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Abstract

Developing a thorough understanding of how ectotherm physiology adapts to different
thermal environments is of crucial importance, especially in the face of climate change.
In particular, the study of how the relationship between trait performance and
temperature (the “thermal performance curve”; TPC) evolves has been receiving
increasing attention over the past years. A key aspect of the TPC is the thermal
sensitivity, i.e., the rate at which trait values increase with temperature within
temperature ranges typically experienced by the organism. For a given trait, the
distribution of thermal sensitivity values across species is typically right-skewed. The
mechanisms that underlie the shape of this distribution are hotly debated, ranging from
strongly thermodynamically constrained evolution to adaptive evolution that can partly
overcome thermodynamic constraints. Here we take a phylogenetic comparative
approach and examine the evolution of the thermal sensitivity of population growth rate
across phytoplankton and prokaryotes. We find that thermal sensitivity is moderately
phylogenetically heritable and that the shape of its distribution is the outcome of
frequent evolutionary convergence. More precisely, bursts of rapid evolution in thermal
sensitivity can be detected throughout the phylogeny, increasing the amount of overlap
among the distributions of thermal sensitivity of different clades. We obtain
qualitatively similar results from evolutionary analyses of the thermal sensitivities of
two underlying physiological traits, net photosynthesis rate and respiration rate of
plants. Finally, we show that part of the variation in thermal sensitivity is driven by
latitude, potentially as an adaptation to the magnitude of temperature fluctuations.
Overall, our results indicate that adaptation can lead to large shifts in thermal
sensitivity, suggesting that attention needs to be paid towards elucidating the
implications of these evolutionary patterns for ecosystem function.

Author summary

Changes in environmental temperature influence the performance of biological traits
(e.g., respiration rate) in ectotherms, with the relationship between trait performance
and temperature (the “thermal performance curve”) being single-peaked. Understanding
how thermal performance curves adapt to different environments is important for
predicting how organisms will be impacted by climate change. One key aspect of the
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shape of these curves is the thermal sensitivity near temperatures typically experienced
by the species. Currently, it remains unclear if thermal sensitivity can change through
environmental adaptation or if it is nearly constant across environments. To address
this question, in this study we use four datasets of thermal performance curves to
reconstruct the evolution of thermal sensitivity across prokaryotes, phytoplankton, and
plants. We show that thermal sensitivity does not evolve in a gradual manner, but can
differ considerably even between closely related species. This suggests that thermal
sensitivity undergoes rapid adaptive evolution, which is further supported by our
finding that thermal sensitivity varies weakly with latitude. We conclude that variation
in thermal sensitivity arises partly from adaptation to environmental factors and that
this may need to be accounted for in ecophysiological models.

Introduction 1

According to current climate change projections, the average global temperature in 2100 2

is expected to be higher than the average of 1986-2005 by 0.3-4.8°C [1], coupled with an 3

increase in temperature fluctuations in certain areas [2]. Therefore, it is now more 4

important than ever to understand how temperature changes affect biological systems, 5

from individuals to whole ecosystems. At the level of individual organisms, temperature 6

affects ecological traits in the form of the “thermal performance curve” (TPC). 7

Typically, this TPC, especially when the trait is a rate (e.g., respiration rate, 8

photosynthesis, growth), takes the shape of a negatively-skewed unimodal curve (Fig. 9

1) [3,4]. The curve increases exponentially to a maximum (Tpk), and then also decreases 10

exponentially, with the fall being steeper than the rise. Understanding how various 11

aspects of the shape of this TPC adapt to a changing thermal environment is crucial for 12

predicting how rapidly organisms can respond to climate change. 13

Fig 1. The thermal performance curve (TPC) of ectotherm metabolic
traits, as described by the Sharpe-Schoolfield model [5]. (A) Tpk (K) is the
temperature at which the curve peaks, reaching a maximum height that is equal to Bpk

(in units of trait performance). E and ED (eV) control how smoothly the TPC rises and
falls respectively. B0 (in units of trait performance) is approximately the trait
performance normalised at a reference temperature (Tref) below the peak. In addition,
Wop (K), the operational niche width of the TPC, can also be calculated a posteriori as
the difference between Tpk and the temperature at the rise of the TPC where
B(T ) = 0.5 ·Bpk. (B) TPCs of rmax (and ecological traits in general) are usually
well-described by the Sharpe-Schoolfield model.

