
1 
 

GLOBAL ANALYSIS OF HUMAN MRNA FOLDING DISRUPTIONS IN SYNONYMOUS VARIANTS 1 

DEMONSTRATES SIGNIFICANT POPULATION CONSTRAINT 2 

  3 

Jeffrey B.S. Gaither, Grant E. Lammi, James L. Li, David M. Gordon, Harkness C. Kuck, Benjamin J. 4 

Kelly, James R. Fitch and Peter White#* 5 

 6 

Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children’s Hospital, 7 

Columbus, Ohio, USA 8 

# Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA 9 

* Corresponding author 10 

 11 

Mailing address:  12 

The Institute for Genomic Medicine 13 

Nationwide Children’s Hospital 14 

575 Children's Crossroad 15 

Columbus, OH 43215. USA 16 

Phone: (614) 355-2671; Fax: (614) 355-6833 17 

E-mail: peter.white@nationwidechildrens.org 18 

 19 

Keywords: synonymous mutation, mRNA stability, RNA folding, RNA secondary structure, genetic 20 

disease, Spark, gnomAD, transcriptomics  21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712679doi: bioRxiv preprint 

https://doi.org/10.1101/712679
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

TABLE OF CONTENTS 22 

ABSTRACT ............................................................................................................................................. 3 23 

INTRODUCTION ..................................................................................................................................... 4 24 

RESULTS ................................................................................................................................................ 7 25 
Massively parallel generation of RNA stability metrics ............................................................... 7 26 
Global constraint to maintain stability ........................................................................................ 9 27 
Variation of constraint with REF>ALT context ......................................................................... 10 28 
CpG transitions have constraint against de-stabilization of their mRNA structures ................... 12 29 
Constraint for mRNA stability in non-CpG-transitional contexts ............................................... 14 30 
Depleter variables .................................................................................................................... 15 31 
Global quantification of mRNA constraint ................................................................................ 16 32 
Clinical Examples of Structural Pathogenicity .......................................................................... 17 33 

DISCUSSION ......................................................................................................................................... 19 34 
Regulation of CpG transitions .................................................................................................. 21 35 
Importance of CpG and AT dinucleotides.................................................................................. 21 36 
Successful identification of structurally disruptive sSNVs in known pathogenic synonymous 37 

variants ................................................................................................................................................. 22 38 
Mitigation of competing constraints .......................................................................................... 24 39 
Molecular mechanisms underlying constraint of variants impacting mRNA secondary structure 25 40 

CONCLUSION....................................................................................................................................... 27 41 

METHODS............................................................................................................................................ 28 42 
Raw Dataset ............................................................................................................................. 28 43 
Overview of RNA structure prediction process .......................................................................... 28 44 
RNA structure prediction methodology ..................................................................................... 28 45 
Construction of final dataset for synonymous SNVs................................................................... 29 46 
Merging of sSNV GRCh38 transcript coordinates with gnomAD GRCh37 coordinates .............. 30 47 
Further variant annotations ...................................................................................................... 30 48 
Partition of dataset ................................................................................................................... 31 49 
Depleter variables .................................................................................................................... 31 50 
Construction of SPI .................................................................................................................. 32 51 

COMPETING INTERESTS ..................................................................................................................... 34 52 

AUTHOR CONTRIBUTIONS .................................................................................................................. 34 53 

ADDITIONAL FILES ............................................................................................................................. 34 54 

ACKNOWLEDGEMENTS ...................................................................................................................... 34 55 

FIGURE LEGENDS................................................................................................................................ 35 56 

REFERENCES ....................................................................................................................................... 39 57 
 58 

  59 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712679doi: bioRxiv preprint 

https://doi.org/10.1101/712679
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

ABSTRACT 60 

Background. In most organisms the structure of an mRNA molecule is a crucial determinant of 61 

its speed of translation, half-life, splicing propensities and final configuration as a protein. Synonymous 62 

mutations which distort this wildtype mRNA structure may be pathogenic as a consequence. However, 63 

current clinical guidelines classify synonymous or “silent” single nucleotide variants (sSNVs) as largely 64 

benign unless a role in RNA splicing can be demonstrated. 65 

Results. We developed novel software to conduct a global transcriptome study in which RNA 66 

folding statistics were computed for 469 million SNVs in 45,800 transcripts using an Apache Spark 67 

implementation of the ViennaRNA software package in the cloud. Focusing our analysis on the subset of 68 

17.9 million sSNVs we discover that variants predicted to disrupt mRNA structure have lower rates of 69 

incidence in the human population. Given that the community lacks tools to evaluate the potential 70 

pathogenic impact of sSNVs, we introduce a “Structural Predictivity Index” (SPI) to quantify this 71 

constraint due to mRNA structure. 72 

Conclusion. Our findings support the hypothesis that sSNVs may play a role in human genetic 73 

diseases due to their effects on mRNA structure. The SPI score and our computed Vienna metrics provide 74 

a means of gauging the structural constraint operating on any sSNV. Given that up to 75% of patients with 75 

a suspected rare genetic disease lack a molecular diagnosis, our score has the potential to enable discovery 76 

of novel etiologies in human genetic disease. Our RNA Stability Pipeline as well as Vienna structural 77 

metrics and SPI scores for all human synonymous SNPs can be downloaded from GitHub 78 

https://github.com/nch-igm/rna-stability. 79 

  80 
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INTRODUCTION 81 

While next generation sequencing (NGS) has accelerated the discovery of new functional variants 82 

in syndromic and rare monogenic diseases, many more disease-causing genes and novel genetic etiologies 83 

remain to be discovered (Wright et al. 2015; Deciphering Developmental Disorders Study 2017). Accurate 84 

molecular genetic diagnosis of a rare disease is essential for patient care (Wright et al. 2018),yet today’s 85 

best molecular tests and analysis strategies leave 60-75% of patients undiagnosed (Yang et al. 2013; Yang 86 

et al. 2014b; Ellingford et al. 2016; Hegde et al. 2017; Worthey 2017). Current clinical practice for 87 

sequence variant interpretation focuses primarily on missense, nonsense or canonical splice variants 88 

(Richards et al. 2015), with numerous bioinformatics prediction algorithms and databases developed for 89 

functional prediction and annotation of non-synonymous single-nucleotide variants (nsSNVs) that impact 90 

protein function through changes in the underlying coding sequence (Alfares et al. 2018). However, these 91 

algorithms are inadequate to infer pathogenicity in non-protein-altering variants such as intronic or 92 

synonymous variants, which are under different and weaker evolutionary constraints (Gelfman et al. 93 

2017). While the potentially pathogenic impact of non-synonymous single nucleotide variants (nsSNVs) 94 

that change the protein sequence are well understood, we have limited knowledge in regard to the role that 95 

synonymous SNVs (sSNVs) may have in human health and disease. 96 

Synonymous variants result in codon changes that do not alter the amino acid sequence of the 97 

translated protein and as such were referred to as “silent” variants as they were initially considered to have 98 

no functional impact. However, there is a growing body of evidence demonstrating that synonymous 99 

codons have vital regulatory roles (Fahraeus et al. 2016; Lee et al. 2017; Ramanouskaya and Grinev 2017; 100 

Vaz-Drago et al. 2017; Hanson and Coller 2018) among the most important of which is their contribution 101 

to RNA structure.  102 
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Messenger RNA (mRNA) is a single-stranded molecule that adopts three levels of structure: the 103 

primary sequence forms base pairs among its own nucleotides to build the secondary structure, which 104 

further folds through covalent attractions to form the tertiary structure (FIGURE 1) (Silverman 2008). 105 

While the tertiary structure of mRNA is challenging to model and poorly understood, sophisticated tools 106 

exist to compute the ensemble of possible secondary structures and determine the optimal structure for a 107 

given mRNA strand (Lorenz et al. 2011). 108 

Studies first published in 1999 indicated that stable mRNA secondary structures are often selected 109 

for in key genomic regions across all kingdoms of life (Seffens and Digby 1999; Katz and Burge 2003; 110 

Chamary and Hurst 2005; Gu et al. 2010). Synonymous variants impacting RNA structure can alter global 111 

RNA stability, where stable mRNAs tend to have longer half-lives and less stable RNA molecules may 112 

be more rapidly degraded resulting in lower protein levels (Duan and Antezana 2003; Wan et al. 2012; 113 

Lazrak et al. 2013; Hunt et al. 2014; Shah et al. 2015; Bevilacqua et al. 2016). The stability of an mRNA 114 

transcript affects translational initiation and can determine how quickly a given protein is translated 115 

(Seffens and Digby 1999; Katz and Burge 2003; Chamary and Hurst 2005; Yang et al. 2014a; Presnyak 116 

et al. 2015; Bazzini et al. 2016). Recent studies strongly linked mRNA structure to protein confirmation 117 

and function, with synonymous codons acting as a subliminal code for the protein folding process (Plotkin 118 

and Kudla 2011; Chaney and Clark 2015; Presnyak et al. 2015; Faure et al. 2016; McCarthy et al. 2017; 119 

