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1 Abstract

2 Introduction: Minor QTLs mining has a very important role in genomic selection, pathway analysis and 

3 trait development in agricultural and biological research.  Since most individual loci contribute little to 

4 complex trait variations, it remains a challenge for traditional statistical methods to identify minor QTLs 

5 with subtle phenotypic effects. Here we applied a new framework which combined the GWAS analysis 

6 and machine learning feature selection to explore new ways for the study of minor QTLs mining. 

7 Results: We studied the soybean branching trait with the 2,137 accessions from soybean (Glycine max) 

8 diversity panel, which was sequenced by 50k SNP chips with 42,080 valid SNPs.  First as a baseline 

9 study, we conducted the GWAS GAPIT analysis, and we found that only one SNP marker significantly 

10 associated with soybean branching was identified. We then combined the GWAS analysis and feature 

11 importance analysis with Random Forest score analysis and permutation analysis. Our analysis results 

12 showed that there are 36,077 features (SNPs) identified by Random Forest score analysis, and 2,098 

13 features (SNPs) identified by permutation analysis. In total, there are 1,770 features (SNPs) confirmed by 

14 both of the Random Forest score analysis and the permutation analysis. Based on our analysis, 328 

15 branching development related genes were identified. A further analysis on GO (gene ontology) term 

16 enrichment were applied on these 328 genes. And the gene location and gene expression of these 

17 identified genes were provided. 

18 Conclusions: We find that the combined analysis with GWAS and machine learning feature selection 

19 shows significant identification power for minor QTLs mining. The presented research results on minor 

20 QTLs mining will help understand the biological activities that lie between genotype and phenotype in 

21 terms of causal networks of interacting genes. This study will potentially contribute to effective genomic 

22 selection in plant breeding and help broaden the way of molecular breeding in plants. 

23 Keywords:  Machine learning, Minor QTLs, GWAS, Feature selection

24
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25 Introduction  

26 In molecular genetics research, a remaining challenge in quantitative trait studies is the efficient 

27 mapping of minor quantitative trait loci (QTLs) to identify causative genes and understand the genetic 

28 basis of variation in quantitative traits [1]. Because the subtle influence on the phenotype of minor QTLs 

29 is easily masked by epistasis [2] and gene-environment interactions [3], minor QTLs are more difficult to 

30 be detected and analyzed. Because of this, a large fraction of the genetic architecture of most complex 

31 traits is not well understood [4, 5, 6].  Currently, almost all of genes or QTLs that have been verified were 

32 major effect ones, and the minor effect QTLs were less investigated. Several different methods have been 

33 reported to identify minor QTLs，but many of these strategies have had poor success rates [7, 8, 9]. To 

34 improve the situation, some of these studies were based on expensive experimental data from large 

35 populations. For example, Baobao et al., demonstrated a method for mapping of minor effect QTLs in 

36 maize by using super high density genotyping and large recombinant inbred population [10]. 

37 QTL-mapping algorithm based on statistical machine learning methods better estimates of QTL 

38 effects, because it eliminates the optimistic bias in the predictive performance of other QTL methods. It 

39 produces narrower peaks than other methods and hence identifies QTLs with greater precision [17]. Two 

40 machine-learning algorithms (Random Forest and boosting) have been used to analyze discrete traits in a 

41 genome-wide prediction context.  It was found out that Random Forest and boosting do not need an 

42 inheritance specification model and may account for non-additive effects without increasing the number 

43 of covariates in the model or the computing time [18]. This study shows some advantages in the use of 

44 machine learning methods to analyze discrete traits in genome-wide prediction. Random Forest was 

45 shown to outperform other methods in the field datasets, with better classification performance within and 

46 across datasets. Even when tested with the main QTLs for several traits in different chromosomes, 

47 Random Forest was able to identify them, but it failed to detect significant associations when the variance 

48 explained by the QTL is low [19].
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49 Besides physical QTLs mapping, machine learning methods are also used on eQTL(Expression 

50 quantitative trait loci) Mapping.  By using combinations of methods, an approach that relies on Random 

51 Forests and LASSO was developed and it achieved a much higher average precision at the cost of slightly 

52 lower average sensitivity [20]. It is observed that when combined Random Forest and other modeling 

53 techniques, it almost always performed better than their constituent methods [21, 22].  It is observed that 

54 Random Forests map eQTL are to be validated by independent data, when compared to competing multi-

55 locus and legacy eQTL mapping methods [20]. 

