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Abstract

Motivation: Template-based modeling, the process of predicting the tertiary structure of a protein by using
homologous protein structures, is useful if good templates can be found. Although modern homology
detection methods can find remote homologs with high sensitivity, the accuracy of template-based models
generated from homology-detection-based alignments is often lower than that from ideal alignments.
Result: In this study, we propose a new method that generates pairwise sequence alignments for more
accurate template-based modeling. The proposed method trains a machine learning model using the
structural alignment of known homologs. It is difficult to directly predict sequence alignments using machine
learning. Thus, when calculating sequence alignments, instead of a fixed substitution matrix , this method
dynamically predicts a substitution score from the trained model. We evaluate our method by carefully
splitting the training and test datasets and comparing the predicted structure’s accuracy with that of state-
of-the-art methods. Our method generates more accurate tertiary structure models than those produced
from alignments obtained by other methods.
Availability and Implementation: https://github.com/shuichiro-makigaki/exmachina
Contact: ishida@c.titech.ac.jp or makigaki@cb.cs.titech.ac.jp

1 Introduction
Proteins are key molecules in biology, biochemistry and pharmaceutical
sciences. To reveal the functions of proteins, it is essential to understand the
relationships between proteins’ structure and function. Proteins that have
similar functions are often evolutionarily related; these proteins are called
homologs. Revealing homologs and studying proteins’ structure to deduce
their function are crucial molecular biology techniques. Protein structures
can be determined by experimental means such as X-ray crystallography
or nucleic magnetic resonance; protein structures derived in this way
are often registered to and accessible in the online Protein Databank
(PDB) (wwPDB consortium, 2018). However, despite improvements in
experimental methods for determining protein structures, the speed at
which amino acid sequences can be revealed has overtaken our ability
to ascertain the corresponding proteins’ structures. Therefore, protein
structure prediction, that is, the use of computational techniques to generate
a tertiary structural model of a given amino acid sequence, remains
essential.

Various methods for predicting a protein structure have been proposed
and can be briefly classified as either physicochemical (also called de
novo) simulations or template-free modeling methods. Other methods,
called template-based or homology modeling, predict structures based

on templates and their sequence alignment to a target protein. Template
structures are the structures of homologous proteins, often found
with homology detection methods. Currently, template-based modeling
methods are the most practical because the predicted models are much
more accurate if we can find good templates and protein sequence
alignments. In long-term homology detection studies from FASTA
(Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990), sequence
profiles based on multiple sequence alignments, such as PSI-BLAST
(Altschul et al., 1997) and DELTA-BLAST (Boratyn et al., 2012),
have detected homology with high accuracy. Hidden Markov model
(HMM)-based methods, a subset of sequence profile-based methods, also
detect remote homologs; HMM comparison methods, such as HHpred
(Zimmermann et al., 2018) have performed excellently in structure
prediction benchmarks (Hildebrand et al., 2009; Meier and Söding, 2015).

Recent homology search methods have been able to detect remote
homologs, although sometimes sufficiently accurate structure models
cannot be obtained because the quality of the sequence alignment generated
by homology detection program is poor. If a more accurate model is
required, researchers must often edit alignments manually before modeling
to improve their quality. In structural alignment, the structural difference
between a target protein structure and a template protein structure is
minimized; thus, sequence alignments generated by structural alignment
are ideal for template-based modeling (Figure 1). Often, the sequence
alignments generated by the homology detection methods are dissimilar to
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2 S.Makigaki and T.Ishida

Fig. 1. Model differences. Query (yellow) and template proteins are 1QG3A and 1VA9A,
respectively. The green model is generated from a structural alignment (TM-align), and the
blue model is from HHsearch. The TM-scores of HHsearch and structural alignment are
0.801 and 0.881, respectively [Molecular graphics were performed with the UCSF Chimera
(Pettersen et al., 2004) package.]

those generated by structural alignment, especially for remote homologs.
In essence, alignment quality is crucial to template-based modeling. Thus
far, a method’s ability to detect remote homologs has been prioritized
because models cannot be generated without a template. However, to
achieve higher-accuracy template-based modeling, the improvement of
sequence alignment generation is a critical open problem.