Hanson and Coller 2018). mRNA structure can also facilitate or prevent miRNAs and RNA-binding 120 

proteins from attaching to specific structural motifs (Fernandez et al. 2011; Brummer and Hausser 2014; 121 

Savisaar and Hurst 2017; Dominguez et al. 2018). Given these multiple mechanisms, when synonymous 122 

variants are ignored, we are almost certainly missing novel plausible explanations for genetic disease. 123 

The role of mRNA structure in human health and disease, however, is poorly understood and 124 

relatively few pathogenic variants impacting mRNA folding have been described (Duan and Antezana 125 
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2003; Wan et al. 2012; Hunt et al. 2014; Bevilacqua et al. 2016). A structure-altering sSNV in the 126 

dopamine receptor DRD2 was shown to inhibit protein synthesis and accelerate mRNA degradation (Duan 127 

et al. 2003). A sSNV in the COMT gene, implicated in cognitive impairment and pain sensitivity, was 128 

shown in vitro to constrain enzymatic activity and protein expression (Nackley et al. 2006). A sSNV 129 

discovered in the OPTC gene of a glaucoma patient resulted in decreased protein expression in vivo 130 

(Acharya et al. 2007). In cystic fibrosis patients, a sSNV in the CFTR gene was linked to decreased gene 131 

expression (Bartoszewski et al. 2010). Additionally, a silent codon change, I507-ATCàATT, contributes 132 

to CFTR dysfunction by a change in mRNA secondary structure that alters the dynamics of translation 133 

leading to misfolding of the CFTR protein (Lazrak et al. 2013; Shah et al. 2015). Two sSNVs in the 134 

NKX2-5 gene decreased the mRNA's transactivation potential in a yeast-based assay (Reamon-Buettner 135 

et al. 2013). In hemophilia B, the sSNV c.459G>A in factor IX impacts the transcript’s secondary structure 136 

and reduces extracellular protein levels (Simhadri et al. 2017), and both synonymous and nonsynonymous 137 

SNVs were shown more likely be deleterious when occurring in a stable region of mRNA in hemophilia 138 

associated genes F8 and Duchenne’s Muscular Dystrophy (Hamasaki-Katagiri et al. 2017).  139 

We hypothesize that these reported instances of mRNA structure playing a role in disease represent 140 

only the tip of the iceberg and that many undiagnosed genetic disorders might also be influenced by 141 

disruptions to mRNA structures. As such, the goals of this study were the creation of metrics to predict a 142 

sSNV’s pathogenicity due to its effects on mRNA structure and to utilize these metrics to test the 143 

hypothesis that synonymous variants predicted to have disruptive impacts on RNA stability would show 144 

significant constraint in the human population. In successfully doing so we hope to provide the genetics 145 

research community with tools to identify novel genetic etiologies in both monogenic genetic disorders 146 

and more complex human disease, thus leading to improved diagnosis and the possibility of novel 147 

prevention and treatment approaches.  148 
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RESULTS 149 

Massively parallel generation of RNA stability metrics 150 

Global assessment of sSNVs is truly a big data problem as it requires generation and evaluation of 151 

several raw values for each of hundreds of millions of positions within the genome. To address this 152 

challenge and successfully predict the mRNA-structural effects of every possible sSNV, we developed 153 

novel software built upon the Apache Spark framework (FIGURE 2). Apache Spark is a distributed, open 154 

source compute engine that drastically reduces the bottleneck of disk I/O by processing its data in memory 155 

whenever possible (Zaharia et al. 2012). This leads to a 100x increase in speed and allows for more flexible 156 

software design than can be achieved in the traditional Hadoop MapReduce paradigm. Spark is well suited 157 

to address many of the challenges faced in analyzing big genomics data in a highly scalable manner and 158 

adoption is growing steadily, with applications such as SparkSeq (Wiewiorka et al. 2014) for general 159 

processing, SparkBWA (Abuin et al. 2016) for alignment and VariantSpark for variant clustering (O'Brien 160 

et al. 2015). By developing a solution within this framework, we eliminate significant computational 161 

hurdles standing in the way of large-scale analysis of sSNVs.  162 

We used the RefSeq database (Release 81, GRCh38) as the source for all known human coding 163 

transcript sequences. At each position within a given transcript, four 101-base sequence windows were 164 

built, differing only in their central nucleotide, which was set to the reference nucleotide or one of the 165 

three possible alternate bases. Using Apache Spark in the Amazon Web Services (AWS) Elastic Map 166 

Reduce (EMR) service, we developed a massively parallel implementation of the ViennaRNA Package to 167 

analyze the four possible sequences. This enabled us to examine changes in mRNA folding that result 168 

from any given polymorphism, and thereby obtain ten metrics which quantified the SNV’s effect on 169 

mRNA secondary structure (see SUPPLEMENTARY TABLE 1). First, we utilized RNAfold to obtain 170 

predicted free energies for both mutant and wildtype sequences, which we compared directly to obtain 171 
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four metrics describing the sSNV's effect on mRNA stability. Next, we fed the predicted structures from 172 

RNAfold into the Vienna programs RNApdist and RNAdistance to obtain 6 additional metrics quantifying 173 

the change in base-pairing and ensemble diversity due to each SNV. We performed this procedure for all 174 

469 million possible SNVs in 45,800 transcripts. 175 

After pre-processing we assigned each sSNV a classification based on the most deleterious role it 176 

played in any transcript, in decreasing order of deleteriousness: start loss, stop gain, start gain, stop loss, 177 

missense, synonymous, 5 prime UTR, 3 prime UTR. We then focused on the set of 22.9 million 178 

synonymous variants. While non-synonymous variants also play a role in mRNA structure, we chose to 179 

exclude 63.8 million nsSNVs from the subsequent analysis as their impact on conserved amino acid 180 

sequences would make it difficult to discern constraint at the mRNA structural level. We also filtered out 181 

variants implicated in splicing or lacking annotations needed in future steps, leaving us with a core dataset 182 

of 17.9 million sSNVs (see METHODS for details, FIGURE 2 for a summary of our computational pipeline, 183 

and SUPPLEMENTARY TABLE 2 for a record of the number of SNVs filtered at each stage). Of the 10 184 

mRNA-structural metrics computed for each sSNV we adopted three as the primary focus for our analysis: 185 

dMFE, CFEED, and dCD. The metric dMFE (delta Minimum Free Energy) measures the change in overall 186 

mRNA stability imputed by the sSNV, while CFEED (Centroid Free Energy Edge Distance) gives the 187 

number of base pairs that vary between the mutant and wildtype centroid structures. The metric dCD (delta 188 

Centroid Distance) measures the sSNV’s effect on the diversity of the mRNA’s structural ensemble. 189 

To test whether certain sSNVs are under constraint due to their effect on mRNA structure, RNA 190 

folding metrics from our Vienna pipeline were combined with population frequencies from the Genome 191 

Aggregation Database (gnomAD), containing aggregate WGS and WES data from a total of 138,632 192 

unrelated human individuals (Lek et al. 2016). Our expectation was that SNVs with disruptive structural 193 

properties would be found less frequently in human population. Constrained variants were defined as those 194 
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absent from gnomAD, versus un-constrained variants as being those with exon minor allele frequency >0, 195 

a strategy similar to that employed by other groups (Gronau et al. 2013; Huang et al. 2017).  196 

 197 

Global constraint to maintain stability  198 

Our study reveals a striking connection between a given sSNV’s impact on mRNA structure and 199 

its frequency in the gnomAD database. We define the central variable Y to be Y=1 when a sSNV is present 200 

in gnomAD and Y=0 when the sSNV is absent. Synonymous variants that disrupt structure tend to have 201 

Y=0 (i.e. are absent from the gnomAD database), while those with limited impact on structure tend to 202 

have Y=1 (i.e. appear at least once in the gnomAD database). This central finding is summarized in 203 

FIGURE 3, which shows the proportion of synonymous SNVs with Y=1 at every value of the metrics 204 

dMFE, CFEED and dCD (note: here and throughout, dCD values are rounded to the nearest integer). The 205 

leading FIGURE 3A shows the correlation between Y and the stability metric dMFE. The bell-shaped 206 

distribution shows that Y=1 occurs most often among those sSNVs that maintain the mRNA’s existing 207 

level of stability, i.e. those sSNVs with dMFE close to 0. When the sSNV either over-stabilizes the mRNA 208 

(low dMFE) or de-stabilizes it (high dMFE) the sSNV is depleted in the population roughly in proportion 209 

to the level of disruption. 210 

FIGURE 3B shows an analogous plot for the structural disruption metric CFEED (see 211 

SUPPLEMENTARY FIGURE 2 for an illustration of how CFEED is calculated). This plot appears to depict 212 

two separate trends, but actually shows a single pattern that alternates between high and low on successive 213 

values: the SNVs with CFEED=0,4,8,12... are enriched over those with CFEED=2,6,10,14... (CFEED can 214 

only take on even values because the destruction/creation of a base pair always requires two edits). One 215 

possible explanation for this duality is that when CFEED fails to be divisible by 4, there is necessarily a 216 

change in the total number of base-pairings in the mRNA centroid structure. Thus, sSNVs which conserve 217 
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the total number of base-pairs could be potentially favored. FIGURE 3B also supports the hypothesis that 218 

structurally disruptive sSNVs should appear less frequently in the population. We see that sSNVs which 219 

leave the centroid structure unchanged (i.e. CFEED=0) are roughly 20% more common than those sSNVs 220 

predicted to alter it. And within each of the two separate trends (that is, the multiples and non-multiples 221 

of 4) the population frequency declines as the number of centroid base-pairing changes grows from small 222 

to large.  223 

Finally, sSNVs which either diversify the ensemble of mRNA structures (high dCD) or 224 

homogenize it (low dCD) are depleted in the population proportionately to their disruptions, as shown in 225 