56 Genome-wide association studies (GWAS) is considered to be a powerful approach for dissecting 

57 complex traits [23,24,25] and has been widely applied for the study of many plants, such as Arabidopsis, 

58 rice and maize [26, 27, 28, 29, 30, 31]. In soybean, the evaluation of several specific agronomic traits, 

59 including seed protein and oil concentration [32, 33], cyst nematode resistance [34, 35], and flowering 

60 time [36] were conducted through GWAS. Plant architecture related traits (PATs) are of great importance 

61 for soybean and many crops.  Studies in past decades indicated that PATs are mainly affected by minor 

62 effect quantitative traits loci (QTLs), especially as reflected in the Nested Association Mapping (NAM) 

63 population [37, 38, 39]. 

64 From these previous studies, however, minor QTLs are hard to be detected mainly because their 

65 contribution is subtle. It is challenging for current statistical methods to detect them. For example, most of 

66 statistic methods are based on the variance analysis, such as ANOVA, and they usually need a larger 

67 population size to detect minor QTLs. 

68 In this study, with soybean branching as the focused trait, we combined the GWAS analysis and 

69 machine learning feature selection, to explore the application of a new analysis framework in minor QTLs 

70 mining in plants.  As a result, we identified 328 minor genes and 1770 effective SNP markers related to 

71 soybean branching development.  Our analysis results with the new framework for minor QTLs mining 

72 would benefit the genomic selection, the pathway analysis and organism development research.  

73 Methods:
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74 1. Dataset 

75 The original genotypic data is from soybase data bank : https://soybase.org/snps/. The SoySNP50K 

76 iSelect BeadChip has been used to genotype the USDA Soybean Germplasm Collection [46]. The 

77 complete data set for 20,087 G. max accessions genotyped with 42,509 SNPs is available.  

78 Soybean accessions and phenotypic data used in this study were obtained from the USDA Soybean 

79 Germplasm Collection (http://www.ars-grin.gov/npgs/). Branching phenotype data was extracted and 

80 used for analysis. Missing data and SNPs with minor allele frequencies below 0.1 were excluded, leaving 

81 42,080 SNPs for GWAS.

82 2. Genome wide association study (GWAS)

83 Association analysis and estimation of each SNP effect was implemented in GAPIT software (version 2) 

84 [47]. The regression linear model (GLM), and the mixed linear model (MLM) methods were used as 

85 described by Tang et al. [45]. Default parameters of the SUPER model were used: sangwich.top = 

86 “MLM,” sangwich.bottom = “SUPER,” LD = 0.1. The significant P-value cut-off was set as p = 3.45e-07, 

87 equivalent to α level of 0.05 after Bonferroni correction. The efficient mixed-model association with 

88 corrections for kinship and population structure was applied. Three PCs generated from GAPIT were 

89 included as covariates. The SNPs with a minor allele frequency (MAF) higher than 0.01 were used to 

90 estimate the population structure and the kinship. Only SNPs with a MAF higher than 0.1 were used for 

91 association tests. The cutoff of significant association was a False Discovery Rate (FDR) adjusted P-value 

92 less than 0.1 using the Benjamini and Hochberg procedure to control for multiple testing. Significant 

93 SNPs were defined if showing a minus log10‐transformed P ≥ 3. SNPs with a genetic distance less 

94 than 2 cM were considered to be in a LD extension block and belong to the same SNP cluster. 