This problem has been mentioned in several studies (Kopp et al.,
2007) in which researchers have tried to improve alignments manually
based on their knowledge of biology; fully automated methods are still
required. Hijikata et al. (2011) proposed an automated method to improve
alignments by optimizing gap penalties. They evaluated the premise of
gap location in protein 3D structures by examining large protein structure
datasets, and found that the distribution of gaps in protein 3D structures
differed from previous studies. However, they used the technique mainly
for homology detection and the quality of its alignments for prediction
model accuracy was still unclear.

Recently, machine learning methods have demonstrated power in
homology detection, fold recognition, residue contact map prediction,
dihedral prediction, model quality assessment and secondary structure
prediction (Cao et al., 2016; Lyons et al., 2014; Manavalan and Lee, 2017;
Wang et al., 2017, 2016; Wei and Zou, 2016). Machine learning also seems
effective for tackling the problem of alignment generation for homology
modeling. However, this topic has not been studied because it is difficult
to treat alignment generation as a classification or regression problem.

In this paper, we propose a new pairwise sequence alignment
generation method based on a machine learning model that learns the
structural alignments of known homologs. Because it is difficult to
directly predict sequence alignment using machine learning, we instead
use dynamic programming during sequence alignment to dynamically
predict a substitution score from the learned model instead of a fixed
substitution matrix or profile comparison. Machine learning is used in this
substitution score prediction process. We evaluate the proposed method
using a carefully split training and test dataset and compare the accuracy

of predicted structure models with those of state-of-the-art methods as a
measure of sequence alignment quality.

2 Materials and methods
Generally, sequence alignment generation is integrated with the homology
detection process and the detection tools output sequence alignments with
homology search results from the database. In this study, we focus only on
alignment generation. Thus, the inputs are a target’s amino acid sequence
(query) and another amino acid sequence that was detected as a template by
any homology detection method (subject), and the output is an alignment
that is more suitable for homology modeling. This process is often called
re-alignment. Figure 2 shows an overview of our method. The proposed
method accepts query and subject amino acid sequences as input, then
aligns their sequences using the Smith–Waterman algorithm (Smith and
Waterman, 1981). In classical dynamic programming, a substitution matrix
such as BLOSUM62 or PAM250, is used to evaluate the match between
residue pairs. To improve alignment accuracy, profile comparison methods,
including FORTE (Tomii and Akiyama, 2004) and FFAS (Rychlewski
et al., 2008), use the similarity between two position-specific score
matrices (PSSMs) of a target residue pair. In contrast, we evaluate residue
matches based on a supervised machine learning technique. We train
a prediction model using pairwise structural alignments of structurally
similar protein pairs as the labels of a training dataset. Thus, the method
is expected to output similar sequence alignments by structural alignment.
The PSSMs of two input sequences are used as input to the prediction
model; to predict the match of a residue pair, PSSMs around target residues
within a fixed size window are used. Finally, the method returns a sequence
alignment and an alignment score as output.

2.1 Datasets

Our method needs information about known structurally similar proteins
to create structural alignments, for which we used the Structural
Classification of Proteins (SCOP) (Fox et al., 2013; Murzin et al.,
1995) database. The SCOP database classifies proteins by class, folds,
superfamily (SF), family and domain based on manually curated
function/structure classifications and contains redundant sequences. Thus,
we used the SCOP40 database instead, which contains only domains whose
sequence identity is<40% to avoid overfitting and reduce execution time.
In this study, we define domains that are in the same SF as structurally
similar.