Arguably the most popular theoretical framework that makes explicit predictions 14
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about the influence of the environment on the shape of TPCs is the Metabolic Theory 15

of Ecology (MTE) [6]. Within the original MTE framework [6–8], the shape of the TPC 16

is expected to reflect the effects of temperature on the kinetics of a single rate-limiting 17

enzyme involved in key metabolic reactions. Thus, according to the MTE, the 18

exponential rise in trait values up to Tpk can be mechanistically described using the 19

Boltzmann-Arrhenius equation: 20

B(T ) = B0 · e

−E
k

·
(

1

T
−

1

Tref

)
. (1)

Here, B is the value of a biological trait, B0 is a normalisation constant which gives the 21

trait value at a reference temperature (Tref), T is temperature (in K), k is the 22

Boltzmann constant (8.617·10−5 eV · K−1), and E (eV) is the thermal sensitivity of the 23

trait within the temperature range typically experienced by the species or individual. 24

Early MTE studies argued that, because of strong thermodynamic constraints, 25

adaptation will predominantly result in changes in B0, whereas E will remain almost 26

constant across traits (e.g., respiration rate, rmax), species, and environments around a 27

range of 0.6-0.7 eV [6–8]. The latter assumption is referred to in the literature as the 28

“universal temperature dependence” (UTD). The limited range of values that E can take 29

is due to the average activation energy of respiration (≈ 0.65 eV), which is suggested to 30

determine the shape of the TPCs of ecological traits. One notable exception to the 31

UTD is net photosynthesis rate by plants whose TPCs should have a lower E value at 32

≈ 0.32 eV, similarly to the activation energy of photosynthesis [9]. 33

The existence of a UTD has been hotly debated. From a theoretical standpoint, 34

critics of the UTD have argued that the Boltzmann-Arrhenius model is too simple to 35

mechanistically describe the complex physiological mechanisms of diverse 36

organisms [3, 10–12]. These critics have argued that the model merely captures a 37

statistical relationship between trait performance and temperature, emerging from the 38

interaction of multiple factors (including evolutionary trade-offs with the local 39

environment) and not solely from the effects of temperature on enzyme kinetics. As a 40

result, the E calculated by fitting the Boltzmann-Arrhenius model to biological traits is 41

an emergent property that does not directly reflect the activation energy of a single 42

rate-limiting enzyme. For example, a fixed thermal sensitivity for net photosynthesis 43

rate is not realistic because it depends on the rate of gross photosynthesis as well as 44

photorespiration, which is in turn determined not only by temperature but also by the 45

availability of CO2 in relation to O2 [13]. 46

Indeed, there is now overwhelming empirical evidence for variation in E (thermal 47

sensitivity) far exceeding the narrow 0.6-0.7 eV range [14–19]. Furthermore, the 48

distribution of E values across species is not Gaussian but typically right-skewed. Given 49

that E is necessarily positive (i.e., its lower boundary is 0 eV), a skewed distribution 50

could, in theory, be due to measurement error around a fixed value of 0.65 eV [20]. In 51

that case, however, we would expect a high density of E values close to 0 eV; such a 52

pattern has not been observed [14]. Both the deviations from the theoretical 53

expectation of 0.6-0.7 eV and the shape of the distribution of thermal sensitivity have 54

been argued to be partly driven by adaptation to local environmental factors. These 55

include selection on prey to have lower thermal sensitivity than predators (the “thermal 56

life-dinner principle”) [14], adaptation to temperature fluctuations [3, 21,22], and 57

adaptive increases in carbon allocation or use efficiency due to warming [23–26]. 58