95 3. Data preprocessing

96 In machine learning feature selection analysis, all of nucleotides in genotype data was added the rs 

97 (Reference SNP cluster ID) information and transformed as rs + nucleotide (Sup_Table7). The whole 

98 dataset was divided into 11 subsets based on different P-value levels for a further analysis in machine 
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99 learning models.  The genotype data used in regression and feature importance analysis were encoded by 

100 OneHotEncoder after labelencoding. 

101 4. Feature importance analysis 

102 Feature importance analysis explains what features have the biggest impact on predictions in testing 

103 model. Permutation importance is a kind of global model-agnostic method and calculated after a model 

104 has been fitted. Compared to most other approaches, permutation importance is fast to calculate and 

105 widely used.  Random forest is one of the most effective machine learning models for predictive analytics 

106 capable of performing both regression and classification tasks and able to capture non-linear interaction 

107 between the features and the target. It is very good at handling categorical features with fewer than 

108 hundreds of categories [49]. The character of permutation importance consists with the properties we 

109 would want a feature importance measure to have. In this research we applied the random regressor in 

110 permutation importance analysis and Random Forest score analysis for all of 2137 samples and 42080 

111 features (SNPs). 

112 5. Gene Ontology analysis

113 SNPs identified by feature importance analysis were searched in SoyBase data site 

114 (https://soybase.org/snps/) by rs number. And the flank sequence of corresponding SNP was used to 

115 BLAST in Glycine max Genome DB database (http://www.plantgdb.org/GmGDB/) for confirmation.  

116 The gene names which SNPs hit to the same location (including CDS, UTR and intron) were collected for 

117 GO (gene ontology) analysis. All the genes identified by BLAST were analyzed by GO term enrichment 

118 tool at SoyBase website (https://soybase.org/goslimgraphic_v2/dashboard.php). The GO enrichment 

119 information, related charts and gene location map were generated by GO term enrichment tool at SoyBase 

120 website. 

121 Results:

122 1. Genome Wide Association Study (GWAS) for soybean branching

123 A genome-wide association study (GWAS) of soybean branching was conducted with 42,080 

124 SNP markers in the GAPIT (Genome Association and Prediction Integrated Tool) software using a mixed
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125 ‐linear model (MLM). 3541 SNP markers with P-value less than 1.0 were identified. Among these 3541 

126 markers, there are 18 markers with P-value less than 0.005, 32 markers with P-value less than 0.01 and 

127 161 makers with P-value less than 0.05(Table 1. and Sup_Table1.). Associations between phenotypes and 

128 genetic markers are displayed as Manhattan plots (Fig. 1) and (Sup_Table1). P-values were displayed in 

129 negative log scale with base of 10 (–log10 (P)) against the physical map positions of genetic markers. We 

130 set a threshold of –log10 (0.1/42080) = 5.624 (42080 is the SNP marker numbers) to identify SNPs 

131 significantly associated with a trait. In total of 161 which P-value is less than 0.05, only SNP marker 

132 ss715607451 were significantly (-log10 (p) = 9.524328812) associated with soybean branching trait.  

133 Marker ss715632223 and ss715613636 with log10 (p) value at 4.634512015 and 4.554395797 

134 respectively, are near to the threshold but not reach it (Fig. 1; Sup_Table1). In other words, by 

135 the GAPIT analysis, only one SNP marker significantly associated with soybean branching was 

136 identified. We also BLAST the 18 SNPs which P-value less than 0.005 in Soybase and five 

137 annotated genes are found (Table 1), but none of them is reported as branching related.

138 2. Feature importance analysis

139 Please refer to Fig. 3 for a summary chart of our feature importance analysis. In the following we 

140 give the details of our analysis results.   

141 In general, feature importance analysis is based on the understanding how the features in the 

142 testing model contribute to the prediction model. Feature importance includes local model-agnostic 

143 feature importance and global model-agnostic feature importance. Since local measures focus on the 

144 contribution of features for a specific prediction, whereas global measures take all predictions into 

145 account. Here we applied permutation feature importance, a global model-agnostic approach, with the 

146 Random Forest algorithm as the core. After evaluating the performance of the models, we permuted the 

147 values of a feature of interest and re-evaluate the model performance. The average reduction in impurity 

148 across all trees in the forest due to each feature was computed.  
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149 Our results showed that there are 974 features in total with the weight values above zero. Among 

150 them, 971 features (SNPs) have weights bigger than 1E-06, 952 features (SNPs) in total have weights 

151 bigger than 1E-05 and 872 features (SNPs) have weights bigger than 0.0001(Sup_Table2.). Our results 

152 also showed that there are 1124 features in total with negative weight values. Among them, 1107 features 

153 (SNPs) have weights smaller than -1E-05, 939 features (SNPs) have weights smaller than 1E-04 

154 (Sup_Table2.).  There are 39982 features with weight zero in the Random Forest regression model, and 

155 these features account for around 95.014% of the total number of features (SNPs) (Sup_Table2.). Table 2 

156 showed the top 20 features with higher importance in both the positive side and negative side. 

