKOV3 membrane 
fluidity was decreased in response to BETi consistent with the observed cell motility decrease. As 
expected, SCDi decreased membrane fluidity in both HCC1954 and SKOV3. We monitored 
EGFR/HER2 localization changes after JQ1 and SCDi treatment for 48 hours in HCC1954 and 
SKOV3 cells (Figure 6D). In drug resistant HCC1954 cells, HER2 protein molecules were 
upregulated and polarized on the cell membrane after JQ1 treatment. SCDi treatment induced 
localization of HER2 molecules in vesicle-like structures visualized as fluorescent spots both on 
the surface and cytoplasm of HCC1954 cells. In contrast to JQ1, SCD inhibition, however, did not 
generate a polarized HER2 localization on the cell surface. After combined JQ1 and SCDi 
treatment, cell morphology was similar to cells that were treated with SCDi alone, suggesting that 
SCD inhibition can rescue the effect of JQ1 on morphology. In contrast, no change in HER2 
localization was observed in BETi sensitive cells (SKOV3), upon BETi or SCDi treatment. We 
conclude that BET inhibition induces membrane remodeling including cell morphology, motility, 
fluidity and receptor tyrosine kinase localization changes associated and consistent with the 
observed molecular changes in drug resistant cells.  
 
Discussion 
 
We demonstrated that BETis induce an anti-apoptotic adaptive response marked by MCL1 
upregulation and that combined inhibition of BET and MCL1 proteins are synergistic in cells with 
amplified MCL1 where BETis increase MCL1 protein levels. Furthermore, we identified molecular 
markers and mechanisms of response to combined BET and MCL1 inhibition in diverse breast 
cancer cell models. This was achieved with a highly generalizable strategy for the discovery of 
drug combinations in cancer. In our approach, we integrated high-throughput omics profiling, 
perturbation biology, network modeling, genomics and functional studies.  
 
Experimental validation in a panel of breast cancer cell lines coupled with genomic analyses in 
large patient cohorts identified MCL1 copy number as a major predictor for response to combined 
inhibition of MCL1 and BETis. MCL1 amplification is a well characterized prognostic factor in 
breast cancer, suggesting that MCL1 targeted therapy may be a viable therapeutic strategy either 
alone or in combination with HER2 targeted therapies (Campbell et al., 2018, and Berger et al., 
2018). Here we showed that MCL1i was effective even with a low level MCL1 amplification and 
that breast cancer cells are further sensitized to MCL1 inhibition when combined with BETis. From 
a translational perspective, this is particularly important because, MCL1 high level amplifications 
are observed in 15% of breast cancer patients, and the frequency of low-level gains in MCL1 is 
57%. Therefore, in total, 72% of breast cancer patients are within the potential candidate cohort 
for MCL1 targeting as a single agent or in combinations. MCL1 amplification is particularly 
enriched in the basal subtype (32%), the aggressive subtype for which no targeted therapy option 
exists. Although we observed a clear distinction in responses to MCL1/BET co-targeting between 
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MCL1 copy number/mRNA high versus low cells, the degree of response was not dependent on 
the precise level of MCL1 amplification. Both high- and low-level chromosomal gains of MCL1 
were equally predictive of responses.  
 