In general then, adaptive changes in the TPCs of underlying traits are expected to 59

influence the TPCs of higher-order traits such as rmax, resulting in deviations from a 60

UTD. Therefore, understanding how the thermal sensitivity of rmax and its distribution 61

evolve is particularly important, as it may also yield useful insights about the evolution 62
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of the TPCs of underlying physiological traits (e.g., respiration rate, photosynthesis rate, 63

and carbon allocation efficiency). Indeed, systematic shifts in the thermal sensitivity of 64

fundamental physiological traits have been documented, albeit not in a phylogenetic 65

context. In particular, the phylogenetic heritability—the extent to which closely related 66

species have more similar trait values than species chosen at random—of thermal 67

sensitivity of rmax can provide key insights. Among phytoplankton, measures of thermal 68

sensitivity of rmax (E and Wop) have previously been shown to exhibit intermediate 69

phylogenetic heritability [27]. This indicates that among phytoplankton, thermal 70

sensitivity is not constant but evolves along the phylogeny, albeit not as a purely random 71

walk in trait space. To understand how variation in thermal sensitivity accumulates 72

across diverse autotroph and heterotroph groups, in this study we conduct a thorough 73

investigation of the evolutionary patterns of thermal sensitivity, focusing particularly on 74

rmax. Using a phylogenetic comparative approach, we test the following hypotheses: 75

1) Thermal sensitivity does not evolve across species and any variation is 76

noise-like. This hypothesis agrees with the UTD concept described in early 77

MTE studies. In this case, thermodynamic constraints would force E to be 78

normally distributed, tightly around a mean of 0.65 eV (or 0.32 eV in the case of 79

photosynthesis), with large deviations from the mean being mostly due to 80

measurement error. If this hypothesis holds, thermal sensitivity would have zero 81

phylogenetic heritability. We note, however, that the absence of phylogenetic 82

heritability is not sufficient evidence on its own, as this could also be the outcome 83

of a trait evolving extremely rapidly, to the point that its evolution is independent 84

of the phylogeny. 85

2) Thermal sensitivity evolves gradually across species but tends to 86

revert to a global optimum trait value, without ever moving very far 87

from it. This hypothesis is also consistent with the UTD assumption, allowing 88

for small deviations from an optimum. Such deviations may reflect adaptation to 89

certain ecological lifestyles and, therefore, thermal sensitivity would be weakly 90

phylogenetically heritable. Similarly to the previous hypothesis, thermodynamic 91

constraints would prevent large deviations from the optimum. 92

3) Thermal sensitivity evolves in other ways. This is an “umbrella” 93

hypothesis that encompasses sub-hypotheses that do not invoke the UTD 94

assumption. For example, a global optimum may still exist, but its influence 95

would be very weak, allowing for a wide exploration of the parameter space away 96

from it. In this case, changes in thermal sensitivity would be the outcome of 97

adaptation to different thermal environments. Another sub-hypothesis may posit 98

that clades differ systematically in the rate at which thermal sensitivity evolves, 99

due to the occasional emergence of evolutionary innovations. Thus, clades with 100

high evolutionary rates would be able to better explore the parameter space of 101

thermal sensitivity (i.e., through large changes in E and Wop values), compared to 102

low-rate clades in which thermal sensitivity would evolve more gradually. A third 103

possible sub-hypothesis is that evolution may favour species that are increasingly 104

independent of temperature changes. In that case, the global optimum of E would 105

not be stationary, but moving towards lower values with time. It is worth 106

clarifying that these three sub-hypotheses are not necessarily mutually exclusive. 107