For accurate evaluation and parameter optimization, we split training,
test and validation datasets from the full dataset. We selected five domains
each from seven SCOP classes to cover various protein structure types,
selecting test domains only from SFs containing greater than ten domains.
We ignored any small SFs and sorted the remaining domains by their
PDB revision date, ultimately selecting 35 domains as test data. For our
validation dataset, we split two groups from the remaining dataset. For
one group, we selected one domain each from seven SCOP classes for
parameter search; the other contains one domain each from the classes for
a gap penalty search. Finally, we split 49 domains (= 35+7+7) from all
the datasets for test and validation, and the remaining domains were used
for training (see Supplementary Table S1–S3 for details).

In the training dataset, we generated structural alignments of every
domain pair in the same SF using TM-align (Zhang and Skolnick, 2005).
We treated domain pairs whose TM-align score [TM-score (Zhang and
Skolnick, 2004)] was <0.5 as having low structural similarity and filtered
them out (Xu and Zhang, 2010). If the SF had only one domain, it
was ignored because we could not define a pairwise alignment for
it. Finally, 140889 pairwise structural alignments were generated. For
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Fig. 2. Overview of the proposed method. Two sequences are aligned using the Smith–Waterman algorithm and substitution scores used in the process are estimated by a prediction model.
The prediction model is trained to output an alignment similar to the structural alignment
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Fig. 3. Overview of a feature vector encoding scheme. The X and Y axes show an
amino acid sequence. The bold black line shows the structural alignment path between the
sequences on theX andY axes, with the green rectangle indicating the window. The feature
vector set is calculated only within this window. The feature vector is the concatenation of
the PSSM columns of the window subsequence. If the current column is on the line, the
label is 1; otherwise, it is 0

PSSM generation, we used three-iteration PSI-BLAST with the UniRef90
(The UniProt Consortium, 2016) database. When the training dataset

became too large to process within a reasonable computation time, the
training dataset was reduced to 1/10 of its initial size by random selection.

2.2 Input vector and label definition

To use machine learning methods to predict matching scores, we
had to encode information about residue pairs in a numerical vector
representation. In addition, we dealt with the problem as a binary
classification problem and used the reliability score of a prediction as
a matching score, because structural alignment can only tell us whether a
position in a dynamic programming matrix is a match; defining a correct
matching score is difficult. Figure 3 shows an overview of this design.

Let (Q,T ) be the query and target sequences, respectively. Let Qi be
the ith residue of sequence Q and Ti be the ith residue of sequence T . To
encode amino acid sequences in a numerical vector, we make PSSMs of
the sequences in advance. The column length of a PSSM is 20, which is
the number of amino acid types, and the row length is the length of the
sequence. Feature vector Vx,y at Qx and Ty is the concatenation of the
query and target residues’ feature vectors:

Vx,y = (Pquery
x ,Ptarget

y ).

P is the concatenation of PSSM rows around the residue, defined as

Pi = (pi−w
2
, . . . ,pi, . . . ,pi+w

2
),

where w is the window size and pi is the ith row of the PSSM.
Regarding ‘padding’ regions defined in i ≤ 0, |Q| > i and |T | > i,
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Fig. 4. Result of gap penalty grid search. Values in the heatmap show the average TM-
score of the validation dataset. Penalties were optimized to -0.1 for gap-open and -0.0001
for gap-extend

we assign pi to be 0. For example, in the case of w = 5, the feature
vector dimension is 200 = 20× 5× 2.

We can define this feature vector at every residue pair of the query and
target sequences. However, we calculate them only within areas where the
window moves along with the alignment path because information from
residue pairs that are far from the alignment path is not informative.

We assign label Lx,y at Qx and Ty to be 0 or 1:

Lx,y =

{
1, if Qx matches Ty

0, otherwise.

The inputs are a pair of query and template PSSMs and a residue
position. The outputs are a predicted label and the normalized confidence
score (0 ≤ score ≤ 1).