As MCL1 function is also affected by upstream signaling (e.g., GSK3-β) and high turnover rates 
of the protein (Ding et al., 2007, and Okamoto et al., 2014), we also studied the signaling 
mechanisms that may contribute to the accumulation of MCL1. The perturbation-biology-based 
mechanistic studies and differential mRNA/protein expression analysis identified a multi-step 
mechanism that couples BET inhibition to apoptosis. In resistant cells, BET inhibition upregulates 
a cell adhesion, motility and fatty acid synthesis metabolic program, which includes the upstream 
transcription factor SREBF1 (Yokoyama et al., 1993) and key enzymes such as Stearoyl-CoA 
desaturase (SCD), which converts saturated fatty acids (SFA) into monounsaturated fatty acids 
and modulates membrane fluidity (Paton et al., 2009, and Ntambi, 1999). SCD has been 
suggested as a key modulator of breast cancer cell motility and survival as well as EGFR 
activation in lung cancer (Angelucci et al., 2018, Nashed et al, 2012). Molecular and imaging-
based analysis of SCD perturbations demonstrates that SCD activates HER2/EGFR signaling 
through the remodeling of membrane composition and increased cell membrane fluidity. In turn, 
we show that HER2/EGFR activation triggers activities of multiple signaling pathways to stabilize 
MCL1 protein. However, no individual signaling pathway activity is sufficient to drive MCL1 
accumulation. For MCL1 upregulation, a combined effect from multiple upstream pathways 
(AKT/PI3K, RAF/MEK, MAPK14, PKC) converging on GSK3 is necessary as demonstrated by 
pathway inactivation and reversal of adaptive responses with cocktails of up to four drugs. When 
SCD and BETis are applied in combination, SCD inhibition reverses the impact of JQ1 on both 
HER2/EGFR activation and MCL1 levels. Correlative analyses within TCGA breast cancer data 
suggest that the observed mechanisms involving BET, fatty acid synthesis and RTK signaling are 
also represented in large cohorts of breast cancer patients, suggesting that the observed drug 
responses can be extrapolated to clinical settings. Our integrated analyses suggested concerted 
roles for MCL1 copy number driven gene/protein expression and BETi induced signaling plasticity. 
Together they maintain high levels of MCL1 to evade apoptosis and confer resistance to BET 
inhibition. In summary, we demonstrated that an interplay between cellular plasticity in response 
to BET inhibition and copy-number alterations in MCL1 creates a vulnerability to combinations of 
BET and MCL1 inhibitors. The complementarity and interplay between hard-coded genetic 
structure and drug induced plasticity may provide a solution to the long-standing conundrum on 
the relative dominance of genomics versus signaling activity in driving resistance to targeted 
agents (Yaffe, 2019).  
 
Consistent with previous reports (Hölscher et al., 2018, and Korkut et al., 2015), Target Score 
analysis identified cell cycle arrest signature as a key mechanism of action for BET inhibition. In 
sensitive lines such as SKOV3, apoptosis accompanies cell cycle arrest, whereas in resistant 
lines an anti-apoptotic program drives evasion of cell death through MCL1 upregulation. In those 
cells that do not die after prolonged cell cycle arrest, a BETi induced transcriptional program 
drives resistance. Interestingly, in resistant cells, increased cell motility accompanies apoptotic 
evasion. A compelling speculation is that when under stress, resistant cells not only escape 
apoptosis but also display a tendency to depart from the cellular locations mediating stress 
potentially reflecting processes inherited through phylogeny.  
 
Other preclinical studies have demonstrated the role of lipid metabolism and cell state plasticity 
in conferring resistance to therapy. For example, high-mesenchymal cell states are resistant to 
diverse therapies which stems from their dependence on lipid peroxidase pathways, and as a 
result converging on the actionable GPX4 enzyme (Yang et al., 2014). The compensatory and 
alternating roles of SCD and FADS2 enzymes in regulating fatty acid desaturation for cancer cell 
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survival is further evidence for the interplay between cellular plasticity and lipid metabolism 
(Vriens et al., 2019). Here, for the first time, we linked epigenetic targeting to cellular and signaling 
plasticity and their consequential drug escape, which can be overcome with the combination of 
BET and MCL1 inhibition. 
 