157 Besides the permutation feature importance, the feature importance was also computed by feature 

158 scores. The computation of feature scores was implemented by the Random Forest algorithm. Our results 

159 showed that there are 36077 features in total got a score bigger than 1E-07. Among them, 33121 features 

160 (SNPs) got a score bigger than 1E-06, 19735 features (SNPs) got a score bigger than 1E-05, and 1472 

161 features (SNPs) got a score bigger than 0.0001. A total of 6003 features got a score zero, and these 

162 features accounts for 12.466% of the total features (SNPs) (Table 2, Sup_Table3). 

163 3. Comparison of different methods for feature importance analysis

164 As mentioned in above, there were 36077 features (SNPs) identified by Random Forest score 

165 analysis and 974 features (SNPs) in total had weight value above zero identified by permutation analysis. 

166 Among these 974 positive features (SNPs), there were 806 features (SNPs) confirmed by Random Forest 

167 score analysis. There were 1124 features (SNPs) in total got negative weight values identified by 

168 permutation analysis. Among these 1124 negative features (SNPs), there were 964 features confirmed by 

169 Random Forest score analysis. In total, there were 1770 features (SNPs) confirmed by both of Random 

170 Forest score analysis ad permutation analysis. Among these 1770 features (SNPs), there were 146 features 

171 (SNPs) with P-value < 1 (69 positives and 77 negatives) (Fig. 2, Sup_Table4.).  

172 To validate our feature importance analysis results, all 2137 samples characterized with 1170 

173 identified SNPs were applied on the Elastic net regression analysis. Our results showed that the RMSE 

174 (root mean square error) was 0.2813 and the R2 value was 0.741. Compare to the Elastic net analysis on 
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175 data subsets from the GAPIT analysis,  the accurate level close to the data set those with P-value <1. For 

176 SNPs with P-value less than 1 in the GAPIT analysis, the RMSE value was 0.2601 and the R2 value was 

177 0.7810, but there were 3451 features (SNPs) applied (Table 2). In other words, our results showed that 

178 1770 features (SNPs) from feature selection could reach the same accuracy as the 3451 features (SNPs) 

179 with P-value less than 1.0. The analysis showed that feature importance analysis could help lower the 

180 feature size and increase the computation efficiency.   

181 Based on the above analysis, we searched all 1170 SNPs which were confirmed by both of 

182 Random Forest score and Permutation analysis in soybean genome. We found that 328 SNPs hit the 

183 annotated genes (Sup_Table4). To identify biological processes these 328 genes participate in, we further 

184 applied the GO (gene ontology) term enrichment analysis for all of them. Our result showed that the 

185 functional group for biological process, cellular component and molecular function were highly enriched 

186 by most of these 328 genes (Fig. 3, 4, and 5, Sup_Table5). In biological process, 66 genes (times) were 

187 classified into 16 GO term classes and 14 genes had no specific GO term to assign (Fig. 3, Sup_Table5). 

188 In cellular component class, 388 genes (times) were classified into 18 GO classes and 14 genes had no 

189 specific GO term to assign (Fig. 4, Sup_Table5). In molecular function class, 264 genes (times) were 

190 classified into 17 GO classes and 14 genes had no specific GO term to assign (Fig. 5, Sup_Table5). As is 

191 common with GO analysis, some genes were classified differently under different GO terms 

192 (Sup_Table5). 

193 Gene location mapping results showed that all of these 328 genes are scattered on chromosome 1 

194 to chromosome 18.  There were no branching related genes located in chromosome 19 and chromosome 

195 20 (Fig. 6). The inquiry term “branching” was searched in Soybase and 35 genes were found 

196 (Sup_Table4). To make a comparison, the location of these 35 genes were also marked on Fig. 6.  The 

197 gene expression information of all 328 genes identified in this research were searched against Soybase for 

198 a further analysis (Sup_Table 6).  