2.3 Alignment calculation

The pairwise sequence alignment of input sequences is calculated using
the Smith–Waterman algorithm (Smith and Waterman, 1981), which
requires a substitution score for each residue pair. We predict this score
using supervised machine learning and the feature vector defined above.
Specifically, we used the k-nearest neighbor (kNN) classification model
because it is simple and powerful, especially for large training datasets (Wu
et al., 2008). kNN calculates the distance between an input feature vector
Vx,y and feature vectors in training dataset Vtraining

x,y and checks the
labels of the k nearest feature vectors. Generally, the most major label is
output as the predicted label fromkNN. In this case, 0 or 1 is output because
this is a binary classification problem. However, predicting binary labels
is too coarse-grained for alignment generation. Thus, the classification
confidence score of the kNN algorithm, which is the ratio of a predicted
positive label, was used as the substitution score of Qx and Ty , instead.

2.4 Parameter optimization

Our method requires some hyperparameters, which we optimized using
the validation dataset. We set the number of nearest neighbors to (10, 100,
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Fig. 5. ROC of label prediction. The title is the target name shown in Supplementary Table
S1; the average AUC is shown next to the name

1000), the gap open penalty to (-0.0001, -0.001, -0.01, -0.1, -1), and the
gap extend penalty to (-0.00001, -0.0001, -0.001, -0.01, -0.1, -1). Using
a grid search, we selected 1000 as the number of kNN neighbors. The
affine gap penalty optimizations were -0.1 for gap-open and -0.0001 for
gap-extend (Figure 4). These gap penalties were much smaller than the
general gap penalties used in other studies because our method’s predicted
substitution scores were too small for general gap penalties.

3 Results
In our method, residue matches at two sequence positions is estimated
by kNN. It can be considered as an independent binary classification
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Fig. 6. Sequence-independent TM-score of the proposed and competitor methods. The solid line shows the medians and the dashed line shows the means. Dots indicate the data density at
each TM-score

problem. Thus, we first checked the performance of the label prediction
process using the receiver operating curve (ROC) and the area under the
ROC (AUC). Figure 5 shows the results. The proposed method predicted
labels accurately, except for d2axto1, which showed an almost random
prediction.

Next, we compared the accuracy of three-dimensional predicted
protein models generated from these alignments to evaluate the quality of
generated sequence alignments. This step is required because there may
not be strong correlation between match prediction and model accuracy
and we cannot compare our method with other methods directly. We used
MODELLER as a modeling tool (Šali and Blundell, 1993). We treated
the entire SCOP40 domains, in which sequence similarities in an SF are
<40%, in the SF where the query is as a structurally similar protein and
applied the proposed method to them. Model accuracy can be evaluated
by calculating the similarity between an experimentally resolved structure
and a predicted structure. For this purpose, we used TM-score (Zhang
and Skolnick, 2004), which evaluates model accuracy by scoring from 0.0
(least accurate) to 1.0 (most accurate).

We used all domains in the SF of the query as template proteins and
generated pairwise alignments. We then compared the accuracy of the
proposed method with those of PSI-BLAST, DELTA-BLAST, HHsearch
(Söding, 2005), the Smith–Waterman algorithm with a BLOSUM62
substitution matrix, and structural alignment. For PSI-BLAST, which
accepts a profile as a query, we made profiles by running three iterative
PSI-BLAST searches in the UniRef90 database. DELTA-BLAST allows us
to use a sequence as a query because it finds profiles from the Conserved
Domain Database (Marchler-Bauer et al., 2010) before searching. For
HHsearch, we used Uniclust20 (Mirdita et al., 2017) to generate query
profiles. We used TM-align (Zhang and Skolnick, 2005) for structural
alignment.

Figure 6 shows the accuracy of protein structure prediction. As
expected, structural alignments generated the most accurate models (0.551

on average), although the proposed method achieved results that were
nearly as accurate (0.499). The naïve Smith–Waterman algorithm and
HHsearch performed the next best; their average scores were 0.432 and
0.472, respectively. From the results of data density, in all methods—
including proposed method—these results had two peaks. The top-ranking
models of all methods showed similar accuracy, but the worst models’
accuracies improved when using the proposed method.