Results 108

We used four TPC datasets: i) rmax across 380 phytoplankton species [27], ii) rmax 109

across 272 prokaryote species [28], iii) net photosynthesis rates across 221 species of 110
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algae, aquatic and terrestrial plants [26], and iv) respiration rates across 201 species of 111

algae, aquatic and terrestrial plants [26]. Trait values were typically measured under 112

nutrient-, light- and CO2-saturated conditions (where applicable), after acclimation to 113

each experimental temperature. 114

Phylogeny reconstruction 115

To investigate the evolution of measures of thermal sensitivity across species, we 116

reconstructed the phylogeny of as many species in the four datasets as possible. We 117

collected publicly available nucleotide sequences of i) the small subunit rRNA gene from 118

all species groups and the ii) cbbL/rbcL gene from photosynthetic prokaryotes, algae, 119

and plants. We managed to obtain small subunit rRNA gene sequences from 537 species 120

and cbbL/rbcL sequences from 208 of them (Tables S3 and S4 in the S1 Appendix). 121

Sequence alignment was conducted using MAFFT (v. 7.123b) [29] and its L-INS-i 122

algorithm. We then performed masking by running Noisy (v. 1.5.12) [30] with the 123

default options to remove phylogenetically uninformative homoplastic sites. 124

For a more robust phylogenetic reconstruction, we used the results of previous 125

phylogenetic studies by extracting the Open Tree of Life [31] topology for the species in 126

our dataset using the rotl R package [32]. We manually examined the topology to 127

eliminate any obvious errors. In total, 497 species were present in the tree, whereas 128

many nodes were polytomic. To add missing species and resolve polytomies, we inferred 129

1,500 trees with RAxML (v. 8.2.9) [33] from our concatenated sequence alignment, 130

using the Open Tree of Life topology as a backbone constraint. Finally, we calibrated 131

the RAxML tree with the highest log-likelihood to units of relative time by running 132

DPPDiv [34] on the alignment of the small subunit rRNA gene sequences using the 133

uncorrelated Γ-distributed rates model [35] (Fig. S1 in the S1 Appendix). 134

Estimation of TPC parameters 135

To quantify the parameters (including E and Wop) of each experimentally determined 136

TPC, we fitted the following four-parameter variant of the Sharpe-Schoolfield model 137

(Fig. 1) [5, 27]: 138

B(T ) = B0 ·
e

−E
k

·
(

1

T
−

1

Tref

)

1 +
E

ED − E
· e

ED

k
·
(

1

Tpk
−

1

T

) . (2)

This model extends the Boltzmann-Arrhenius model (Eq. 1) to capture the decline in 139

trait performance after the TPC reaches its peak (Tpk). After rejecting fits with an R2
140

below 0.5, there were i) 312 fits across 118 species from the phytoplankton rmax dataset, 141

ii) 289 fits across 189 species from the prokaryote rmax dataset, iii) 87 fits across 38 142

species from the net photosynthesis rates dataset, and iv) 34 fits across 18 species from 143

the respiration rates dataset. Note that some species were represented by multiple fits 144

due to the inclusion of experimentally-determined TPCs from different strains of the 145

same species or from different geographical locations. Further filtering was performed to 146

ensure that each TPC parameter per fit was robustly estimated (see the Methods 147

section). 148

The inferred estimates of thermal sensitivity were not normally distributed but were 149

skewed to the right (Fig. S2 in Appendix S1), similarly to previous studies [14,16]. 150

Furthermore, we did not detect a disproportionately high density of thermal sensitivity 151
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values near the lower boundary of E (0 eV), as we would expect if all variation was due 152

to measurement error around a true value of e.g., 0.65 eV. Thus, these results are not 153

consistent with the hypothesis of a fixed thermal sensitivity (hypothesis 1). 154

