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1 Abstract

2 The antibiotic trimethoprim targets the bacterial dihydrofolate reductase enzyme and 

3 subsequently affects the entire folate network. We present an expanded mathematical model of 

4 trimethoprim’s action on the Escherichia coli folate network that greatly improves upon Kwon et 

5 al. (2008). The improvement upon the Kwon Model lends greater insight into the effects of 

6 trimethoprim at higher resolution and accuracy. More importantly, the presented mathematical 

7 model enables drug target discovery in a way the earlier model could not. Using the improved 

8 mathematical model as a scaffold, we use parameter optimization to search for new drug targets 

9 that replicate the effect of trimethoprim. We present the model and model-scaffold strategy as 

10 an efficient route for drug target discovery.

11

12 Introduction

13 Antibiotic resistance

14 Antibiotic resistance is a major health policy concern. New and resistant forms of 

15 common infections such as tuberculosis necessitate urgent drug development efforts [1-3]. 

16 Strategies such as discovering new bacterial communication networks and inhibiting these 

17 networks are a popular avenue for drug discovery yet are very expensive in both time and 

18 resources. Utilizing math models to gain a greater level of insight into the mechanisms of known 

19 drugs may offer opportunities for drug development, using well-studied and richly described 

20 pathways that already show weakness to chemical intervention to search for new potential 

21 targets [4]. The presented work models the mechanism of a common antibiotic, trimethoprim, at 
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22 the biological information layer at which it functions, the metabolic network level. This is done 

23 not only to study the mechanism of trimethoprim but to find alternatives to it by attempting to 

24 replicate its effect on the folate network, which is known to be critical to cell function. The 

25 presented mathematical model improves on previous work by providing a higher resolution 

26 model of Trimethoprim’s effect on E. coli. Without a highly detailed model of the bacterial folate 

27 network and trimethoprim’s effect on it, the presented strategy of drug target discovery would 

28 not be possible.

29 The folate network and trimethoprim

30 The folate network is a traditional therapeutic target for both cancerous and bacterial 

31 cells due to the integral role folates play in cell division [5, 6]. The folate network provides and 

32 accepts one-carbon units for the biosynthesis of amino acids and metabolites such as S-adenosyl 

33 methionine (SAM), the universal methyl group donor [7-9]. The antibiotic trimethoprim (TM) 

34 inhibits the activity of bacterial dihydrofolate reductase (DHFR), an enzyme that converts 

35 dihydrofolate (DHF) to tetrahydrofolate (THF, Fig 1). DHFR inhibition causes a spike in DHF. DHF 

36 in turn inhibits folypolyglutamate gamma synthetase (FPGS), the enzyme tasked with adding 

37 glutamates to THF and its derivatives [10, 11]. Because folate-catalyzed conversions of one-

38 carbon units are sensitive to glutamation levels of folates, the inhibition of FPGS disrupts critical 

39 cell functions [11-14]. 

40 Fig 1. A simplistic diagram of effect of trimethoprim on DHFR and FPGS, roughly approximated in Kwon 
41 Model. 

42 Boxes = metabolites or antibiotics. Ovals = enzymes, connected to solid lines with arrows indicating 
43 metabolite conversions. Dashed lines = inactivation. Trimethoprim inhibits DHFR, which converts DHF1 to 
44 THF1, leading to a spike in DHF1. FPGS adds a glutamate to THF1, and THF2, converting each to THF2, and 
45 THF3, respectively.
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46

47 Folate network models and drug target search

48 Kwon et al. wrote a mathematical model of the disruptive effect of TM focused on folate 

49 interconversions which roughly has the structure and resolution of Fig 1, and which we refer to 

50 as the Kwon Model [10]. The Kwon Model compressed all derivatives of THF into three variables, 

51 but Kwon et al. recorded experimental data for many THF derivatives. In this work we present a 

52 higher resolution version of the Kwon Model referred to as the TM Model, that exploits the 