FIGURE 3C. The symmetry in depletion between over- and under-diversifying sSNVs is surprisingly 226 

regular.  227 

The relationship between the three metrics is illuminated by color-coding in FIGURE 3. We observe 228 

in FIGURES 3A AND 3B that disruptions in the magnitude of stability (|dMFE|) and base-pairing (CFEED) 229 

of a sSNV are markedly correlated, with the two metrics enriched for each other at extreme values (red 230 

coloring). FIGURE 3C depicts a clear relationship between diversity and stability, with those sSNVs 231 

diversifying the ensemble (high dCD) also tending to de-stabilize it (blue). This diversity-instability 232 

relationship is intuitive, as a destabilizing mutation “frees up” portions of the mRNA to assume new forms. 233 

Together, these observations validate the central hypothesis that sSNVs which disrupt mRNA structure 234 

should be constrained in human populations. 235 

 236 

Variation of constraint with REF>ALT context 237 

Since an mRNA’s secondary structure is largely determined by its primary structure (i.e. by the 238 

sequence of nucleotides), we would expect the constraint in FIGURE 3 to be partially dependent on 239 

sequence features around each sSNV. To fully determine the role of non-structural variables in the trends 240 
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of FIGURE 3, we first control for the most important sequence-variables, the REF and ALT of the sSNV. 241 

We divide our sSNVs into 14 classes (TABLE 1): 12 classes based on their reference and alternate alleles 242 

(e.g. A>C, C>G, T>C, etc.) and 2 additional classes based on potential loss of methylated cytosine 243 

(CpG>TpG or CpG>CpA, the latter of which results from a deamination on an antisense strand). Within 244 

each REF>ALT context we reconstruct the three plots of FIGURE 3 and also perform weighted linear 245 

and quadratic regressions between the three different stability metrics and Y=1 (see METHODS for 246 

details). All significant results (p < 0.005) of this procedure appear in TABLE 1.  247 

Looking at TABLE 1A (which shows the results for dMFE) we find that disruptions to mRNA 248 

stability are constrained across many of our sSNV classes. The fact that most of linear p-values are much 249 

smaller than the quadratic p-values indicates that in most contexts the dMFE-Y relationship is linear, in 250 

contrast to the bell-shaped relationship we see when considering global dMFE (FIGURE 3A). Therefore, 251 

the slope of the regression line indicates which direction of dMFE is enriched for Y=1. For example, in 252 

the context of G>T the negative normalized slope indicates that lower dMFE values (i.e. stabilizing) are 253 

less constrained (i.e. Y=1). The slope of the regression line (and the relationships it models) proves to 254 

depend largely on whether a context’s REF and ALT nucleotides are “strong” (C,G) or “weak” (A,T) 255 

binders. We note from TABLE 3A that strong>weak mutations consistently have negative slopes (except 256 

in the irregular context G>A; see Constraint for mRNA stability in non-CpG-transitional contexts), while 257 

the two weak>strong contexts A>G and T>C have positive slopes.  258 

In TABLE 1B we observe the constraint for our structural disruption metric CFEED. The results 259 

here are surprising – the contexts are split between positive and negative slopes. In support of our 260 

hypothesis, four of the sequence contexts display a negative slope, implying that sSNVs with high CFEED 261 

values are constrained. However, in contrast to our hypothesis, three of the sequence contexts have a 262 

positive slope, which implies that sSNVs in these contexts with high CFEED values are enriched. In the 263 
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case of CpG>TpG mutations the low quadratic p-value indicates that the pattern is actually bell-shaped, 264 

with both low and high CFEED values being depleted; but in G>A and C>A contexts the quadratic term 265 

is not significant. Actual plots of these patterns reveal that the ones in which CFEED is depleted are more 266 

striking (see FIGURE 4 and SUPPLEMENTARY FIGURES 4-5 for plots of Y vs. CFEED in all stability-267 

significant contexts), but this peculiar result must still be addressed. We speak more on this topic in the 268 

DISCUSSION.  269 

Finally, TABLE 1C shows mutation contexts that are significantly constrained against changes to 270 

ensemble diversity. We see that only a few contexts experience this constraint. But when significant, the 271 

constraint for diversity appears to inherit the bidirectionality of FIGURE 3C (with the quadratic term being 272 

the most significant and the linear fit being very poor). In these contexts, decreases and increases to 273 

ensemble diversity appear to be equally harmful. 274 

 275 

CpG transitions have constraint against de-stabilization of their mRNA structures 276 

The data in TABLE 1 highlight that our observed constraint for mRNA structure is the greatest 277 

when considering CpG transitions. Since these variants (and their suppression) are crucial to the story of 278 

mRNA stability, it is important to have an appreciation of their role in a biochemical context. The 279 

dinucleotide CG (usually denoted CpG to distinguish this linear sequence from the CG base-pairing of 280 

cytosine and guanine) is capable of becoming methylated and then mutating by a process called 281 

“deamination” into a TG dinucleotide. While studies have demonstrated that methylated CpG residues are 282 

up to 40X times more likely to be deaminated than their unmethylated counterparts (Vinson and Chatterjee 283 

2012), mechanisms exist to enzymatically repair CpG deaminations (Morgan et al. 2007; Bellacosa and 284 

Drohat 2015). In mammals 70-80% of CpGs are methylated, which makes a CpG transition almost 5x 285 

more common than any other mutation-type among mammals (see SUPPLEMENTARY DATA TABLE 3) (Li 286 
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and Zhang 2014). Possible explanations for the distribution and retention of CpGs in mammals have been 287 

extensively debated, with some arguing that the phenomenon is not even the result of selective forces 288 

(Cohen et al. 2011).  289 

The nucleotides C and G also form the foundation of mRNA secondary structures. Most of the 290 

energy of an mRNA structure lies in its “stacks” of nucleotides with the average energy of a C-G pair in 291 

a stack around 65% stronger than that of any other base-pairing (Turner and Mathews 2010). Moreover, 292 

the self-complementarity of CpGs means that upstream and downstream instances can bind together and 293 

form a four-base stack which other base-pairs can then build around.  294 

In the present study we find strong evidence that CpG transitions are constrained against de-295 

stabilization of their mRNA structures. This striking trend is largely explained (in a statistical sense) by 296 

CpG content, i.e. number of CpG dinucleotides in the surrounding 120 nucleotides of the mRNA transcript 297 

(see “Depleter R2 in TABLE 1B). We distinguish CpG>CpA versus CpG>TpG transitions (the former of 298 

these usually results from a CpG>TpG deamination on an anti-sense DNA strand), as these two mutation-299 

types show a qualitatively different constraint for mRNA structure. FIGURE 4 shows the performance of 300 

our three main metrics in CpG-transitional contexts. Most strikingly, we find that synonymous CpG>CpA 301 

and CpG>TpG mutations both show a steady constraint against de-stabilization (high dMFE) (FIGURES 302 

4A & 4B). Fascinatingly, both contexts exhibit a cluster of outliers in the most destructive (i.e. most de-303 

stabilizing region), suggestive of extreme constraint borne of significant structural disruption. Though the 304 

two plots exhibit the same basic shape, the context CpG>CpA of FIGURE 4A shows higher de-stabilizing 305 

tendencies (higher dMFE values) and also a stronger constraint (lower P(Y=1)). 306 

The behavior of the edge metric CFEED in these contexts is less clear-cut. In FIGURE 4C we see 307 

a clear pattern of constraint against mutations with high CFEED values; and the red coloring shows that 308 

such changes are, on average, de-stabilizing. But the constraint in the context CpG>TpG (FIGURE 4D) is 309 
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much less forceful (in fact, its quadratic p-value is much smaller than its linear) and the blue coloring by 310 

dMFE shows such mutations are on average neutral or even de-stabilizing. Finally, FIGURES 4E & 4F 311 

show that the basic pattern of constraint for diversity in FIGURE 3C is reproduced and is essentially 312 

unchanged for both types of CpG transition. The coloring again indicates that mutations CpG>CpA are 313 

much more destabilizing than their CpG>TpG counterparts. 314 

The markedly greater constraint and tendency towards de-stabilization among CpG>CpA 315 

transitions suggests they are under different selective pressures than CpG>TpG transitions, despite being 316 

largely produced by the same biochemical mechanism (a CpG>TpG deamination on either a positive- or 317 

negative-sense strand – see SUPPLEMENTARY DATA TABLE 3). We speculate on this disparity in the 318 