Advancing preclinical discoveries to clinical strategies requires a thorough understanding of the 
molecular markers, mechanisms of drug action and evidence for generalizability. Genomic 
profiling has already led to major clinical success in subtype specific treatments such as for HER2-
amplified breast cancers (Mendes et al., 2015), BRCA-mutated ovarian and breast cancers 
(Farmer et al., 2005) or BRAF-mutated melanomas (Bollag et al., 2010). Despite this conceptual 
revolution and advances in sequencing technologies, durable responses to genetically matched 
targeted therapies in eligible patient cohorts are limited. As of 2019, only 15% of cancer patients 
are eligible for a genomics-informed therapy and only 8% of patients benefit from genomics-
informed therapy with objective responses (Marquart et al., 2018). The relatively low success rate 
can be attributed to intra and inter-tumor heterogeneity, limited genomic profiling techniques, 
genotype-therapy matching criteria, and access to effective drugs. This has led to a strong 
argument that drug response is not only a function of hard-coded genomic aberrations but also 
signaling pathway activity, cellular states and plasticity. This argument implies that clinical 
decision making needs to be supported with diverse molecular profiling methods including 
proteomics and RNA expression. Yet, robust molecular proteomic and cellular profiling methods 
that can diversify decision making in precision medicine and improve patient benefit are still 
lacking. Combined with clinical studies involving analysis of temporal biopsies from patients under 
therapy, we argue that this computational/experimental study is a prototype for future clinical 
applications, which will induce durable responses based on combination therapy decisions that 
are dynamically informed by multi-omic profiles of tumors evolving under cancer therapy.  
 
Materials and Methods 
 
Experimental Methods 
 
Cell lines and cell culture 
HCC1954, HCC1937, HCC1419, HCC70, BT20, BT474, SKOV3, SKBr3, MDA-MB-468 and MCF-
7 cell lines were obtained from MD Anderson Cancer Center Cell Line Repository and were 
thawed two weeks before experiments. There were less than 10 passages between thawing of 
the cells and the experiments described in this study. In general, mycoplasma testing is performed 
approximately every 3 months on all cell lines used in the laboratory. MCF-7 were maintained in 
DMEM supplemented with 10% FBS plus antibiotic/antimycotic solution (100U/ml streptomycin 
and 100U/ml penicillin) (all from Invitrogen). BT20 were maintained in EMEM (Eagle’s Minimum 
Essential Medium) supplemented with 10% FBS. HCC1954, HCC1937, HCC1419, HCC70, 
SKOV3, SKBR3 and BT474 were maintained in RPMI 1640 supplemented with 10% FBS. All 
cells were cultured at 37°C in a humidified atmosphere containing 5% CO2. 
 
Kinase inhibitors and antibodies 
The kinase inhibitors used in this study were purchased from Sellekchem (JQ1 and the inhibitors 
of EGFR, AKT, PKC, MAPK, P38), ChemiEtek (MCL1 inhibitor-S63845) and MedChemExpress 
(JQ1 and SCD-inhibitor-A939572). Specific antibodies against MCL1, BCL2, BCL-XL, BRD4, 
cleaved PARP, p-AKT(T308), p-AKT (S473), p-PKC, p-P38, p-MEK1/2, p-GSK3, and p-HER2 
(T1248)/p-EGFR (Tyr1173) were purchased from Cell Signaling (Cell Signaling Technology, MA). 
Antibody against β-actin and CellBrite Cytoplasmic Membrane Dyes were from Sigma-Aldrich (St. 
Louis, MO), Biotium, respectively. Anti-hERBB2/Her2 Alex488 antibody was purchased from R&D 
systems Biotechne. 
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RPPA (Reverse Phase Protein Array) 
The treatment cells were washed 3 times with cold PBS and then suspended in RIPA buffer 
supplemented with proteinase inhibitor and phosphatase inhibitor (Pierce, Rockford, IL, USA). 
The cell suspension was vortexed for 15 seconds, placed on end-over-end rotator for 30 min at 
4°C and centrifuged at 14,000 x g for 15 min at 4°C. The lysates were prepared to provide 1-
1.5mg/ml of total protein lysate. RPPA analysis samples were prepared by adding SDS Sample 
Buffer, b-mercaptoethanol and RPPA Working Solution to obtain a final concentration of 
0.5mg/ml. Samples were heated for 8 min at 100°C, centrifuged 2 min at 14,000 x g and stored 
at -80°C. The RPPA was performed at the facility core (MD Anderson Cancer Center).  
 