53 experimental data recorded by Kwon et al. The structure of the TM Model is shown in Fig 2. We 

54 then use the current TM Model as a scaffold for drug target searching by replicating the effects 

55 of TM on the E. coli folate network without inhibiting DHFR or FPGS. In doing this we create a 

56 Rewired Model that shows a simulated time-course progression similar to the TM Model, but 

57 without TM in the simulation. This overall strategy is outlined in Fig 3. The TM Model by the 

58 nature of its higher resolution, higher number of enzyme and metabolite nodes, and higher 

59 accuracy of describing the effect of TM on the folate network, allows for TM alternatives to be 

60 explored in a way that the Kwon Model cannot. Since multiple interconversions of THFn and DHFn 

61 are described in the TM Model, substituting TM with other possible disruptors of the folate 

62 network is feasible, guided by Kwon et al.’s experimental data. This approach allows us to 

63 propose new targets for antibiotic activity that would be advantageous against TM-resistant 

64 bacteria, and provides a guide for future work on other systems that evolve in response to 

65 chemical therapeutics [15, 16].

66 Fig 2. TM Model of E. coli folate network. 

67 (Ovals = enzymes modeled with Michaelis-Menten equations; boxes = metabolites, TM, or source; dashed 
68 lines = inhibitions; straight lines without attached oval = linear conversions. The source (top left) 
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69 represents 7,8-dihydropteroate, and mass input is modeled as a linear conversion into DHF1 only by 
70 dihydrofolate synthase (DFHS). Once DHF1 is produced, it is converted into THF1 via DHFR. TM inhibits all 
71 DHFR activity. THF1 is converted into THF2 and then to THF3 by FPGS, which also works on all THFn 
72 derivatives (except 5MTHFn), indicated by thin solid lines. Only FPGS carries out interconversions between 
73 glutamation states. All FPGS activities have independent parameter sets. DHFn inhibits FPGS activity. TS 
74 converts 510MTHFn to DHFn. SHMT converts THFn to 510MTHFn, and MTHFR converts 510mTHFn to 
75 5MTHFn. MS does not convert monoglutamates of 5MTHFn to THFn, but its arrow is shown as other 
76 enzymes for simplicity. DHFn is converted into pABn and Pten, which act as sinks for the system. 
77 Experimental concentration data exists for all metabolites shown in the figure. Pten inhibits TS and MS, 
78 THFn inhibits SHMT, and 510MTHFn inhibits MTHFR. These inhibitions however are not as strong as that of 
79 TM on DHFR. Formyl THFn derivatives were not included due to a lack of experimental data.

80

81 Fig 3. Drug target searching requires high resolution models. 

82 The Kwon Model is improved upon to create the TM model, which has more metabolite and enzyme 
83 nodes. The TM model describes the effects of TM at high resolution and accuracy. The TM model, once 
84 developed, is used as a scaffold for drug target searching (Rewired Model). The Kwon Model, due to 
85 having only two enzymes (approximated in Fig 1) and compressing all forms of THF into just three nodes, 
86 is not viable for drug target discovery (pathway on left). 

87

88 Abbreviations

89 Enzymes are listed with abbreviation, name, and Uniprot ID and/or EC number. A 

90 subscript indicates the number of glutamates added onto a molecule. Terms such as DHFn refer 

91 to molecules that vary only in number of glutamates. DHFR: dihydrofolate reductase (P0AFS3 / 

92 EC: 1.5.1.3), DHFS: dihydrofolate synthase (P08192 / EC: 6.3.2.12), SHMT: serine 

93 hydroxymethyltransferase P0A825/ 2.1.2.1), MTHFR: methylenetetrahydrofolate reductase 

94 (P42898 / 1.5.1.20), TS: thymidylate synthase (P0A884 / EC: 2.1.1.45), METH: methionine 