199 Discussion:

200 1. Minor QTLs and genomic selection 
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201 Genomic selection is a marker-assisted selection approach to enhance quantitative traits in 

202 breeding population, in which whole genome SNPs (single-nucleotide polymorphisms) markers can be 

203 used to predict breeding values. Genomic selection has been proved to increase breeding efficiency in 

204 both plant and animal breeding, such as dairy cattle, pig, rice and soybean [41]. To get an accurate 

205 prediction in genomic selection, we need a better understanding of the population of SNP makers and the 

206 contribution of each markers. In the last decade, efforts of global international collaborations have 

207 revealed numerous loci that influence traits development in different organism by genotyping and 

208 phenotyping very large cohorts of individuals. However, the effects of single alleles explain only a small 

209 portion of the heritable variability [42]. Although some traits loci are found, these loci alone do not point 

210 to the underlying mechanism responsible for the association, which is due to complex gene interactions in 

211 biological activities. To identify genes and pathways responsible for variation in quantitative traits, it is 

212 still a central challenge of modern genetics. 

213 Plant breeding is the process of pyramiding favorable alleles. The minor effect QTLs have much 

214 more importance in molecular breeding and commercial breeding since the enrichment of minor alleles 

215 can enhance the control accuracy of phenotype performance [43]. In this research, we applied a new 

216 framework which combined the GWAS analysis and different feature selection methods to explore minor 

217 QTLs/alleles and their importance in soybean branching. Compare to the P-value method in GWAS 

218 analysis, the feature importance analysis we used in this research explored 36077 features in total with a 

219 score higher than 1E-07, which is about ten times as the number of the features identified in GWAS 

220 analysis with P-value less than 1.0.  Based on the Permutation feature importance analysis, we explored 

221 974 features with positive effects on soybean branching development and 1124 features with negative 

222 effects on soybean branching development (Table 2 and Sup_Table2). Either in linkage mapping or in 

223 association mapping, it is difficult to find the QTLs which have negative contribution to a trait, even we 

224 all know there are negative QTLs/alleles involved in all biological activities. From our analysis and 

225 testing results, the new framework we used in this research is superior to the traditional P-value based 

226 methods in molecular genetics analysis. Actually, in GWAS analysis, there is only one SNP 
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227 (ss715607451) above the threshold, unfortunately, this SNP does not hit on any gene. And the BLAST 

228 results of the 18 SNPs with P-value less than 0.005 in Soybase shows five annotated genes (Table 1), but 

229 none of them is reported as branching related.  All of these information are very important to genomic 

230 selection and could lead to an accurate prediction in genomic selection a further study in future. 

231 2. Feature importance analysis and its applications

232 In this research, we applied three kind of feature importance analysis, permuted feature 

233 importance, feature importance scoring and P-value analysis through GAPIT. We employed the Random 

234 Forest regression algorithm in permuted feature importance and feature importance scoring analysis. It is 

235 reported that the feature importance based methods are applicable if we are going to use a tree-based 

236 model for making predictions [44].  Random Forest is one of the most effective machine learning models 

237 for predictive analytics capable of performing both regression and classification tasks and able to capture 

238 non-linear interaction between the features and the target [45]. In random Forest, features that tend to split 

239 nodes closer to the root of a tree will result in a larger importance value. Node splits based on this feature 

240 on average result in a large decrease of node impurity. Permutation feature importance is a model-

241 agnostic approach and is calculated after a model has been fitted. The values of a feature of interest and 

242 reevaluate model performance is permutated after evaluating the performance of model. The observed 

243 mean decrease in performance indicates feature importance. The performance decrease can be compared 

244 on the test set as well as the training set. Only the latter will tell us something about generalizable feature 

245 importance. 