In figure 7, we show as an example one of the generated models and
an actual alignment, indicating that the proposed method could improve
model accuracy. The proposed method succeeded in aligning almost a
whole protein and generated very similar alignment results to the structural
alignment method. In contrast, HHsearch failed to correctly align a region
around the 4th beta strand (residue numbers 40–55) and caused structural
differences from the native structure in the loop regions on both sides
of the sheet. Figure 7 shows how the proposed method correctly aligned
the region that HHsearch failed to align. The kNN predicted match score
between a query residue with residue number 49 and a template residue
with residue number 63 is much higher than the scores around the position.
Thus, the proposed method generated an alignment passing through the
position.

4 Discussion

4.1 Impact of model accuracy improvement for protein
function estimation

As shown in our results, we achieved improved model accuracy in
structural similarity to a native structure. However, it is difficult to judge
whether this improvement is useful for advanced applications, such as
protein function estimation. The protein shown in Figure 7 is fibronectin
typeⅢ domain of integrinβ4, which makes a complex with plectin’s actin-
binding domain (Song et al., 2015). Thus, we applied a protein–protein
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Template I S T E E A A P D G P P M D V T L Q P V T S Q S I Q V T W K   30
HHsearch - - - - - - - D L G A P Q N P N A K A A G S R K I H F N W L   23
Structural - - - - - - D L - G A P Q N P N A K A A G S R K I H F N W L   23
Proposed - - - - - - - D L G A P Q N P N A K A A G S R K I H F N W L   23
Template A P K K E L Q N G V I R G Y Q I G Y R E N S P G S N G Q Y S   60
HHsearch P P S - - - - - G K P M G Y R V K Y W I Q G D S E S E A - -   46
Structural P P - S - - G - - K P M G Y R V K Y W I Q G D - S E S E A H  47
Proposed P P S - - - - - G K P M G Y R V K Y W I Q G D - S E S E A H   47
Template I V E M K A T G D S E V Y T L D N L K K F A Q Y G V V V Q A  90
HHsearch - - - H L L D S K V P S V E L T N L Y P Y C D Y E M K V C A   73
Structural L L D S K V - - - - P S V E L T N L Y P Y C D Y E M K V C A   73
Proposed L L D S K V - - - - P S V E L T N L Y P Y C D Y E M K V C A   73
Template F N R A G T G P S S S E I N A T T L E   109
HHsearch Y G A Q G E G P Y S S L V S C R T H Q  92
Structural Y G A Q G E G P Y S S L V S C R T H Q  92
Proposed Y G A Q G E G P Y S S L V S C R T H Q  92

Fig. 7. The yellow model in the top figure represents the native structure, the red model is
generated by the proposed method, and the blue model is from HHsearch. The TM-scores
of HHsearch and our method are 0.815 and 0.871, respectively. The bottom figure is an
excerpt of score heatmap and alignment paths. X and Y axes show the query (1QG3A)
and template (1VA9A) residue numbers, respectively. HHsearch (dotted dash) generated
different alignments between #46 and #55 from the structural alignment (dash), whereas
the proposed method (solid) could generate similar alignments to the structural alignment

Fig. 8. Docking results using modeled structures. The light purple model is generated by
the proposed method and the light blue model is from HHsearch. The dark purple model
is a ligand structure (plectin) docked by MEGADOCK using the model from the proposed
model (ninth model, LRMSD=8.8Å), and the dark blue model is a ligand structure docked
using the model from HHsearch (fourth model, LRMSD=23.8Å). The light gray model
drawn by Cα trace shows the correct position based on the native complex structure. The
red circle shows a loop that HHsearch failed to model correctly

docking to the modeled structures and a ligand structure from the complex
structure (PDB ID: 4Q58, Chain: A), using MEGADOCK 4.0 (Ohue et al.,
2014) with the default settings, to check the influence of model accuracy.
Figure 8 shows the docking results using the model from the proposed
method and that from HHsearch.