95 synthase (P13009 / EC: 2.1.1.13), METE/MS: B12 independent methionine synthase (P25665 / 

96 EC: 2.1.1.14), FPGS: folypolyglutamate synthetase (P08192 / EC: 6.3.2.17), MET: L-methionine, 

97 SAM: S-adenosyl-L-methionine, SRH: S-ribosyl-L-homocysteine, SAH: S-adenosyl-L-homocysteine, 

98 HCY: L-homocysteine, TM: trimethoprim, Pten: folate glutamate, pABA: para-aminobenzoate, 
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99 pABn: para-aminobenzoylglutamate, DHFn: dihydrofolate, DHP: dihydropteroic acid, THFn: 

100 tetrahydrofolate, 5MTHFn: 5-methyl-THF, 510MTHFn: 5,10-methylene-THF. Enzyme parameters 

101 are referred to with enzyme abbreviation followed by the type of parameter, then the glutamate 

102 that is being acted upon, e.g. DHFRKM1 refers to DHFR’s Km constant for DHF1. The included 

103 models are heavily focused on the differing activities of enzymes on a variety of unique 

104 glutamations of molecules such as THFn. The velocities of enzymes are denoted by the enzyme 

105 abbreviation and then the glutamation level of the general molecule they are named for acting 

106 upon. For example, DHFR1 refers to the velocity of DHFR’s activity on DHF1. In the case of FPGS 

107 which works on THFn and its derivatives with differing affinities (except for 5MTHFn), the 

108 substrate and glutamate are used in the velocity or parameter abbreviation: FPGSTHF1 refers to 

109 FPGS activity on the THF1 substrate. SSE refers to sum of squared errors, a common metric for 

110 describing the accuracy of a prediction to the real world data.

111 Materials and Methods

112 Experiments

113 Folate concentrations were measured absolutely as described in Kwon et al. [10, 11]. 

114 Time course progression of folate concentrations and their glutamations can be seen in Fig 4. All 

115 rates and velocities are shown in µM/minute. TM was added to E. coli growth medium at O.D. ~ 

116 0.5 at a concentration of 4 µg/mL, immediately after time zero data point collection [10]. E. coli 

117 strain NCM3722 was used for all experiments [10]. Cells were grown in Gutnick minimal salts 

118 medium (Sigma-Aldrich), in a shaking flask at 37°C.
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119 Mathematical modeling of the TM Model

120 All simulations and calculations were carried out in Matlab version 2014a (Simbiology 

121 Toolbox), on an Intel Q8200 2.33GHz processor, using Microsoft Windows 7, 64-bit, and ODE 

122 solver ode15s. Fig 2 displays the structure of the TM Model. Variables are concentrations of 

123 DHFn, pABn, Pten, THFn, and all THFn derivatives, at three glutamation levels. Variable time-course 

124 progression is fitted to experimental data shown in Fig 4. The Kwon Model summated all THFn 

125 and THFn derivatives into three variables: THF1, THF2, and THF3. The Kwon Model had a lower 

126 number of enzyme kinetics equations describing interconversions of DHFn and THFn [10]. In the 

127 current TM Model, THFn and THFn derivatives are treated as independent variables, requiring a 

128 higher number of detailed enzyme kinetics equations to describe interconversions. This 

129 treatment of THFn derivatives as unique variables allows for high resolution modeling and the 

130 creation of the Rewired Model. Creating the Rewired Model would not be possible at the 

131 resolution of the Kwon Model because insufficient enzyme nodes exist for a parameter search. 