DISCUSSION. 319 

 320 

Constraint for mRNA stability in non-CpG-transitional contexts  321 

We see the strongest constraint for mRNA structure in CpG transitions, but we observe an 322 

analogous pattern in most REF>ALT contexts (as indicated by TABLE 1). We can classify these remaining 323 

contexts based on whether their slopes in TABLE 1A are positive or negative. SUPPLEMENTARY FIGURE 324 

4 shows plots of contexts where dMFE and the gnomAD variable Y are negatively correlated. In such 325 

contexts the data are consistent with the hypothesis that sSNVs which de-stabilize mRNA are constrained. 326 

Notably, all these contexts are strong>weak (or strong>strong in the case of C>G), consistent with the 327 

principle that one purpose of such nucleotides is to maintain stability. The coloring by CFEED indicates 328 

that a change in either direction is likely to alter the mRNA secondary structures. 329 

In SUPPLEMENTARY FIGURE 5 we show the contexts where dMFE and Y vary positively, which 330 

amounts to the claim that stabilizing mutations are constrained in these contexts. Correspondingly, we 331 

note that two out of three of these contexts are weak>strong (and the third is the unusual context G>A 332 
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where SNPs that alter stability or diversity are actually enriched). The context T>C exhibits a notable 333 

constraint in either direction, an anomaly which we speculate on in the DISCUSSION. 334 

 335 

Depleter variables 336 

In TABLE 1 we provide a “Depleter” for the connection between our RNA folding metrics and 337 

gnomAD frequencies for each mutational context. The name “Depleter” signifies that each such variable 338 

is chosen so as to correlate negatively with gnomAD (which is why these variables are given with +/- 339 

signs in TABLE 1). For example, the Depleter for dMFE in the context CpG>CpA is +CpG content, 340 

meaning that when CpG content increases in this context, the varaible Y is depleted. 341 

The Depleter is chosen to be the variable that best explains the connection between the mRNA 342 

structural variable and Y in the given context. The proportion of connection explained is given by the field 343 

“Depleter R2”. For example, in the context CpG>CpA we can explain 78% of the dMFE-gnomAD 344 

connection using a model that relies only CpG content.  345 

To determine which variable is most informative (and should therefore be called the Depleter) we 346 

compute an associated R2 for a set of features of the sequence around the sSNV (the upstream/downstream 347 

nucleotides and the proportion of A, C, G, T, CpG or ApT [di]nucleotides in the surrounding 120 bases). 348 

Each of these features is used to build a simple logistic model to predict Y=1, and the predictions of the 349 

model are then compared to the actual proportion P(Y=1) at a value of the metric. For example, building 350 

a CpG-context-based model allows us to compute the quantity P(Y=1 | CpG content), and then we consider 351 

the difference: 352 

𝐄(	𝐏(Y = 1	|	CpG	content)	|	dMFE)	− 𝐏(Y = 1	|	dMFE	) 353 

Squaring this difference and taking a weighted sum over all values of dMFE in a context, we recover the 354 

variance left unexplained by a particular non-structural variable. We obtain an R2 by comparing 355 
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unexplained variance to that obtained using a null model, and the Depleter is then the variable with the 356 

largest R2 (see METHODS for more details). TABLE 1 shows that Depleters can recover large portions of 357 

the trends in FIGURE 4 and SUPPLEMENTARY FIGURES 4-5. The striking trend between dMFE and 358 

gnomAD frequency in CpG-transitional contexts is largely driven by the proportion of CpGs in the 359 

surrounding 120 nucleotides (73% for CpG>TpG sSNVs and 79% for CpG>CpA sSNVs). CpG content 360 

is also the most powerful feature when accounting for the behavior of CFEED and dCD in these contexts, 361 

with high CpG content consistently correlating with depletion. The natural inference is that an abundance 362 

of CpGs signifies important mRNA structure nearby, the disruption of which could be deleterious. 363 

In non-CpG-transitional contexts, the Depleter almost always proves to be a nucleotide upstream 364 

or downstream of the sSNV. In the context C>A we can recover 28% of the relationship between dMFE 365 

and gnomAD frequency simply by looking at whether the C is followed by a G. The power of CpG 366 

dinucleotides in recovering our structural trends in the contexts C>A, C>G, G>C and then G>T, 367 

emphasizes the powerful but poorly understood role of CpGs in both mRNA stability and mammalian 368 

genomes. 369 

 370 

Global quantification of mRNA constraint 371 

Our analysis shows that polymorphisms predicted to influence mRNA secondary structures are 372 

constrained in the population. However, due to the multiple facets that need to be considered when 373 

studying RNA secondary structure, by focusing on a single RNA-folding metric such as dMFE or CFEED, 374 

we run the risk of missing functionally relevant information. To overcome this potential limitation of our 375 

RNA folding metrics, we set out to devise a more diversified method for predicting possible pathogenicity 376 

due to mRNA structure. Our strategy is to consider the additional statistical power bestowed by mRNA 377 

structure. In each of our 14 sequence contexts from TABLE 1 we build two general logistic models for 378 
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predicting MAF >0: a null model that uses the natural variables of sequence context, local nucleotide 379 

composition, transcript position and tRNA propensity, but NOT mRNA structure (n); and a structural 380 

model which also includes the 10 metrics obtained from our Vienna analysis (s). These models yield two 381 

separate probability-predictions Pn and Ps for the quantity P(MAF >0) (see METHODS for details). Then 382 

we define the metric: 383 

SPI = log<= >
𝑃@
𝑃A
B 384 

The metric SPI thus measures the additional predictive power bestowed by mRNA-structural 385 

variables. When it varies from 0, mRNA structural predictions yield new insight about a SNV’s potential 386 

to have a functional role in mRNA secondary structure. The power of SPI in each context (given by its 387 

area under the curve in predicting whether gnomAD is >0) is supplied in TABLE 2 and we plot SPI vs. Y 388 

in CpG-transitional contexts in FIGURE 5 (and in all contexts in SUPPLEMENTARY FIGURE 6). The 389 

classification rules of SPI vary widely by context. We see the most impressive performance in the context 390 

of CpG transitions. For both CpG>CpA and CpG>TpG transitions, those sSNVs with low SPI values are 391 

clearly under constraint.  392 

The behavior of SPI in non-CpG-transitional contexts is less regular and harder to weave into a 393 

coherent story. Every context shows a clear pattern, but this may amount to either enrichment or depletion 394 

(or both) as SPI moves in either direction. Given the strong dependence on REF-ALT context, the use of 395 

SPI as a deleteriousness score in non-CpG may need further evaluation.  396 

 397 

Clinical Examples of Structural Pathogenicity 398 

The literature reveals only a few examples of synonymous sSNVs unequivocally shown to be 399 

pathogenic through their effects on mRNA structure. These sSNVs, with accompanying values of our 400 

three Vienna metrics and SPI, are listed in TABLE 3. The sSNVs show a definite enrichment for our 401 
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structural metrics as each shows a value of |dMFE|, CFEED, |dCD| or |SPI| that is in at least the 80th 402 

percentile in its context. For example, the pathogenic sSNV in NKX2-5, linked to congenital heart disease, 403 

has a dCD score in the 90th percentile (Reamon-Buettner et al. 2013). It should be noted that none of these 404 

clinical sSNVs qualifies as a truly exceptional outlier for any of our Vienna metrics or SPI. None of the 405 

clinical sSNVs rises above the 95th percentile for |dMFE|, CFEED, |dCD| or |SPI|. We address this 406 

surprising “moderateness” in known pathogenic sSNVs in the DISCUSSION. 407 

 408 

  409 
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DISCUSSION 410 

We have shown that in silico mRNA structural predictions can be used to predict and explain the 411 

population allele frequency of a synonymous variant. By calculating Vienna RNA folding metrics for 412 

nearly 0.5 billion possible SNVs, we demonstrate that there is significant selection against sSNVs that are 413 

predicted to either stabilize or de-stabilize the given transcript’s local mRNA secondary structure. While 414 

the observed trends can be partially explained by sequence-based variables like CpG or GC content or 415 

membership in a CpG/AT/TA dinucleotide (as given by the “Depleter” field in TABLE 1), we believe our 416 

data supports our hypothesis that RNA structure itself plays a critical role in human health and disease. 417 

As such, polymorphisms impacting mRNA structure are under negative selection in the population and 418 

should be more carefully evaluated in the context of both Mendelian disorders and complex human 419 

disease.  420 

When determining if the connection between mRNA disruption and population incidence is direct 421 

and causal, we need to consider a number of factors. First, constraint of mRNA structure must be exercised 422 

through sequence-based variables, since the underlying primary mRNA sequence largely determines the 423 

secondary structure. Thus, although the trends we have observed may be influenced by sequence-features, 424 

such as CpG content (as illustrated by the “Depleter” variable in TABLE 1), it does not necessarily indicate 425 

that the trends are spurious. Second, it is important to note that our trends operate in the directions implied 426 

by our hypothesis: sSNVs that disrupt mRNA (measured three different ways) are depleted rather than 427 

enriched in the population for almost all REF>ALT contexts. Finally, mutations that are predicted to 428 

change stronger base pairs to weaker ones are consistently constrained against de-stabilization rather than 429 

over-stabilization. If the association were spurious, we would not expect such agreement with prediction. 430 