Phylogenetic comparative analyses 155

To further test our three hypotheses, we next examined the evolutionary patterns of 156

thermal sensitivity. Given that the main focus of this study is to investigate how the 157

thermal sensitivity of rmax (a higher-order trait) evolves, most of the following 158

comparative analyses were performed on our two large TPC datasets (rmax of 159

phytoplankton and prokaryotes). Besides this, the sample sizes of the two smaller 160

datasets would be inadequate for obtaining robust results for many of our analyses. If 161

an analysis makes use of all four datasets, this is explicitly stated. 162

An issue that is worth mentioning is the overlap between the datasets of 163

phytoplankton and prokaryotic TPCs, given that phytoplankton are a polyphyletic 164

group which includes Cyanobacteria. To address this, we kept Cyanobacteria as part of 165

the phytoplankton dataset (due to their functional similarity) and did not include them 166

in analyses of prokaryotes. We also examined whether our results were mainly driven by 167

the long evolutionary distance between Cyanobacteria and eukaryotic phytoplankton by 168

repeating all phytoplankton analyses after removing Cyanobacteria (see subsection S3.2 169

in Appendix S1). 170

Phylogenetic heritability estimation 171

The phylogenetic heritability of a continuous trait is a measure of the contribution of 172

the phylogeny to the distribution of present-day trait values [36]. A phylogenetic 173

heritability of 1 indicates that the trait evolves randomly, according to Brownian 174

motion. In contrast, a phylogenetic heritability of 0 is evidence that trait values are 175

independent of the phylogeny, either because i) the trait is practically invariant across 176

species and any variation is due to measurement error or because ii) the evolution of the 177

trait is very fast and with frequent convergence. Phylogenetic heritabilities between 0 178

and 1 reflect deviations from random evolution (e.g., due to occasional patterns of 179

evolutionary convergence). 180

As TPC parameters capture different aspects of the shape of the same curve, it is 181

likely that some of them may covary [27]. To account for this in the estimation of 182

phylogenetic heritability, we fitted a multi-response phylogenetic model using the 183

MCMCglmm R package (v. 2.26) [37] in which all TPC parameters formed a combined 184

response. The model was fitted separately to our two large TPC datasets: rmax of 185

phytoplankton and prokaryotes. To satisfy the assumption of models of trait evolution 186

that the change in trait values is normally distributed, we transformed all TPC 187

parameters so that their distributions would be approximately Gaussian (see Fig. 2). 188

To integrate the inverse of the phylogenetic variance/covariance matrix into each model, 189

we first pruned our tree and obtained subtrees that only included species for which data 190

were available. 191

Non-negligible phylogenetic heritability was detected in thermal sensitivity measures, 192

as well as all other TPC parameters, across phytoplankton (including or excluding 193

Cyanobacteria) and prokaryotes (Figs. 2 and S7). In particular, the phylogenetic 194

heritability estimates of ln(E) and ln(Wop) were statistically different from both zero 195

and one, indicating that the two TPC parameters evolve across the phylogeny but not 196

in a purely random Brownian manner. Based on these results, the hypothesis that 197

thermal sensitivity does not vary across species (hypothesis 1) can clearly be rejected. 198
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Fig 2. Moderate to strong phylogenetic heritability can be detected in all
TPC parameters, across phytoplankton and prokaryotes. The three circles of
each radar chart correspond to phylogenetic heritabilities of 0, 0.5, and 1. Mean
phylogenetic heritability estimates are shown in purple, whereas the 95% HPD intervals
are in dark grey. Note that we statistically transformed all TPC parameters so that
their distributions would be approximately Gaussian. In general, TPC parameters
exhibit similar phylogenetic heritability between the two species groups. The only major
exception is ln(Bpk), which is considerably more heritable among prokaryotes than
among phytoplankton. This difference in phylogenetic heritability most likely reflects
the strength of the positive correlation between Bpk and Tpk in the two groups. More
precisely, Tpk, which has a phylogenetic heritability of ≈ 1, is more strongly correlated
with Bpk among prokaryotes [28] than among phytoplankton [27], possibly due to
differences in their cellular physiology. As a result, the phylogenetic heritability of
ln(Bpk) in prokaryotes is very close to that of T 2

pk.