132 Conversion of DHFn to THFn by DHFR was modeled by a variant of the Michaelis-Menten 

133 equation featuring competitive inhibition:

134 𝑣 =
𝑑[𝑃]

𝑑𝑡 =
𝑉𝑚𝑎𝑥 ∗ [𝑆]

𝐾𝑚 ∗ (1 +
[𝐼]
𝐾𝑖) + [𝑆]

135 Where Km is the Michaelis constant, [S] is the concentration of the substrate, Ki is the inhibition 

136 constant for TM, [I] is the constant concentration of TM, and Vmax is the maximum rate 

137 achieved by the enzyme. TM was added to simulations at 40 seconds to reflect experimental 

138 protocol. Kwon et al. measured a significant reduction of input flux after addition of TM, which is 
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139 included in the model unless otherwise stated [10]. If the Michaelis-Menten equation or a 

140 variant thereof was not used for a metabolite conversion, a linear rate equation was employed 

141 using the form presented below. In the equation below, Ks represents a linear transform of the 

142 substrate into a product:

143 𝑣 = [𝑆] ∗ 𝑘𝑠

144 Fig 4. Folate disruption and simulation of the TM Model. 

145 TM in growth media causes a severe deviation from initial folate concentrations (dots with error bars). 
146 THFn progression shows high similarity to experimental progression (SSE = 1.83, with THF2 SSE = 1.64). 
147 DHF3 similarity is poor (SSE = 8063), creating bulk of error for model (SSE total = 8947). The experimental 
148 time course metabolite concentration data can be found in the data in S3 Table.

149

150 Parameters and parameter estimation in the TM Model

151 Parameters are either Michaelis-Menten constants (Km, Ki, Vmax) or linear conversion 

152 constants (Ks). Some parameters are estimated due to insufficient experimental data in 

153 published literature, or estimated from an initial data set taken from literature, such as IC50 (half 

154 maximal inhibitory concentration) values. Estimated parameters were determined by fitting 

155 simulations to experimental data via sequential application of the Matlab genetic algorithm and 

156 fmincon functions.

157 Creating the Rewired Model to explore alternatives to TM

158 To find an alternative to TM, we first removed the presence of TM in the TM Model. The 

159 resultant model with all further modifications is referred to as the Rewired Model. We then 

160 inserted a set of in silico enzyme inhibitors into the Rewired Model via parameter modification of 

161 existing Michaelis-Menten equations with the aim of creating a simulated time-course folate 
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162 concentration progression of the same nature to that caused by TM. The experimental data used 

163 to fit the Rewired Model was the same as that used for the TM Model. DHFR and FPGS were not 

164 targeted with in silico manipulation in the Rewired Model in order to find a true alternative for 

165 TM-resistant bacteria. Parameter optimization functions were used to find the proper 

166 combination of in silico inhibitor. Inhibitors were simulated by introducing alterations of the Km 

167 and Vmax parameters used in the TM Model.

168 Results

169 Trimethoprim affects polyglutamation – TM Model

170 TM, which is added at 40 seconds into the model simulation, dramatically alters folate 

171 pools in the TM Model (Fig 4) which replicates the experimental data in Kwon et al. with a total 

172 SSE of 8948. DHF3 alone has an SSE of 8063 and is responsible for most of the error. The TM 

173 Model greatly improves upon the simulation resolution of the Kwon Model featured in the same 

174 effort [10]. DHF1 and DHF2 experience large increases both experimentally and in the TM Model. 

175 Simulated DHF3 experiences a minor spike and then slowly stabilizes to near its original 

176 concentration instead of showing a drop from initial concentration. A key experimental effect of 

177 TM is seen in the model: THF1 and THF2 increase after initial drops while THF3 drops 

178 continuously. THFn derivatives 510mTHFn and 5mTHFn follow similar progressions as seen in 

179 experimental data, with the exception of 5mTHF3. Fig 5 highlights critical reaction velocities of 

180 the TM Model to show the drivers of folate concentration progression. Velocity of DHFR1 shows 

181 a drop and then a slight rebound, as would be expected due to TM inhibition of DHFR activity. 

182 FPGSTHF1 velocity experiences a sudden drop due to an increase in DHFn which inhibit the 
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183 activity of FPGSTHF1. Parameter estimates, drawn from both experimental work and estimation 

184 in silico, are shown in S1 Table.