Immunofluorescence imaging experiments 
SKOV3 and HCC1954 cells were seeded in coverslips overnight and treated with either vehicle 
or kinase inhibitors for 48 hours. The cells were fixed with cross-linking method. Cells were 
switched to fresh growth media with 4% paraformaldehyde for 5 minutes. After 2 times washing 
with PBS, the cells were incubated in 4% paraformaldehyde (in PBS) for 15 minutes. The fixed 
cells were rinsed with PBS to remove any fixation agent. Cells were then blocked with odyssey 
PBS for 1 hour at room temperature and incubated with the anti-hERBB2/Her2 Alex488 antibody 
(1:200, R&D systems biotechne) and Cellbrite orange (1:200, Biotium) overnight at 4 ◦C. After 
washing with PBS, coverslips were mounted on slides using Prolong gold antifade mountant with 
DAPI (ThermoFisher Scientific, P36935). Immunofluorescence images were acquired with a 
confocal microscope (Olympus). 
 
Immunoblotting 
HCC1954, BT474 and SKOV3 cells were lysed in RIPA buffer (50mM Tris-HCl pH7.4, 150mM 
NaCl, 1mM EDTA, 1% D.O.C. (Na), 0,1% SDS, 1% Triton X-100) containing protease inhibitors 
(Pierce, Rockford, IL USA). Protein concentrations were determined using BCA protein assay kit 
(Pierce, Rockford, IL). An equal amount of proteins was loaded into SDS-PAGE gels and 
transferred to PVDF membranes (Millipore, MA). Membranes were blocked for 2 hours with 5% 
non-fat milk in PBST (0.1% Tween-20 in PBS), and incubated overnight with specific primary 
antibody. After incubation of 2 h with horseradish peroxidase–conjugated secondary antibody, 
the proteins were detected by Clarity Western ECL substrate (Bio-Rad). 
 
Cell proliferation assays. 
Cell proliferation was measured by the PrestoBlue Cell Viability Assay kit (A13261, Life 
Technologies) according to the manufacturer’s instructions. 2~4×103 cells were seeded into 96-
well plates and cultured overnight. After treating with either vehicle or kinase inhibitors for 72 
hours, cells were collected and evaluated with a SYNERGY H1 microplate reader with Gen5 
software (BioTek). In the viability assays, points and bars represent the mean of triplicates ± SEM. 
 
Flow cytometric analysis of cell cycle and apoptosis 
2.5x105 of cells (HCC1954, BT474 and SKOV3) were seeded in 6-cm plates. Following treating 
with vehicle or kinase inhibitors for 72 h, cells were harvested, fixed in 1% (W/V) 
paraformaldehyde in PBS, washed and rehydrated in PBS. DNA was stained according to the 
instruction of the APO-BRDU™ Kit, by treating the cells with DNA labeling solution, FITC labeled 
anti-BrdU antibody solution and PI/RNase staining buffer. Flow cytometry was analyzed using BD 
LSR II flow cytometer and FACSDIV 8.1 software (BD Biosciences) at MDACC flow cytometry 
core facility. 
 
Migration assays 
The effect of drugs on cells’ migratory behavior was analyzed by the scratch wound assay. 4x105 
HCC1954 and SKOV3 cells were seeded in 35 mm dishes. The next day, cells were treated with 
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vehicle or kinase inhibitors for 72 h. The cells were scratched using a sterile 200-μl micropipette 
tip to form a straight wound. The cells were washed twice with PBS and cultured for an additional 
24 h. The wound closure was measured under an EVOS FL Auto microscope (Life technologies). 
Images of 3 random fields were acquired at the time point of 0, 6, 12 and 24 h after wounding. 
The distances traveled by the cells were measured from control and experimental samples and 
were calculated and compared with time 0. 
  
Membrane fluidity 
Membrane fluidity was measured using the Membrane Fluidity Kit (Abcam ab189819). After a 
lipophilic pyrene probe incorporation into the membrane, the monomeric pyrene probe undergoes 
excimer formation dramatically shifting the emission spectrum of the pyrene probe to a longer red 
wavelength. The ratio of excimer (emission at 470 nm) to monomer (emission at 400 nm) 
fluorescence represents a quantitative change of the membrane fluidity. Cells were seeded in 96 
well plate, treated with JQ1, SCD1 inhibitor and JQ1 plus SCD1 inhibitor for 72 hours. The cells 
were labeled with labeling solution (15 μM of pyrenedecanoic acid (PDA), 0.08% F-127, in 
Perfusion Buffer) in the dark for 20 min rocking at 25 ◦C, washed 2x with Perfusion Buffer, added 
culture medium and measured for fluorescence at two wavelengths (excitation at 360 nm, 
emission at 400 nm and 470 nm). Samples are profiled as biological triplicates. 
 