Partitioning of thermal sensitivity across the phylogeny 199

To understand why thermal sensitivity has an intermediate phylogenetic heritability, we 200

examined how clades throughout the phylogeny explore the parameter space. For this, 201

we used a disparity-through-time analysis [38,39]. At each branching point of the 202

phylogeny, mean subclade disparity is calculated as the average squared Euclidean 203

distance among trait values within the subclades, normalised to the disparity of trait 204

values across the entire tree. The resulting disparity line is then compared to the null 205

expectation, i.e., an envelope of disparities obtained from simulations of random 206

evolution on the same tree. Through the comparison of the true trait disparity with the 207

null expectation, it is possible to identify the exact periods of evolutionary time during 208

which mean subclade disparity is higher or lower than expected under random evolution. 209

Higher than expected subclade disparity indicates that clades converge in trait space, 210

whereas lower than expected subclade disparity suggests that clades occupy distinct 211

areas of parameter space (adaptive radiation) due to a deceleration of the evolutionary 212

rate. Such patterns would be consistent with hypothesis 3. 213

We performed disparity-through-time analyses for ln(E) and ln(Wop), using the rank 214

envelope method [39] to generate a confidence envelope from 10,000 simulations of 215

random evolution. As it is not straightforward to incorporate multiple measurements 216

per species with this method, we selected the ln(E) or ln(Wop) estimate of the 217

Sharpe-Schoolfield fit with the highest R2 value per species. We note that the ideal 218

approach would be to estimate the median ln(E) and ln(Wop) value for each species 219

from large intraspecific samples. This was not possible, however, as for almost all 220
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species we had one or very few intraspecific estimates. The mean subclade disparity of 221

thermal sensitivity measures was higher than expected near the present, highlighting an 222

increasing overlap in the parameter space of thermal sensitivity among distinct clades 223

(Figs. 3 and S8). This pattern of increasing clade-wide convergence in thermal 224

sensitivity is also easily apparent through the comparison of thermal sensitivity 225

distributions among large phyla (Figs. 4 and S3). 226

Mapping the evolutionary rate on the phylogeny 227

We next investigated if clades systematically differ in their evolutionary rate of thermal 228

sensitivity (part of hypothesis 3). To this end, we estimated the evolutionary rate of 229

thermal sensitivity measures for each branch of the phylogeny by fitting two extensions 230

of the Brownian motion model: the free model [40] and the stable model [41]. Under the 231

free model, the trait undergoes random evolution but with an evolutionary rate that 232

varies across branches. The stable model can be seen as a generalisation of the free 233

model, as the evolutionary change in trait values is sampled from a heavy-tailed stable 234

distribution, of which the Gaussian distribution (assumed under Brownian motion) is a 235

special case. Thus, the stable model should provide a more accurate representation of 236

evolutionary rate variation, as it is better able to accommodate jumps in parameter 237

space towards rare and extreme trait values. 238

The results were robust to the choice of model used for inferring evolutionary rates 239

(Figs. 5 and S5). Rate shifts tend to occur sporadically throughout the phylogeny and 240

especially in late-branching lineages, without being limited to particular clades. This 241

pattern suggests that there is little variation in the evolutionary rate of thermal 242

sensitivity among clades, with sudden bursts of trait evolution arising in parallel across 243

evolutionarily remote lineages. 244

Visualization of trait evolution as a function of time and test for 245

directional selection 246

To further describe the evolution of thermal sensitivity, we visualized the E and Wop 247

values from the root of each subtree until the present day, across all four TPC datasets. 248