185 Fig 5. Velocities of DHFR, MS on 5MTHF3, FPGS on THF1 and THF2, under TM. 

186 As expected, velocities drop upon the addition of TM. Some activities such as DHFR on DHF1 recover 
187 slightly over time. Velocity simulations provide reference that assures drivers of simulation mirror 
188 biological processes.

189

190 Network rewiring to explore TM alternatives – Rewired Model

191 To explore an alternative therapeutic approach to TM, a small number of enzyme 

192 inhibitors were added in silico while TM was removed, creating the Rewired Model. The Rewired 

193 Model’s parameters were fitted to the same experimental data used to create the TM Model. 

194 The simulation results of the Rewired Model are seen in Fig 6, and the simulated inhibitors are 

195 shown in Table 1. The total SSE of the Rewired Model as compared to experimental data is 

196 46794, driven mainly by 5mTHF3 (SSE = 39929). All THFn respond as they did in the TM Model 

197 although not as well (Rewired Model SSE = 16.41, TM Model SSE = 1.83). DHFn do not follow the 

198 TM Model pattern, dropping in concentration over the course of the simulation. The proposed 

199 inhibitors achieve a partial effect of TM (spiking THF1 / THF2, dropping THF3, alterations of 

200 510mTHFn, 5mTHFn) without utilizing the DHF spike (further discussion below). Rewired Model 

201 reaction velocities are shown in S1 Fig. Most velocities except DHFR1 reach steady state early in 

202 the Rewired Model. In addition, velocities such as FPGSTHF1 increase instead of decreasing as 

203 was seen in the TM Model (Fig 5). 

204 Fig 6. Rewired Model of E. coli folate to search for new drug targets. 

205 Simulations show an initial disruption of folate concentrations, and then a gradual stabilization. Combined 
206 THFn progression shows high similarity to experimental progression.
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207 Table 1. Inhibitors added in substitution of TM in Rewired Model.

Parameters TM Model Rewired Model Inhibition Type

MSVM3 1.40E-01 1.00E-02 Noncompetitive

MTHFRKM2 2.99E+00 3.50E+00 Competitive

MTHFRKM3 1.11E-01 1.47E+01 Competitive

SHMTKM3 2.58E+01 6.80E+00 Uncompetitive

SHMTVM3 4.07E+00 3.10E+00 Uncompetitive

208 Enzymes MS, MTHFR, and SHMT are targeted with noncompetitive, competitive, and uncompetitive 
209 inhibitors respectively. TM Model parameters are shown along with inhibition type required to partially 
210 recreate effect of TM (spiking THF1 / THF2, dropping THF3, alterations of 510mTHFn, 5mTHFn) in Rewired 
211 Model.

212

213 Discussion

214 The effect of trimethoprim – TM Model

215 The TM Model shows a more accurate and expanded view of the folate network than the 

216 previous effort in Kwon et al. [10]. SSE scores cannot truly be compared from TM Model to Kwon 

217 Model due to the large increase in metabolites modeled. The explicit addition of TM and THFn 

218 derivatives are the key differences between the TM Model and the Kwon Model. THFn derivatives 

219 510mTHFn and 5mTHFn were collapsed into THFn in the Kwon Model. In the TM Model they are 

220 modeled as unique variables as they exist within the bacterial cell and as the experimental data 

221 measured them. THFn and its derivatives are critical to cell functionality due to their connection 

222 to the rest of cellular metabolism [8, 9]. 
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223 The discrete simulation of THFn and its derivatives allows for accurate modeling of THFn 

224 interconversions to and from its derivative forms. These interconversions feature inhibitory 

225 interactions within the network such as Pten inhibition of TS. In addition, the inhibition of FPGS 

226 by DHFn can be included, affecting FPGS’ activity on THFn and all its derivatives in varying degrees 

227 (Fig 2). 