Our data also include some irregularities which can be elegantly explained through mRNA 431 

structure. For example, when considering CFEED in FIGURE 3B we observed that sSNVs were enriched 432 
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when their CFEED values were multiples of 4. Since a CFEED value being divisible by 4 is a necessary 433 

condition to preserve the total number of base-pairs, this observed enrichment suggests changes to base 434 

pairing were constrained. We also observed bi-directional constraint for dMFE in the context T>C, visible 435 

in SUPPLEMENTARY FIGURE 5 and also inferable from the low quadratic p-value in TABLE 1. We 436 

conjecture the dual constraint in this context might be due to guanine’s unique ability to wobble base-pair. 437 

Wobble base-pairing occurs between two nucleotides such as guanine-uracil (G-U), that are not canonical 438 

Watson-Crick base pairs, but have comparable thermodynamic stabilities. Unlike G-U, the three other 439 

main examples of wobble-base pairs (hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and 440 

hypoxanthine-cytosine (I-C)) all require the non-standard purine derivative hypoxanthine. Thus, the dual 441 

constraint from mutations T>C could be related to the transformation of T=G wobble base-pairs into 442 

stronger C=G Watson-Crick base pairs. 443 

Finally, in addition to the metrics output by our Vienna analysis, we devised our own metric to 444 

measure structural pathogenicity. The Structural Predictivity Index (SPI), created specifically to control 445 

for all confounding factors, shows that mRNA structure has predictive power all by itself. Also, the 446 

clusters of outliers at the extreme values of our structural metrics (see FIGURES 4 and SUPPLEMENTARY 447 

FIGURES 4,5) suggest a constraint beyond that explained by a confounding variable. 448 

 Taken together, this evidence provides significant support for the hypothesis that disruptions to 449 

mRNA structure are directly under constraint. However, we realize that in addition to the structural role 450 

that the primary mRNA sequence plays, there are other molecular mechanisms at work in the regulation 451 

of the transcriptional and translational processes. For example, while the retention of CpG dinucleotides 452 

is certainly connected to mRNA structure, other factors such as tRNA binding, binding of miRNAs and 453 

other RNA binding proteins, DNA chromatin structure and epigenetic modifications in the ORF could 454 

also be involved. Relatedly, we found a few contexts where sSNVs which disrupt mRNA structure actually 455 
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have higher population frequencies than those that do not (TABLE 1), the main example being the 456 

enrichment of high CFEED values in the contexts C>A and G>A. In both cases, the Depleter variable is 457 

a trailing A, which correlates negatively with gnomAD frequency and CFEED. The presence of an A is 458 

likely to have minimal effect on mRNA structure, suggesting that in these contexts the connection is partly 459 

spurious. 460 

 461 

Regulation of CpG transitions 462 

In the case of CpG transitions, it is difficult to state whether selection for mRNA structure causes 463 

the retention of CpGs, or whether the retention of CpGs is regulated by a process independent of mRNA 464 

structure. A strong reason for CpGs to operate causally with regard to mRNA structure is that they are the 465 

single most important determinant of mRNA structure. Retention of 5’ ORF CpG sites occurs at a high 466 

frequency in the first exon of coding genes; a stacked C:G + G:C base pairing, has the lowest free energy 467 

of the 36 possible stacked base-pair combinations (Mathews et al. 1999); and deamination of CpGs can 468 

be suppressed and repaired by existing enzymatic mechanisms. Thus, CpG dinucleotides represent the 469 

easiest and most natural way to determine mRNA structure.  470 

 471 

Importance of CpG and AT dinucleotides 472 

Our results in non-CpG-transitional dinucleotide contexts are largely explained by the reference 473 

nucleotide’s membership in a CpG/AT dinucleotide. These dinucleotides have the apparent effect of 474 

mitigating the structural distortion caused by the sSNV, e.g. mutations C>A and C>G are less de-475 

stabilizing if the reference is part of a CpG (see TABLE 1, which shows that in these contexts the gnomAD 476 

variable Y varies inversely with dMFE but directly with a trailing G). This presents us with the same 477 

causal conundrum we have faced throughout our study: do sSNVs in a dinucleotide have higher 478 
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frequencies because the dinucleotide mitigates the structural damage, or is it due to some other reason, 479 

unrelated to mRNA structure? While this question is difficult to answer definitively, we believe that the 480 

data presented in this present study and that the body of mRNA structural literature supports that 481 

preservation of mRNA secondary structure is acting as a functional constraint on sSNVs in a dinucleotide. 482 

For example, one point in favor of a causal role is that both CpGs and ATs have been specifically 483 

implicated as drivers of mRNA structure (Al-Saif and Khabar 2012). Moreover, consistent with our 484 

findings, a seminal paper in the field of RNA folding suggested that it is the dinucleotide content of an 485 

mRNA that contributes most to its stability (Workman and Krogh 1999). 486 

 487 

Successful identification of structurally disruptive sSNVs in known pathogenic synonymous variants 488 

Over the last decade numerous studies have demonstrated that synonymous variants play essential 489 

molecular roles in regulating both mRNA structure and processing, including regulation of protein 490 

expression, folding and function (reviewed in Sauna and Kimchi-Sarfaty 2011; Shabalina et al. 2013; 491 

Fahraeus et al. 2016). However, the potential for pathogenic synonymous variants that impact RNA 492 

folding in human genetic disease remains largely unknown. Current American College of Medical 493 

Genetics (ACMG) guidelines for the assessment of clinically relevant genetic variants focus primarily on 494 

missense, nonsense or canonical splice variants (Richards et al. 2015). These guidelines suggest that 495 

synonymous “silent” variants should be classified as likely benign, if the nucleotide position is not 496 

conserved and splicing assessment algorithms predict neither an impact to a splice consensus sequence 497 

nor the creation of a new alternate splice consensus sequence. In the absence of functional tools that would 498 

aid in the simultaneous assessment of both nsSNVs and sSNVs in a given patients genome, we are almost 499 

certainly missing novel disease etiologies that have their molecular underpinnings in pathological 500 

alterations to mRNA structure.  501 
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Numerous in silico tools exist to aid in the prediction of disease-causing missense variants, and 502 

have accuracy in the 65%-85% range when evaluating known pathogenic variants (Li et al. 2018). Such 503 

algorithms infer pathogenicity based on amino-acid substitutions (SIFT (Kumar et al. 2009), PolyPhen 504 

(Adzhubei et al. 2010), FATHMM (Shihab et al. 2015)), nucleotide conservation (SiPhy (Garber et al. 505 

2009), GERP++ (Davydov et al. 2010)) or an ensemble of annotations and scores (CADD (Kircher et al. 506 

2014), DANN (Quang et al. 2015), REVEL (Ioannidis et al. 2016)). These tools predict whether a nsSNV 507 

is pathogenic or benign, primarily due to the high conservation of protein sequences. However, these 508 

algorithms are not equipped to assess pathogenicity in synonymous variants, which are under different 509 

constraints (Gelfman et al. 2017). Recognizing that there is a critical need for methods that better predict 510 

the potential whether sSNVs have pathogenic impact and function, our goal in this present study was the 511 

generation of such metrics. Vienna RNA stability and SPI metrics are available for download for all known 512 

sSNVs, to enable researchers and clinicians to evaluate WES and WGS data in combination with tools 513 

such as Annovar (Wang et al. 2010), SnpEff (Cingolani et al. 2012) and VEP (McLaren et al. 2016).  514 

At this present time a comprehensive evaluation of our metrics is not possible as there are simply 515 

too few known examples of pathogenic synonymous variants in human genetic disease. While we found 516 

approximately a dozen examples of sSNVs implicated in human disease, several merely suggested that a 517 

sSNV may have a role through modification of mRNA structure, but lacked functional studies to 518 

conclusively implicate the given variant in disease. As such we focused on a set of six sSNVs that we 519 

believe the authors unequivocally demonstrated to be pathogenic through their effects on mRNA structure 520 

(Table 3). This dataset included one variant in OPTC associated with glaucoma (Acharya et al. 2007), 521 

two variants in NKX2-5 associated with congenital heart defects (Reamon-Buettner et al. 2013), one 522 

variant in DRD2 associated with post-traumatic stress disorder (Duan et al. 2003), and two variants in 523 

COMT associated with pain sensitivity (Nackley et al. 2006). 524 
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All six sSNVs demonstrated definite enrichment for our structural metrics, be it stability, edge 525 

distance, diversity or SPI, with values in the 80th to 90th percentile range. However, none of these clinically 526 

relevant sSNVs qualifies as a truly exceptional outlier for any of our Vienna metrics or SPI with all 527 

percentiles being below 90. It is theoretically possible that such extreme outliers are not biologically 528 

tenable, making them less likely to appear in the human population. As such, a change in the 80th percentile 529 

could represent a cutoff for biological significance. Another possibility (perhaps equally strong) is that 530 

these sSNVs occupy important regulatory positions, and that a sSNV deleterious to mRNA secondary 531 

structure may exhibit pathogenicity when it distorts structure in a key region of the transcript.  532 