246 As we mentioned above, one of the biggest problems facing GWAS analysis is difficult to detect 

247 quantitative traits which controlled by multiple genes, Association mapping and bi-parent mapping good 

248 for major QTLs but not minor QTLs, Minor QTLs are important for quantitative traits but hard to be 

249 detected by traditional genetic research, Machine learning methods open a door for minor QTLs mining, 

250 special for non-model organisms with less research basis. Our results showed that the new framework 

251 displays much powerful ability in minor QTLs mining than conventional analysis methods. We can 
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252 expect many discoveries will be made through applications of different machine learning methods to 

253 genomics data, particularly in genomic selection research. 

254 Conclusions:

255 Accurate prediction of genomic breeding values is a central challenge to contemporary plant and 

256 animal breeders. Minor QTLs play very important roles in this procedure, but we know little about the 

257 minor QTLs in most traits’ development.  To understand how many genes and which genes involved in 

258 the trait’s development is the prerequisites of breeding prediction. In this research, we combined the 

259 GWAS analysis and feature selection with machine learning methods, and explored the new framework in 

260 minor QTLs mining. The framework provides a way for finding minor QTLs and better estimates of the 

261 QTL effects supportable by the data. Unlike QTL mapping through linkage mapping, this framework does 

262 not require a genetic map. It is therefore applicable to any species or population. This research on minor 

263 QTLs miming will contribute to trait’s development and gene pathway analysis in further studies.

264

265
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266 Abbreviations

267 SNPs: single-nucleotide polymorphisms

268 GWAS: genome-wide association study

269 CDS: coding region sequence

270 UTR: untranslated region

271 GO: gene ontology

272 BLAST: Basic Local Alignment Search Tool

273
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Tables and table legends

Table 1. Summary of SNP markers with P-value less than 0.005 from GWAS analysis
SNP Location Chr.* Position P.value RMS** -log10 

value

ss715607451 intergenic 10 45054553 2.99E-10 0.363021 9.524329

ss715632223 intergenic 18 55622046 2.32E-05 0.356302 4.634512

ss715613636 intergenic 12 8904870 2.79E-05 0.356195 4.554396

ss715579744 Glyma01g35330 1 48727937 0.000209 0.355028 3.679931

ss715622025 intergenic 15 46324641 0.000363 0.35471 3.439907

ss715622023 intergenic 15 46299552 0.000531 0.354493 3.275199

ss715579749 Glyma01g35370 1 48751448 0.000605 0.354419 3.218473

ss715613329 intergenic 12 6846229 0.000809 0.354254 3.092144

ss715579747 intergenic 1 48741524 0.000883 0.354204 3.054065

ss715637835 intergenic 20 37318170 0.001282 0.353993 2.892276

ss715607752 Glyma10g39840 10 48017555 0.001568 0.353879 2.804728

ss715613193 intergenic 12 5623543 0.002378 0.353645 2.623833

ss715638884 Glyma20g38610 20 47292145 0.002454 0.353628 2.610076

ss715638808 Glyma20g37960 20 46826697 0.003846 0.353377 2.414971

ss715590469 intergenic 5 30305516 0.003889 0.353371 2.410177

ss715633540 intergenic 19 25950203 0.004234 0.353324 2.373279

ss715583971 intergenic 2 8220222 0.004556 0.353283 2.341369

*Chr. indicates chromosome number.  

**RMS indicates R-square of Model with SNP

Location indicates the SNPs in or out of an annotated gene. 
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Table 2.  Top 20 features with higher importance from permutation analysis 
positive weight negative weight

rs# weight Std** P-value score rs# weight Std** P-value score

ss715636302 0.006481 0.000887 1 0 ss715584181 -0.01309 0.006558 1 5.19E-05

ss715632046 0.006242 0.000954 1 0 ss715606461 -0.01298 0.003566 1 1.08E-05

ss715586408 0.005429 0.001522 1 4.26E-05 ss715611174 -0.01231 0.008024 1 7.61E-06

ss715629729 0.005398 0.00163 1 3.52E-07 ss715601294 -0.01182 0.002501 1 1.57E-05

ss715639086 0.005334 0.001063 1 0 ss715621258 -0.01084 0.006296 1 2.42E-06

ss715600775 0.0051 0.001249 1 1.62E-05 ss715636617 -0.01053 0.00258 1 0

ss715634776 0.004993 0.000713 1 0 ss715614457 -0.01017 0.004173 1 5.59E-06

ss715621250 0.004987 0.002158 1 2.42E-06 ss715584279 -0.00995 0.002648 1 5.13E-05