Ancestral states – and the uncertainty around them – were obtained from fits of the 249

stable model of trait evolution, as described in the previous subsection. The 250

visualization allowed us to test hypothesis 2, i.e., that thermal sensitivity evolves closely 251

around an optimum value, with large deviations from the optimum quickly reverting 252

back to it. To also test the MTE expectation of a global optimum around 0.65/0.32 eV 253

for E (hypothesis 2), as well as the hypothesis of directional selection towards lower 254

thermal sensitivity (part of hypothesis 3), we used the following model: 255

ln(E) ∼ ln(θ̂) + slope · t. (3)

ln(E) values (those from extant species and ancestral states inferred with the stable 256

model) were regressed against a global optimum (ln(θ̂)) and a slope that captures a 257

putative linear trend towards lower/higher values with relative time, t. The same model 258

was also fitted to ln(Wop). The regressions were performed with MCMCglmm and were 259

corrected for phylogeny as this resulted in lower Deviance Information Criterion 260

(DIC) [42] values than those obtained from non-phylogenetic variants of the models. 261

More precisely, we executed two MCMCglmm chains per regression for a million 262

generations, sampling every thousand generations after the first hundred thousand. 263

The aforementioned analysis (Fig. 6) did not provide support for the hypothesis of 264

strongly constrained evolution around a single global optimum (hypothesis 2). Instead, 265

lineages explore large parts of the parameter space, often moving rapidly towards the 266
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Fig 3. The mean subclade disparity in thermal sensitivity tends to exceed
that expected under random evolution, given enough time. Shaded regions
represent the 95% confidence interval of the resulting trait disparity from 10,000
simulations of random Brownian evolution on each respective subtree. The dashed line
stands for the median disparity across simulations, whereas the solid line is the observed
trait disparity. The latter is plotted from the root of the tree (t = 0) until the most
recent internal node. The reported P -values were obtained from the rank envelope test,
whose null hypothesis is that the trait undergoes random evolution. Note that instead
of a single value, a range of P -values is produced for each panel, due to the existence of
ties. A general pattern emerges, indicating that species from evolutionary remote clades
tend to increasingly overlap in thermal sensitivity space with time.
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Fig 4. Distributions of thermal sensitivity estimates of rmax for the largest
phyla of this study. In general, more variation can be observed within than among
phyla. For example, E and Wop are similarly distributed among Proteobacteria and
Bacillariophyta despite the long evolutionary distance that separates the two phyla.
This high amount of convergence in thermal sensitivity space by diverse lineages
suggests that variation in the two TPC parameters is mainly driven by adaptation to
local environmental conditions, irrespective of species’ evolutionary history. In other
words, it is likely that particular thermal strategies (e.g., having low thermal sensitivity)
may yield significant fitness gains at certain environments (e.g., those with large
temperature fluctuations), leading to convergent evolution of thermal sensitivity.
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Fig 5. Variation in the evolutionary rate of thermal sensitivity across the
phylogeny. Rates were estimated by fitting the stable model of trait evolution to each
dataset and were then normalised between 0 and 1. Most branches exhibit relatively low
rates of evolution (orange), whereas the highest rates (red and brown) are generally
observed in late-branching lineages across different clades.
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upper and lower bounds (i.e., 0 and 4 eV), without reverting back to the presumed 267

optimum (e.g., see the clade denoted by the arrow in Fig. 6D). The estimated optima 268

for E of the two rmax datasets were much higher than 0.65 eV and, in the case of 269

prokaryotes (Fig. 6B), the 95% HPD interval did not include 0.65. Similarly, the 270

inferred optimum values for E of net photosynthesis rate and respiration rate (0.52 eV 271

and 2.06 eV respectively; Fig. S9A,B) were both higher than the theoretical 272

expectations of 0.32 and 0.65 eV. The slope parameter that would capture any 273

directional trend in thermal sensitivity (part of hypothesis 3) was not statistically 274

different from zero for any dataset. 275

Latitudinally structured variation in thermal sensitivity 276

All our analyses in this study so far appear to converge on one conclusion: that the 277