The enrichment of our structural metrics, while moderate, is still clear and our hope is that future 533 

studies will allow refinement and enhancement of our metrics. As new discoveries of pathogenic sSNVs 534 

in human genetic disease occur, a larger data set of known clinically relevant sSNVs will help determine 535 

cutoff values. For now, our recommendation is that a conservative 80th percentile cutoff across the four 536 

metrics is used initially, but this may need to be lowered to reveal pathogenic sSNVs that have a less 537 

extreme change to mRNA structure.  538 

 539 

Mitigation of competing constraints 540 

In addition to a potential role in mRNA structure, synonymous codons are likely under selection 541 

for purposes other than mRNA structure, which could have confounded our analysis. Synonymous codon 542 

utilization (codon bias) is known to direct gene expression and protein synthesis through regulating tRNA 543 

recruitment (Rocha 2004; Sabi and Tuller 2014; Quax et al. 2015). Synonymous codons may also act as 544 

a subliminal code for protein folding, with changes in a preferred locus potentially leading to pathogenicity 545 

in synonymous mutations (McCarthy et al. 2017; Hanson and Coller 2018). While the stability of an 546 

mRNA transcript can determine how quickly it is translated (Seffens and Digby 1999; Yang et al. 2014a; 547 
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Presnyak et al. 2015), translation speed is also regulated through codon usage and the abundance of the 548 

tRNAs (Dong et al. 1996). This may have a confounding impact on our analysis of constraint, but 549 

attempted to mitigate this by including the tRNA Adaptivity Index (a measure of tRNA abundance) in our 550 

set of confounding variables.  551 

While we took care to exclude sSNVs impacting the canonical splice sites from our constraint 552 

analysis, exonic variants beyond the canonical splice site can disrupt splice enhancers (Soukarieh et al. 553 

2016), or they may also activate cryptic splice sites, leading to aberrant pre-mRNA splicing and loss of 554 

coding sequence (Molinski et al. 2014). Synonymous mutations that affect the kinetics of translation can 555 

slow down the rate of protein synthesis or lead to protein misfolding, which in turn can result in 556 

proteotoxicity (Chaney and Clark 2015). Synonymous mutations may also result in the formation of 557 

translational “pause sites” and alternative conformations during co-translational folding (Hanson and 558 

Coller 2018). Recent genome-wide analyses revealed that bicodons (i.e., pairs of consecutive codons) 559 

demonstrate biased usage and confer different pause propensities during the translation process (McCarthy 560 

et al. 2017). Similar to the scores we present here for assessing a variants impact on protein folding, it will 561 

be important for future studies to create scores by which all these possible mechanisms of pathogenic 562 

sSNVs could occur. 563 

 564 

Molecular mechanisms underlying constraint of variants impacting mRNA secondary structure 565 

While our score does not specifically identify the underlying molecular mechanism, it will aid in 566 

identification of sSNVs impacting secondary structure which could confer pathogenicity in numerous 567 

ways. For example, sSNVs impacting RNA structure can alter global RNA stability, where less stable 568 

RNA molecules may be degraded more quickly resulting in lower protein levels (Duan and Antezana 569 

2003; Lazrak et al. 2013; Shah et al. 2015). As local RNA structure is essential for the translation process, 570 
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a more stable mRNA may not be able to initiate translation, also resulting in lower protein levels (Katz 571 

and Burge 2003; Chamary and Hurst 2005; Presnyak et al. 2015; Bazzini et al. 2016). Additionally, 572 

numerous studies argue that synonymous codons may also act as a subliminal code for protein folding 573 

(Plotkin and Kudla 2011; Chaney and Clark 2015; Presnyak et al. 2015; McCarthy et al. 2017; Hanson 574 

and Coller 2018). Structure-deforming sSNVs exert their pathogenicity chiefly by making the mRNA 575 

structure too difficult, or too easy, for the ribosome to process, leading to issues with translation elongation 576 

and protein misfolding. 577 

Structural elements within the first 5 to 16 codons of mRNA have been shown to significantly 578 

regulate protein expression levels in E. coli (Sato et al. 2001; Kudla et al. 2009). It is likely that both the 579 

stability of mRNA folding near the ribosomal binding site and the reduced abundance of tRNAs coding 580 

for N-terminal amino acids play crucial roles in slowing down initial stages of translation elongation 581 

prevent subsequent ribosomal traffic jams (Tuller et al. 2010; Li and Qu 2013). More recently, it was been 582 

shown that sequence motifs and mRNA structure within the first five codons are key in dictating the 583 

efficiency of protein synthesis (Verma et al. 2019). By assessing over 250,000 reporter sequences in E. 584 

coli, Verma and colleagues demonstrated that differences in this short ramp lead to striking changes in 585 

protein abundance, of up to 3 to 4 orders of magnitude. Our own data show marked preservation of CpG 586 

dinucleotides, which are crucial for mRNA structure, that appear to be independent of tRNA abundance. 587 

  588 
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CONCLUSION 589 

We have shown that sSNVs which stabilize or destabilize mRNA are significantly constrained in 590 

the human population, thereby supporting a growing body of evidence that previously assumed “silent” 591 

polymorphisms, actually play crucial roles in regulation of gene expression and protein function. We have 592 

demonstrated that this connection is rich, complex, and biologically intuitive. Given that there are multiple 593 

mechanisms by which sSNVs influence biological function, we are almost certainly missing undiscovered 594 

disease etiologies when these variants are ignored. In addition to providing the community with a dataset 595 

of ten Vienna RNA structural metrics for every known synonymous variant, our Structural Predictivity 596 

Index is the first metric of its kind to enable global assessment of sSNVs in human genetic studies. We 597 

hope that these metrics will be utilized to accurately assess and prioritize an underrepresented class of 598 

genetic variation that may be playing significant and as yet to be realized role in human health and disease. 599 

 600 

  601 
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METHODS 602 

Raw Dataset 603 

To obtain all human mRNA transcripts we downloaded the NCBI RefSeq Release 81 from an 604 

online repository (ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/). Transcript sequences 605 

corresponded to human reference genome build GRCh38.  606 

 607 

Overview of RNA structure prediction process 608 

To estimate the structural properties of a sSNVs we used the ViennaRNA software package, a 609 

secondary structure prediction package that has been extensively utilized and continuously developed for 610 

nearly twenty-five years. ViennaRNA uses the standard partition-function paradigm of RNA structural 611 

prediction (McCaskill 1990). We utilize version 2.0 of ViennaRNA (Lorenz et al. 2011). Applying Vienna 612 

to every possible SNV in the human genome (about 500,000,000 calculations) was a computationally 613 

challenging task which we carried out using an Apache Spark framework powered by Amazon Web 614 

Services (AWS). We built a pipeline which read in and analyzed a SNV and stored the results in AWS 615 

Simple Storage Service (S3) in Parquet columnar file format (FIGURE 2). The ease and capacity of AWS 616 

greatly facilitated the project, and the affordability of S3 storage means our data can easily be shared with 617 

others. The software we developed is available on GitHub: https://github.com/nch-igm/rna-stability. 618 

 619 

RNA structure prediction methodology 620 

To analyze a given SNV we built a 101-base sequence consisting of a central nucleotide at the 51st 621 

position (which we set to either the reference or the three alternates) along with the 50 flanking bases on 622 

either side. If the nucleotide lay 50 bases from the transcript boundary, the window was simply taken to 623 

be the first or last 101 bases in the transcript. We processed these sequences in fasta format with 624 
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ViennaRNA’s flagship module RNAfold, which yielded three predicted mRNA secondary structures – 625 

the minimum free energy, centroid, and maximum expected accuracy structure – as well as numeric values 626 

for the free energy of each structure, and a fourth metric measuring the energy of the whole ensemble (see 627 

the documentation of (Lorenz et al. 2011) for detailed descriptions of these concepts). Comparing the free 628 

energies between the wildtype and mutant for each type of structure gave us the four stability metrics 629 

delta-MFE (dMFE), dCFE, dMEAFE and dEFE. Next, the predicted structures were processed by the 630 

Vienna module RNApdist, which counted the edge-differences to produce the four edge-metrics MFEED 631 

(minimum free energy edit distance), CFEED, MEAED and EFEED. As a final step, the predicted 632 

structures were further processed by the Vienna program RNAdistance to obtain the diversity metrics dCD 633 

and dEND (change in distance from centroid and change in ensemble diversity, respectively). 634 

This whole procedure was carried out using custom developed Spark wrappers of RNAfold, 635 

RNApdist and RNAdistance, with slight modifications to the source code to suppress the creation of 636 

graphics files. After building our fasta files, we were able to compute all 10 Vienna metrics for over a half 637 

billion sequences in less than 24 hours using 51 c4.8xlarge AWS EMR computing nodes.  638 

 639 

Construction of final dataset for synonymous SNVs 640 

The next step was to extract the sSNVs. This task was complicated by the fact that a SNV might 641 

have appeared in several different transcripts, and could be synonymous in some and non-synonymous in 642 

others. To address this challenge, we first annotated every SNV using the program snpEff (Cingolani et 643 

al. 2012), whose source code was modified to allow record-by-record calling via Spark. This snpEff 644 

analysis produced annotations of predicted biotype, e.g. missense, synonymous, canonical splice site, etc. 645 