mRNA Sequencing 
Cells (HCC1954, SKOV3 and BT474) were collected after treating with 1 μM of JQ1 for 24 hours 
all in biological duplicates. Total RNA was isolated and purified using RNeasy Plus Mini Kit 
(Qiagen). After quantification with Qubit 2.0 (Life Technologies), the samples passed through 
quality control steps for sample integrity and purity with Agilent 2100 and Agarose Gel 
Electrophoresis. After the sample QC, the cDNA library is constructed using the NEBNext Ultra II 
RNA Library Prep Kit (NEB) as follows: mRNA is enriched using oligo(dT) beads. The mRNA is 
then fragmented via sonication in fragmentation buffer, followed by cDNA synthesis using random 
hexamers and reverse transcriptase. After first-strand synthesis, a custom second strand 
synthesis buffer and enzyme mix is added to generate the second strand by nick translation. The 
final cDNA library is ready after a round of DNA purification, end-repair, A-tailing, ligation of 
sequencing adapters, size selection and PCR enrichment. For library QC, library concentration 
was quantified using a Qubit 2.0 fluorometer (Life Technologies) and then diluted to 1 ng/μl before 
checking insert size on an Agilent 2100. Libraries were then quantified to greater accuracy by 
quantitative PCR (Q-PCR) prior to sequencing. RNA libraries were sequenced with 20M paired-
end 150bp reads on the Illumina NovaSeq 6000 platform (Novogene Inc.). Raw data was 
subjected to a round of QC to remove low quality reads. The resulting mRNA sequence count 
data was normalized to enable cross sample analyses.  
 
Computational Methods 
 
Target Score algorithm 
The target score algorithm works in multi-steps involving the construction of a reference network, 
target score calculation, statistical assessment of scores, and the determination and visualization 
of response pathways. A more technical description and evaluation of the method is presented in 
Wang et al. - in preparation.  
 
Input Data and data quality. The molecular response data collected before and after therapy is 
used as the input in the analysis pipeline. The BETi RPPA response is generated at the MDACC 
functional proteomics core facility. The functional proteomics core validates each antibody by 
analysis of western blots to observe each readout as a single or dominant band on a blot and 
ensure the Pearson correlation coefficient between RPPA and western blot readouts are greater 
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than 0.7. The dynamic range and specificity are routinely determined using peptides, 
phosphopeptides, growth factors, Inhibitors, RNAi, cells with wide levels of expression including 
330 cell lines under multiple conditions on a single array. The intra and inter-slide reproducibility 
of RPPA reads are routinely monitored. In this study, BETi responses from cell lines are 
interrogated using 218 antibodies at time points of 24 and 48 hours after drug treatment in cells 
cultured as 2D monolayers and 3D matrigel cultures. However, the method can analyze data from 
both patient biopsy samples and cell lines.  
 
Reference network construction. Network models are constructed using the signaling data 
stored in Pathway Commons (PC) database and manual curation/correction by experts. PC 
integrates detailed human pathway data from multiple public resources such as Reactome, NCI 
PID, PhosphoSitePlus, Panther Pathways, and HumanCyc (Cerami et al., 2011). Automated 
pathway extraction is achieved using the SignedPC algorithm embedded in the BioPAX/PaxTools 
pathway analysis language and software suite (Demir et al., 2013, Demir et al., 2010, and Babur 
et al., In Press). In order to delineate the pathway interactions captured by the RPPA data, we 
identified 4 different relation types: phosphorylation, dephosphorylation, expression upregulation, 
and expression downregulation. The first two relations can be used to explain phospho-protein 
changes, and the last two can be used to explain total protein or gene expression changes. Using 
the BioPAX-pattern framework, we define a set of patterns to detect such relations and identify 
the signaling interactions between the phosphoproteomic entities. The resulting interaction set 
defines the reference network. 
 