The best docking model selected from the top-10 models is shown.
Where the docking calculation based on the HHsearch model failed to
detect the correct binding position, the docking calculation based on the
proposed method’s model succeeded. In the HHsearch model, a loop region
after 4thβ strand (the red circle in Figure 8) became longer than the correct
structure because of this wrong alignment, causing a steric clash with the
ligand structure. As a result, the docking calculation failed to detect the
correct binding position and there was no docked result with ligand root
mean squared deviation (LRMSD) < 10Å within 3000 models output by
MEGADOCK. This is simply one example, but it indicates that the model
accuracy improvement achieved with the proposed method is sometimes
effective in aid our understanding of the function of a protein.

4.2 Application for homology detection

Our method can be used for homology detection by sorting the alignment
scores it includes in its result. We investigated the method’s homology
detection and the top model accuracies of a search result ranking. The
proposed method’s homology detection performance was compared with
those of PSI/DELTA-BLAST and HHsearch, as shown in Table 1. To
ensure a reasonable computation time, the training dataset was reduced to
1/100 instead of 1/10. ROCn considered results only up to the nth false
positive and AUCn was regularized by the number of false positives and
cutoff n. In this evaluation, we defined true positives as those having the
same detected SF as the query and false positives as those having different
SFs. Compared with PSI/DELTA-BLAST and HHsearch, the detection
sensitivity of the proposed method was lower. The highest average AUC50

of HHsearch was 0.706. By contrast, the proposed method had the lowest
score, 0.205. We think this is because the proposed method shows many
false positive results.

Using the search results, we applied template-based modeling to the top
10 search result and made 3D models; the models’ accuracy is mentioned
in the second row of table 1. The proposed method achieved the second-
highest average TM-score, 0.298. From these results, it is difficult to use
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Table 1. Average AUC50 and model accuracy (TM-score) of the
proposed and competitor methods

PSI-BLAST DELTA-BLAST HHsearch Proposed

AUC50 0.323 0.340 0.706 0.205
TM-score 0.278 0.324 0.205 0.298

our method for homology search. Therefore, we consider that our proposed
method is currently useful for the alignment generation phase of template-
based modeling, after template detection.

4.3 Optimization of window size and the influence of
training data reduction

We tested our method using (1, 3, 5) as window size candidates and
compared the label prediction accuracy using AUC. The results of window
sizes (1, 3, 5) were 0.640, 0.689 and 0.701, respectively. We also tested
data reduction ratios of (0.001, 0.01, 0.1) and compared the label prediction
accuracy using AUC. The results for ratios of (0.001, 0.01, 0.1) were 0.635,
0.676 and 0.701, respectively. Although increasing the window size and
reduction ratio may increase accuracy, we could not evaluate them because
the size of the required training dataset would be bigger than our computing
resources can manage.

5 Conclusion
In this paper, we proposed a new sequence alignment generation method
that uses machine learning to accurately predict protein structures. Instead
of a fixed substitution matrix, the proposed method predicts substitution
scores at each residue pair. To apply machine learning, we developed
a method that converts pairwise alignments to numerical vectors of
latent space, which enables us to employ a supervised machine learning
algorithm for sequence prediction. The predicted scores are directly used
to generate alignments, which are in turn used as input for template-based
modeling. We evaluated the model accuracy of our alignment generation
method and found that it outperformed the state-of-the-art methods.
We also investigated our method’s ability to detect remote homologies;
using AUC50 for comparison, our method did not perform better than
other methods. However, we found that the proposed method generated
relatively accurate 3D models compared with other methods.

Currently, our method requires a long execution time because of
the kNN algorithm and dataset size. These factors caused us to reduce
the amount of training data used because the model’s execution time
depends on the number of target proteins as well as protein size. It would
be a natural extension of this work to employ faster kNN algorithms,
including approximate schemes, because our method does not require
precise solutions. The proposed feature vector design can be treated
as two-dimensional; in the future, we will also consider the use of
higher-performance models such as convolutional neural networks.
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