228 An imbalance of glutamation levels across folates from the zero time point is clearly 

229 reflected in the simulation, as it is in the experimental results. The glutamation disruption of 

230 THFn and its derivatives is a critical feature of the TM Model. TM operates by disrupting 

231 glutamation balance of folates. The spike in DHFn, shown in the TM Model, results in a sudden 

232 drop in the velocity of all FPGS activities as seen in Fig 4 and as expected by experiments on FPGS 

233 and DHFn in vitro (Kwon et al.). FPGSTHF2 velocity shows a more relaxed response to the DHFn 

234 spike, suggesting some buffering ability in the system. 

235 The poor replication of DHF3 progression and triple glutamated folates overall is a 

236 weakness in the TM Model. We suspect it is due to experimental data on enzyme function at 

237 triple glutamation being sparse as compared to experimental data on singly glutamated folates. 

238 Better descriptions of enzyme function at this glutamation level may allow for better modeling in 

239 the future. Most importantly, the increased accuracy of the TM Model makes it an excellent 

240 platform for drug design.

241 Network rewiring to explore TM alternatives

242 The effort to find a TM alternative centered on established drug design principles of using 

243 multiple antibiotic agents simultaneously and parameter optimization [17-19]. The simulated 
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244 inhibitors found via optimization in the Rewired Model target MS, MTHFR, and SHMT instead of 

245 DHFR alone as seen in Table 1. The overall SSE is driven mainly by inaccuracy in 5mTHF3.

246 THFn follows the progression seen in the TM Model, and DHFn drops in concentration in 

247 the Rewired Model instead of increasing as it does in the TM Model, which is potentially 

248 problematic, since DHFn is a primary driver of the effect of TM. However, our objective is to find 

249 an alternative and get a disruption in glutamation mix of folates that disrupt cellular metabolism. 

250 Our goal is not simply to replicate the domino effect of TM, which causes a spike in DHFn and 

251 then inhibits FPGS. 510mTHFn and 5mTHFn generally (with exception of 5mTHF3) follow the same 

252 time course progression in the Rewired Model as in the TM Model, which is encouraging. THFn 

253 and its derivatives are more critical to cell functionality due to their connection to the rest of 

254 cellular metabolism [8, 9]. The drop in DHFn introduces an interesting feature of the Rewired 

255 Model.

256 Despite a poor match to experimental data and the TM Model with respect to DHFn, this 

257 proposed set of drug targets may replicate the clinical effect of TM and Sulfamethoxazole. 

258 Paradoxically, the drop in DHFn replicates the task of the drug Sulfamethoxazole, which is used 

259 clinically with TM (the target of this drug target search effort). Sulfamethoxazole targets the 

260 enzyme DHFS, which synthesizes DHF1 and therefore inputs mass into the folate network. 

261 Sulfamethoxazole and TM clinically work together to fully shut down flux into and within the 

262 folate network [10, 16, 20]. The proposed inhibitors in the Rewired Model also appear to 

263 severely lower the amount of cellular DHFn, which is achieved clinically by Sulfamethoxazole. This 

264 means that the proposed set of inhibitors would be effective against some bacterial strains that 

265 show resistance to TM and Sulfamethoxazole simultaneously. This is an unexpected but welcome 
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266 output of the Rewired Model which puts the poor SSE score in context and bolsters the result as 

267 a viable set of drug targets.

268 Conclusions

269 The current work presents a mathematical model of the E. coli folate network that 

270 improves on the previous effort in accuracy, scope, and applicability. A detailed look at TM’s 

271 mechanism not only shows the importance of folate polyglutamation levels, but also of enzyme-

272 metabolite interactions to overall dynamics of the folate cycle. The improved look at this well-

273 studied system allows a programmatic drug target search for alternatives to both TM and 

274 Sulfamethoxazole. We present this approach as a radically more efficient method to dealing with 

275 antibiotic-resistant bacteria by building on past successes.
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