The Target score and target detection. A Target Score (TS) that quantifies the adaptive 
pathway responses to a perturbation as a sum of the response from each individual protein and 
its pathway neighborhood is calculated for each entity. The calculation combines the cell type 
specific drug response data with signaling network information extracted from signaling 
databases. High target score identifies proteins involved in adaptive response (e.g., upregulation 
of receptor tyrosine kinase expression by MEK inhibitor via a feedback loop4) and low Target 
Score corresponds to the immediate impact of the drug (e.g., inhibition of ERK phosphorylation 
by MEK inhibitor). The mathematical formulation of Target Score is 
 
Equation 1 
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,where fsi represents the functional score (see below) of the node of interest, Δxi is the proteomic 
response, log normalized with respect to the unperturbed (or pretreatment) level. The σ is the 
standard deviation of Δxi over all samples in the study and all drug doses. Division of Δx by σ 
normalizes a readout with respect to the dynamic range of the corresponding antibody. Node j is 
a node in the pathway neighborhood of the node i, with readout Δxj and standard deviation. pij is 
the pathway distance between nodes i and j. Wij represents the signaling interaction between 
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nodes i and j extracted algorithmically from databases. The cumulative Target Score over multiple 
doses can be calculated as the area under the curve of TS versus drug doses. 
A functional score (fs) is assigned to each of the proteomic entities measured in the MDACC 
RPPA and DFCI/MSKCC Zeptosens proteomics platforms (Tibes et al., 2006, and Jing et al., In 
Press). We used manual curation, resources such as Phosphosite database and TUSON tumor 
suppressor/oncogene resource (Davoli et al., 2013) results. We assigned (+1) for total levels or 
activating phosphorylation of oncoproteins and inhibitory phosphorylation of tumor suppressors. 
Similarly, a functional score of (-1) is assigned to total levels or activating phosphorylation of tumor 
suppressors and inhibitory phosphorylation of oncoproteins.  
The statistical assessment detects and eliminates the Target Scores that are likely driven solely 
by the network structure with no significant impact from the cell type-specific data. For this 
purpose, the probability of observing a given Target Score is calculated over a null distribution of 
Target Score values generated with randomized drug response data and the fixed network 
structure. A random sampling of proteomic responses (randomized antibody label mixing) at each 
drug dose generates randomized data sets over all antibody readouts. The Target Score is 
calculated for 1000 independent random datasets using equation 1, and the null TS distribution 
is constructed. Next, the FDR-adjusted P value is calculated for the TS value from actual data. 
For increased statistical power, the p-values across biologically similar or highly overlapping 
conditions (e.g., similar BETis) that lead to similar Target Scores are merged using the Stouffer’s 
method with the formula (Stouffer et al., 1949). 
 
Equation 2 
Z = ∑ \]]

^_`
√b

          Z  
 
scores are obtained through p-value-to-Z conversion and k is the total number of conditions 
merged. Resulting Z-value is back converted to P-values and FDR-adjusted using the Benjamini-
Hochberg method. 
 
Determine response pathways. The resistance and response (drug activity) pathways are 
detected by reanalysis of the Target Score and the underlying network models. Proteins which 
are connected within the first neighborhood of each other in the underlying network and have 
highest Target Scores (20 top entities) represent the potential adaptive response pathway(s) and 
those with low Target Scores represent the potential response/drug activity pathway. The pathway 
relations are extracted from the reference network model and visualized using the Cytoscape 
software (Shannon et al., 2003).  
 
Go-Term enrichment 
We downloaded GO-term gene associations from http://geneontology.org/gene-
associations/goa_human.gaf.gz, and tested enrichment of the terms in differentially expressed 
126 genes using Fisher’s exact test. We used Benjamini-Hochberg method to select the 
significance threshold to get a result set with 0.1 FDR. 
 