To validate these snpEff predictions we manually predicted the biotype of each SNV using start and stop 646 

codon information from RefSeq 647 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712679doi: bioRxiv preprint 

https://doi.org/10.1101/712679
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

(ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/RefSeqGene/refseqgene.*.genomic.gbff.gz). The small number 648 

of sSNVs where our predicted biotype disagreed with snpEff’s were discarded. We then defined a 649 

“synonymous SNV” to be one that was (A) synonymous in at least one transcript, (B) synonymous or 650 

within the UTRs in all transcripts, and (C) not implicated in splicing by snpEff. Each sSNV identified as 651 

“synonymous” by this scheme was assigned a “home transcript,” chosen based on proximity to the start 652 

codon, then on maximal transcript length, and then arbitrarily. 653 

This filtration and duplicate-removal process yielded a final set of 17.9 million sSNVs in 34,000 654 

transcripts. See SUPPLEMENTARY TABLE 2 for a table giving the landscape of our final dataset and the 655 

number of sSNVs filtered at each stage. 656 

 657 

Merging of sSNV GRCh38 transcript coordinates with gnomAD GRCh37 coordinates 658 

To measure constraint operating on a sSNV we used population frequencies obtained from the 659 

gnomAD database. Since this resource only exists for the GRCh37 reference build, we lifted our entire 660 

dataset from GRCH38 to GRCh37. The lifting procedure was carried out using the Picard Tools program 661 

liftOver , which was executed using a custom Spark wrapper. The joining of the gnomAD frequencies to 662 

our main dataset was a task greatly facilitated by Spark’s parallel processing and native Parquet support. 663 

Since the great majority (approximately 90%) of sSNVs were marked with gnomAD frequency 0, 664 

it is important to identify sSNVs marked zero purely through a lack of coverage. To achieve this, we 665 

flagged and removed all sSNVs where fewer than 70% of samples had at least 20X coverage. 666 

 667 

Further variant annotations 668 

Next, we estimated the local nucleotide content around each sSNV. We divided each transcript 669 

into windows of 40 bases and in each window computed the proportion of A’s, C’s, G’s, T’s, CpG’s and 670 
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AT’s in the surrounding three windows. Finally we joined multiple additional annotations (including 671 

conservation metrics such as PhyloP) from the dbNSFP dataset (Liu et al. 2016). Again, this heavy task 672 

was greatly facilitated by our Spark framework. 673 

 674 

Partition of dataset 675 

We carried out most of the analysis separately on subsets of data defined by a common mRNA 676 

reference and alternate allele, e.g those sSNVs of form C>A. The reference and alternate alleles exert such 677 

a huge influence on gnomAD that best solution seemed to be to control for them explicitly. Dividing our 678 

dataset based on mRNA alleles (as opposed to DNA alleles, which do not depend on transcript sense) is a 679 

step justified in SUPPLEMENTARY TABLE 3. 680 

 681 

Depleter variables 682 

Depleter variables (so called because they explain some of the gnomAD depletion at values of a 683 

structural variable) are given in TABLE 1. They are chosen to be the sequence feature that explains the 684 

greatest portion of the connection between a structural metric (e.g. dMFE) and Y in a context. Possible 685 

Depleter variables are local nucleotide content and the specific nucleotides up/downstream of the sSNV. 686 

To compute the correlation between a structural metric (e.g. dMFE) and Y that is left unexplained 687 

by a sequence feature (e.g. CpG content) in a particular REF-ALT context, we first build a simple logistic 688 

regression model between CpG content and Y, which gives us an estimate 𝐏(Y = 1	|	CpG	content ) for 689 

every sSNV in the context (based on the proportion of CpGs in the surrounding 120 nucleotides.) We then 690 

plug this “structure-less” estimate into the expression 691 

VDEF	GHIJKIJ = L𝐧𝐱 ∗ (𝐄(	𝐏(Y = 1	|CpG	content)	|	dMFE = x)	– 𝐏(Y = 1	|	dMFE = x))R	
S

 692 
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where we sum over all values x of dMFE and let 𝐧𝐱 denote the number of sSNVs in the context with 693 

dMFE=	x. Comparing this quantity to the null variance 694 

VITUU =L𝐧𝐱 ∗ (	𝐏(Y = 1)–𝐏(Y = 1	|	dMFE = x))R	
S

 695 

allows us to compute the proportion of the variation explained by CpG content: 696 

RDEF	GHIJKIJR = 1 −
VDEF	GHIJKIJ

VITUU
	 697 

The “Depleter” for a given structural metric in a given context is chosen as the variable with the 698 

highest R2. Finally the correlation between the Depleter and Y was checked, and the Depleter given a sign 699 

(+/-) so that the signed Depleter correlated negatively with Y. 700 

 701 

Construction of SPI 702 

To construct our final SPI scores we built two separate models over each of our 14 contexts to 703 

predict the event MAF > 0. The "null" model used all natural features - the nine nucleotides in the SNV's 704 

home and adjacent codons, the proportion of A/C/G/T/CpG/AT's in the surrounding 120 nucleotides, the 705 

sSNV's position in its transcript and the transcript's length, and the tAI (tRNA Adapation Index obtained 706 

from a supplement of (Tuller et al. 2010) from https://ars.els-cdn.com/content/image/1-s2.0-707 

S0092867410003193-mmc2.xls) of the wildtype and mutant codons. The second, "active" model used all 708 

these features plus our 10 Vienna metrics. Both sets of variables were then used to predict MAF > 0. We 709 

then defined the SPI score for a sSNV to be the base-10 logarithm of the active model's predicted P(Y=1) 710 

probability divided by the null model's predicted P(Y=1). Context wise plots and statistics for SPI are 711 

given in the SUPPLEMENTARY FIGURE 6.  712 

We tried three different model-styles for computing the raw predictions that comprise SPI – 713 

general logistic as implemented in python’s sklearn LogisticRegression module, random forest as 714 
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implemented in sklearn’s RandomForestClassifier, and gradient-boosted trees as implemented in the 715 

python package xgboost. Performance of each SPI “flavor” is given in SUPPLEMENTARY TABLE 4. We 716 

eventually settled on the general logistic model, as it out-performs the gradient-boosted tree model and 717 

does not overtrain as the random forest mode does. 718 

  719 
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FIGURE LEGENDS 740 

FIGURE 1. A synonymous variant introduces a marked change in local minimum free energy 741 

of the mRNA secondary structures in the DRD2 gene. Using a known synonymous variant of 742 

pharmacogenomic significance in the dopamine receptor, DRD2 (NM_000795.4:c.957C>T (p.Pro319=)), 743 

this figure demonstrates how the 101-bp window used in our analysis captures the variants impact on 744 

RNA secondary structure. Wildtype (A) and mutant (B and C) sequences (RefSeq transcript 745 

NM_000795.4, coding positions 907-1008) are identical except for a synonymous C->T mutation at 746 

position 51 (major “C” allele is indicated by the black arrow, minor “T” allele is indicated by the red 747 

arrow). (A) Wildtype optimal and centroid structures (which coincide) demonstrate a relatively stable 748 

secondary structure with a minimum free energy of -12.5 kcal/mol. Of the ensemble of possible structures 749 

arising from the sSNV a position 51, there is a significant reduction in stability of the molecule in terms 750 

of both the (B) mutant optimal structure (-11.5 kcal/mol) and (C) mutant centroid structure (-5.1 kcal/mol). 751 

The synonymous variant results in a less stable mRNA molecule which laboratory studies demonstrate 752 

reduces the half-life of the transcript, ultimately reducing protein expression of the dopamine receptor, 753 

DRD2. Nucleotides are colored according to the type of structure that they are in: Green: Stems (canonical 754 

helices); Red: Multiloops (junctions); Yellow: Interior Loops; Blue: Hairpin loops; Orange: 5' and 3' 755 

unpaired region. 756 

 757 

FIGURE 2. Graphical depiction of computational workflow used to generate ViennaRNA 758 

folding metrics for the entire transcriptome. The entire analysis workflow was parallelized using 759 

Apache Spark and the Amazon Elastic Map Reduce (EMR) service, generating 5 billion Vienna RNA 760 

metrics over the course of 2 days. Using a custom pipeline developed for the process that was executed 761 

across 47 Amazon Elastic Cloud Compute (EC2) spot instances, input data was retrieved from an Amazon 762 
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Simple Storage Solution (S3) bucket and processed through the pipeline consisting of 8 steps. We first 763 

obtained the 101-base sequence centered around a SNV in a transcript and generated three alternate 764 

sequences (with the ALT rather than the REF at position 51) (step 1). We next applied Vienna modules to 765 

sequence to obtain structural metrics (step 2). Results were then mapped to chromosomal coordinates (step 766 