ss715606657 0.004812 0.002458 0.499356 1.06E-05 ss715616125 -0.00898 0.001576 1 4.58E-06

ss715610241 0.004781 0.001113 1 8.27E-06 ss715638986 -0.00891 0.007572 1 0

ss715597582 0.004612 0.0013 1 1.97E-05 ss715619437 -0.00862 0.002983 1 3.08E-06

ss715611890 0.004579 7.37E-05 1 7.16E-06 ss715610413 -0.00722 0.002548 0.263147 8.13E-06

ss715632589 0.004394 0.004083 1 0 ss715604675 -0.00668 0.00313 1 1.23E-05

ss715580947 0.004045 0.0068 1 8.9E-05 ss715605467 -0.00666 0.00415 1 1.17E-05

ss715596598 0.003836 0.003571 1 2.09E-05 ss715607569 -0.00632 0.006535 1 9.93E-06

ss715617936 0.003701 0.002292 0.846353 3.72E-06 ss715588364 -0.00615 0.001517 1 3.63E-05

ss715579007 0.003535 0.001199 1 0.00025 ss715590471 -0.00558 0.001448 1 3.1E-05

ss715609664 0.003281 0.001464 1 8.63E-06 ss715598227 -0.00557 0.005702 1 1.89E-05

ss715625697 0.003213 0.000729 1 1.09E-06 ss715632123 -0.00539 0.0025 1 0

ss715586600 0.003188 0.000131 1 4.18E-05 ss715607399 -0.0051 0.001592 1 1.01E-05

This table shows the top 20 features with higher importance in both the positive side and negative 

side from permutation analysis.

*rs# refers to Reference SNP cluster ID

Weight indicates the feature importance weight of SNP by permutation analysis

** std refers to Standard Deviation

Score indicates the score of each feature by Random Forest score analysis

P-value is calculated by the GAPIT software 
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Figures and Figure legends

Fig. 1.  Manhattan plots of genome-wide association studies (GWAS) for soybean branching

Manhattan plots of genome-wide association studies (GWAS) for soybean branching measured with the 

mixed linear model (MLM). The X-axis is the genomic position of the SNPs in each linkage group, and 

the Y-axis is the negative log base 10 of the P-values. Each chromosome is colored differently. SNPs with 

stronger associations with the trait will have a larger Y-coordinate value. The general and highly 

significant trait-associated SNPs are distinguished by the green threshold lines. Genetic markers are 

positioned by their chromosomes and ordered by their base-pair positions. Genetic markers on adjacent 

chromosomes are displayed with different colors. The strength of the association signal is displayed in 

two ways. One indicator of strength is the height on the vertical axis for –log P-values; the greater the 

height, the stronger the association. The other indicator is the degree of filling in the dots; the greater the 

area filled within the dot, the stronger the association.
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Fig. 2. The summary chart of feature importance analysis 

This shows a summary of feature importance analysis by the different methods. Blue circle refers to the 

SNPs with P-value less than 1 identified by GAPIT software; and a total of 3450 SNPs were identified. 

Green circle refers to the 974 SNPs with positive weight and 1124 SNPs with negative weight, identified 

by permutation importance analysis. Red circle refers the 36077 SNPs, identified by Random Forest score 

(score >= 1E-04).  The numbers inside the intersection refers to the SNPs, confirmed by both methods. 