Differential analysis of omics response  
The proteomic response was quantified by normalizing the median normalized proteomic 
readouts from drug treated samples with respect to the matched untreated samples. The 
proteomic differential response (Figure 5) is quantified as the St,i, = ∑d[St[(𝛥Xt,d

HCC1954,i- 
𝛥Xt,d

SKOV3,i)+(𝛥Xt,d
BT474,i- 𝛥Xt,d

SKOV3,i)], where 𝛥x is the phosphoproteomic response for entity i, t is 
the time point (24 or 48h), and d represents BETi (JQ1, IBET151, IBET726, or IBET762). The 
statistical significance is quantified using a t-test followed by a Bonferroni multiple hypothesis 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2019. ; https://doi.org/10.1101/711895doi: bioRxiv preprint 

https://doi.org/10.1101/711895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
23 

correction with the null hypothesis Ho: 𝛍(Xt,d
HCC1954,i)= 𝛍(Xt,d

SKOV3,i). The transcriptomic response 
was quantified by normalizing the mRNA counts from drug treated samples with respect to the 
matched untreated samples. The significant mRNA fold changes upon drug treatment were 
detected as FDR adjusted Q-values < 0.05 with DESeq method. To eliminate noise from rare 
transcripts, we included the mRNA species with an- abundance over a minimal threshold 
(minimum count > 200), in at least one condition (i.e., before or after treatment in at least one cell 
line). The differential responses are visualized as a heatmap that demonstrates fold differences 
of mRNA species that change in opposite directions in resistant vs. sensitive lines. 
 
Quantification of cell viability drug response  
The drug response is quantified as area under the curve, quantified as treating the dose response 
area as a sum of the trapezoids generated by the responses to consecutive drug doses. The 
maximum drug dose is quantified as Amax = 1-Vmax, where A is the effect at maximum dose and V 
is the observed viability at maximum dose. The drug synergy is quantified as the Bliss score with 
the formula; CI= EAB/(EA-EA(1-EB)), where E is the effect to drugs A, B and AB (combination of 
drugs A and B).  
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SUPPLEMENTARY FIGURES 

 
Figure S1. A. Genomic alteration profiles in the breast cancer and SKOV3 cell lines treated with 
BETis. The order of cell lines reflects BETi sensitivity rank (top: most resistant, bottom: most 
sensitive). Genes that are frequently altered in breast cancer are included in the analysis. B. BETi 
(JQ1 and IBET151) cell viability response IC50 for cell lines. C. Dose response curves of BET 
inhibition in HCC1954, BT474, MDAMB468, SKBR3, and SKOV3 cultured in 2D and 3D. D. 
Impact of ECM attachment in 3D cultures on proteomic levels in all cell lines. The bar plots display 
relative values with respect to those in monolayered cultures. Most significant increases are noted 
in EGFR phosphorylation at Y1068 (up to 2.4 increase in all cell lines except SKOV3), HER2 
phosphorylation at Y1248 (log-fold increase of 0.4 in SKBR3 to 1.4 in SKOV3), HistoneH3 levels 
( 1.2 log2-fold increase in BT474) and SRC phosphorylation at Y416 (up to 2 log-fold increase in 
all cell lines). Most significant reduction induced by ECM attachment were in S6 phosphorylation 
at S235/236 and S240/244 (~1 log2-fold decrease in SKBR3 and MDAMB468), caveolin (2 log2-
fold decrease in HCC1954) and AMPK_pT172 (1.6 log-fold decrease in SKOV3). AKT 
phosphorylation at T308 was increased in SKBR3; E-cadherin and annexin were increased in 
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SKOV3 upon ECM attachment. Interestingly, lipid metabolism genes such as FASN and ACC1 
(total and phosphorylated state) were higher in 3D cultured HCC1954 and SKOV3 lines 
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Figure S2. Target Score analysis of HCC1954, SKOV3, BT474, MDAMB468 and SKBR3 lines 
treated with BETis in 2D and 3D cultures based on RPPA data collected 24 and 48 hours post 
perturbation.  
 

 
 
Figure S4. The genomic alterations in the breast and ovarian (SKOV3) cell lines tested with the 
BET and MCL1 inhibitor combination. 
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Figure S5. The cell viability response to combination of BET inhibitors with A. AKT inhibitor, B. 
MEK1/2 inhibitors (trametinib). 
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