3) and annotated with SnpEff to identify splice variants (step 4), lifted to the hg19 build (step 5), annotated 767 

with gnomAD population frequencies (step 6) and coverage information (step 7), and finally annotated 768 

with metrics from dbNSFP (step 8). Final dataset was written to Amazon S3 in Parquet columnar file 769 

format for further analysis and interpretation. 770 

 771 

FIGURE 3. Synonymous variants predicted to impact mRNA structure are constrained in the 772 

human population. Population frequency of sSNVs were plotted against the predicted impact on mRNA 773 

structure. Synonymous variants that disrupt structure tend to be absent from the gnomAD database, while 774 

those with limited impact on structure appear at least once in the gnomAD database. (A) Proportion of 775 

sSNVs with nonzero gnomAD frequency at each value of the RNA stability metric dMFE. Points with 776 

fewer than 2000 positive-MAF sSNVs excluded. Color represents average CFEED value, to highlight the 777 

relationship between minimum free energy and edit distance. (B) Analogous plot for metric CFEED 778 

measuring edge differences between mutant/wildtype centroid structures. Color represents |dMFE|, 779 

measuring absolute change in stability. (C) Analogous plot for diversity-metric dCD measuring change in 780 

structural ensemble diversity due to sSNV. Color is by dMFE measuring change in stability. 781 

 782 

FIGURE 4. Synonymous CpG transitions are markedly constrained against destabilization of their 783 

mRNA structures. Population frequency of sSNV vs. effect on mRNA structure in synonymous CpG 784 

transitions was examined. Proportion of synonymous CpG transitions with nonzero MAF at each value of 785 
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dMFE were determined for (A) CpG>CpA and (B) CpG>TpG synonymous mutations. dMFE values with 786 

fewer than 75 nonzero-MAF sSNVs are excluded. Color gives average CFEED in each context, ranging 787 

from 15 (blue) to 50 (red). Similarly, proportion of synonymous CpG transitions with nonzero MAF at 788 

each value of CFEED were determined for (C) CpG>CpA sSNVs and (D) CpG>TpG sSNVs. Color 789 

represents average dMFE and ranges from -0.8 (blue) to 1.85 (red). CFEED values with fewer than 75 790 

nonzero-MAF sSNVs are excluded). Finally, proportion of synonymous CpG transitions with nonzero 791 

MAF at each value of dCD (after rounding to nearest integer) were determined for (E) CpG>CpA and (F) 792 

CpG>TpG sSNVs sSNVS. Color represents average dMFE and ranges from -3 (blue) to 4 (red). Rounded 793 

dCD values with fewer than 75 nonzero-MAF sSNVs are excluded. 794 

 795 

FIGURE 5. SPI score correlates with constraint in synonymous CpG transitions. Variants in 796 

the contexts (A) CpG>CpA and (B) CpG>TpG are divided by SPI score into 20 equal bins and the value 797 

P(MAF>0) plotted against the mean of each bin. We also colored by the mean dMFE over each bin. In 798 

both contexts the constraint is highest towards negative SPI, i.e. sSNVs for which structural information 799 

decreases the predicted probability that MAF > 0.  800 

 801 

TABLE 1. Structural metrics correlate with gnomAD frequency in most REF>ALT contexts. 802 

Correlation between structural metrics (A) dMFE, (B) CFEED and integer-rounded (C) dCD on the one 803 

hand, and the quantity P(MAF>0) on the other, over all sSNVs in a given context. The R2 and p-values 804 

are obtained from a weighted least-squares linear regression, with the p-value corresponding to the linear 805 

coefficient; a quadratic regression was also performed, but only the p-value was retained. Only context-806 

metric pairs with p-value < 0.005 are included. “Normalized slope” was obtained by dividing slope of 807 

regression line by average P(MAF>0) in the context and then multiplying by range covered by metric in 808 
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its central 90% of sSNVs. “Depleter” is raw sequence variable that explains largest proportion of structural 809 

trend in this context, with sign adjusted to correlate negatively with gnomAD frequency. “Depleter R2” 810 

gives proportion of variance explained by Depleter (see Depleter variables in RESULTS for details). 811 

 812 

TABLE 2. Area under curve for SPI score. SPI was used to discriminate MAF > 0 using a simple 813 

logistic model with 5-fold cross-validation. Table shows area under curve for model, averaged over the 5 training 814 

and testing sets.  815 

 816 

TABLE 3: Known sSNVs clinically implicated for structural pathogenicity are successfully 817 

predicted to be pathogenic by our structural metrics. dbSNP RS number and standardized SNP 818 

annotations are provided, along with the genes official gene symbol and disease the sSNV has been 819 

associated with. The absolute value of dMFE, CFEED, dCD and SPI are provided, along with the 820 

percentile value of that score, computed over each context, in parentheses.   821 
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TABLE 1 
 

Context Normalized 
slope R2 Linear 

p-value 
Quadratic 

p-value Depleter Depleter R2 

(A). dMFE 
CpG>CpA -0.0861 0.690 1.49e-72 0.26 +CpG content 0.785 
CpG>TpG -0.0553 0.439 5.02e-42 8.39e-06 +CpG content 0.727 

G>T -0.1250 0.165 1.13e-27 0.00168 - leading C 0.317 
C>G -0.1170 0.139 1.35e-27 0.0659 - trailing G 0.141 
C>T -0.0394 0.125 9.61e-21 0.000494 + leading G 0.159 
C>A -0.0845 0.099 2.9e-19 1.03e-12 - trailing G 0.283 
G>A 0.0229 0.034 1.47e-06 0.000138 - leading G 0.221 
A>G 0.0377 0.029 7.69e-06 0.34 - trailing T 0.354 
T>C 0.0268 0.018 0.000217 1.08e-20 - leading A 0.351 
G>C -0.0435 0.018 0.000169 0.0547 - leading C 0.182 

(B). CFEED 
CpG>CpA -0.0469 0.655 2.28e-17 0.751 +CpG content 0.822 

G>A 0.0302 0.338 4.18e-08 0.152 +trailing A 0.557 
T>C -0.0345 0.275 8.2e-07 5.69e-05 - leading A 0.642 
C>T -0.0207 0.244 6.13e-06 1.46e-08 - C content 0.382 
C>A 0.0365 0.217 1.96e-05 0.0828 +trailing A 0.335 

CpG>TpG 0.0044 0.009 0.207 2.37e-08 +CpG content 0.604 
T>A -0.0020 -0.014 0.887 0.000419 +leading T 0.027 

(C). dCD 
CpG>TpG -0.0012 -0.013 0.638 3.89e-05 +CpG content 0.438 
CpG>CpA -0.0020 -0.016 0.751 1.42e-14 +CpG content 0.825 

G>A 0.0003 -0.017 0.947 2.08e-08 +trailing A 0.645 
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TABLE 2 
 

Context Mean AUC: 
Training dataset 

Mean AUC: 
Test dataset 

CpG>TpG 0.656 0.656 
CpG>CpA 0.616 0.618 

T>C 0.565 0.564 
C>A 0.550 0.548 
A>G 0.539 0.539 
G>C 0.536 0.538 
G>T 0.534 0.532 
T>A 0.540 0.532 
G>A 0.522 0.524 
T>G 0.529 0.522 
A>C 0.521 0.516 
C>G 0.513 0.509 
C>T 0.506 0.506 
A>T 0.512 0.505 
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TABLE 3.  
 

Gene Condition SNP (GRCh37) Context |dMFE| CFEED |dCD| |SPI| 

OPTC Primary open 
angle glaucoma 

rs559635109 
NC_000001.10:g.203467924C>T 
NM_014359.3:c.486C>T 
NP_055174.1:p.Phe162= 

C>T 0.0 
(26.6) 

32 
(69.8) 

2.53 
(52.5) 

0.0261 
(87.2) 

NKX2-5 Congenital 
heart disease 

rs72554028 
NC_000005.9:g.172660004C>T 
NM_004387.4:c.543G>A 
NP_004378.1:p.Gln181= 

G>A 3.5 
(89.1) 

4 
(30.0) 

0.24 
(10.6) 

0.0098 
(52.9) 

NKX2-5 Congenital 
heart disease 

rs2277923 
NC_000005.9:g.172662024T>C 
NM_004387.3:c.63A>G 
NP_004378.1:p.Glu21= 

A>G 0.0 
(22.2) 

20 
(57.8) 

8.85 
(89.9) 

0.0153 
(47.3) 

DRD2 
Schizophrenia, 
substance 
abuse 

rs6277 
NC_000011.9:g.113283459G>A 
NM_000795.4:c.957C>T 
NP_000786.1:p.Pro319= 

CpG>TpG 1.0 
(52.4) 

60 
(86.4) 

9.42 
(87.4) 

0.0010 
(65.7) 

COMT Pain sensitivity 

rs4633 
NC_000022.10:g.19950235C>T 
NM_000754.3:c.186C>T 
NP_000745.1:p.His62= 

CpG>TpG 0.5 
(35.9) 

66 
(88.9) 

3.80 
(58.6) 

0.0043 
(31.5) 

COMT Pain sensitivity 

rs4818 
NC_000022.10:g.19951207C>G 
NM_000754.3:c.408C>G 
NP_000745.1:p.Leu136= 

C>G 3.0 
(82.4) 

38 
(60.3) 

6.83 
(72.2) 

0.0027 
(10.4) 
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