2800 SNPs were identified by Random Forest score analysis, with P-value less than 1. A total of 1770 

SNPs (with 806 SNPs with positive weight and 964 SNPs with negative weight) were confirmed by both 

of Random Forest score analysis and permutation analysis (highlighted in yellow). 86 SNPs with positive 

weight and 86 SNPs with negative weight were identified by permutation analysis, with P-value less than 

1. The 69 SNPs with positive weight and 76 SNPs with negative weight were confirmed by both of 

Random Forest score analysis and permutation analysis, with P-value less than 1(highlighted in yellow). 
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Fig. 3. Biological Process Classification

This shows the biological process classification based on GO enrichment analysis. There are 66 genes 

were classified into 16 GO classes, they are GO:0009908 (Flower Development), 

GO:0005975(Carbohydrate Metabolic Process), GO:0006412(Translation), GO:0006629 (Lipid 

Metabolic Process), GO:0006950(Response To Stress), GO:0007165(Signal Transduction), 

GO:0009058(Biosynthetic Process), GO:0006464 (Protein Modification Process), GO:0009790 (Embryo 

Development), GO:0009791 (Post-embryonic Development), GO:0040007 (Growth), GO:0009628 

(Response To Abiotic Stimulus), GO:0007275 (Multicellular Organismal Development), 

GO:0006810(Transport), GO:0015979 (Photosynthesis), GO:0006139 (Nucleobase, Nucleoside, 

Nucleotide And Nucleic Acid Metabolic Process) and there are 14 genes uncategorized. The 

corresponding gene number is showed in brackets.  
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Fig. 4. Cellular Component Classification

This shows the cellular component classification based on GO enrichment analysis. There are 388 genes 

were classified into 18 GO classes, they are GO:0005634(nucleus), GO:0005739(mitochondrion), 

GO:0005829(cytosol), GO:0005886(plasma membrane), GO:0005737(cytoplasm), GO:0005794(Golgi 

apparatus), GO:0005773(vacuole),  GO:0016020(membrane), GO:0005576(extracellular region), 

GO:0009536(plastid), GO:0005618(cell wall), GO:0005777(peroxisome), GO:0005730(nucleolus), 

GO:0005622(intracellular), GO:0005840(ribosome), GO:0005783(endoplasmic reticulum), 

GO:0009579(thylakoid), GO:0005635(nuclear envelope)  and  14 uncategorized. The corresponding gene 

number is showed in brackets.  
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Fig. 5. Molecular Function Classification

This shows the molecular function classification based on GO enrichment analysis. There are 264 genes 

were classified into 17 GO classes, they are GO:0003677(DNA binding), GO:0003700(sequence-specific 

DNA binding transcription factor activity), GO:0000166(nucleotide binding), GO:0003824(catalytic 

activity), GO:0005215(transporter activity), GO:0016301(kinase activity), GO:0005488(binding), 

GO:0005515(protein binding), GO:0003723 (RNA binding), GO:0019825(oxygen binding), 

GO:0016787(hydrolase activity), GO:0016740(transferase activity), GO:0030246(carbohydrate binding), 

GO:0004872(receptor activity), GO:0005198(structural molecule activity), GO:0004871 (signal 

transducer activity) and  14 uncategorized. The corresponding gene number is showed in brackets.  

↓GO:0003677(21)
↓GO:0003700(43)
↓GO:0000166(15)
↓GO:0003676(19)
↓GO:0003824(23)
↓GO:0005215(6)
↓GO:0016301(31)
↓GO:0005488(27)
↓GO:0005515(25)
↓GO:0003723(15)
↓GO:0019825(14)
↓GO:0016787(6)
↓GO:0016740(6)
↓GO:0030246(6)
↓GO:0004872(2)
↓GO:0005198(4)
↓GO:0004871(1)
↓Uncategorized(14)

Molecular Function
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Fig. 6.  Gene location map 

This shows the location of 328 genes, identified by our feature importance analysis. In soybase, there are 

35 branching related genes were previously reported; For comparison, the 35 genes are also added to this 

map (marked by▼). Color coding is used in the genome viewer to differentiate each query in a multiple 

FASTA submission. The height of the colored indicators is proportional to the number of BLAST hits in 

that genomic bin.
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Seven Additional Files:

Sup_Table1. GAPIT.MLM.Branching.GWAS.Results.csv

Sup_Table2. RF_Perm_importance.xlsx

Sup_Table3. RF_feature_score.xlsx

Sup_Table4. gene Blast result.xls

Sup_Table5. gene ontology analysis.xlsx

Sup_Table6. gene_expression information.csv

Sup_Table7. RS_HeaderT.csv
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