evolution of thermal sensitivity can be rapid and largely independent of the 278

evolutionary history of each lineage. This suggests that certain environments may select 279

for particular values of thermal sensitivity. To identify environmental adaptation in 280

thermal sensitivity, we examined whether it varies with latitude across the combination 281

of all four TPC datasets. A latitudinal relationship could suggest that thermal 282

sensitivity changes in response to temperature fluctuations. In this case, we would 283

expect selection for thermal specialists near the equator where temperature fluctuations 284

are low and an increasing trend towards thermal generalists at higher latitudes. In 285

support of this hypothesis, the E values of phytoplankton rmax have been previously 286

shown to decrease from the equator to mid-latitudes [27]. 287

The best-fitting models revealed that latitude indeed explains some variation in E 288

but not in Wop (Figs. 7 and S10, Tables S1 and S2). The E estimates of rmax, net 289

photosynthesis rate, and respiration rate differed statistically in their intercepts but not 290

in their slopes against latitude, although the latter could be an artefact of the small 291

sample size. This result suggests that latitude could influence the E values of not only 292

rmax but also other traits across various species groups. 293

Discussion 294

In this study, we have performed a thorough analysis of the evolution of the thermal 295

sensitivities of rmax and its two key underlying physiological traits (net photosynthesis 296

rate and respiration rate). To achieve this, we formulated and tested three alternative 297

hypotheses that capture different views expressed in the literature regarding the impact 298

of thermodynamic constraints on the evolution of two measures of thermal sensitivity: 299

E and Wop (Fig. 1). 300

The first hypothesis is that thermal sensitivity is strictly constant across traits, 301

species, and environments, as it is directly determined by the activity of a single key 302

rate-limiting enzyme involved in metabolic reactions. This hypothesis was first 303

introduced in early papers that described the Metabolic Theory of Ecology [6–8]. We 304

did not find support for this hypothesis as we detected substantial variation in thermal 305

sensitivity (Fig. S2 in the S1 Appendix), which was also found to be phylogenetically 306

heritable among phytoplankton and prokaryotes (Fig. 2). 307

Our second hypothesis can be thought of as a relaxed version of the first. According 308

to it, thermal sensitivity is able to evolve, but only close to an “optimum” value due to 309

strong (but not completely insurmountable) thermodynamic constraints. We tested this 310

hypothesis using a series of phylogenetic comparative analyses. These analyses showed 311

that the evolution of thermal sensitivity is characterised by an increasing overlap in 312

parameter space by evolutionarily remote lineages (Figs. 3 and 4) due to bursts of rapid 313

evolution (Fig. 5). Additionally, visualisation of thermal sensitivity evolution through 314
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Fig 6. Projection of the phylogeny into thermal sensitivity versus time
space. The values of ancestral nodes were estimated from fits of the stable model.
Yellow lines represent the median estimates, whereas the 95% credible intervals are
shown in red. θ̂ is the estimated global optimum for each panel, whereas the existence
of a linear trend towards lower/higher values is captured by the reported slope.

Parentheses stand for the 95% HPD intervals for θ̂ and the slope. All estimates were
obtained for ln(E) and ln(Wop), but the parameters are shown here in linear scale. The
inset figures show the density distributions of E and Wop values of extant species in the
dataset. The arrow in panel D shows an example of a whole clade shifting towards high
Wop values, without being attracted back to θ̂.
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Fig 7. E values weakly decrease with absolute latitude. A possible driver of
this pattern could be the increase in temperature fluctuations from low to high
latitudes, resulting in stronger selection pressure for thermal generalists (with lower E
values). 23% of the variance is explained by latitude and trait identity, whereas the
addition of species identity as a random effect on the intercept raises the amount of
explained variance to 58%. Note that values on the vertical axis increase exponentially.

time (Figs. 6 and S9) showed that thermal sensitivity can rapidly move away from its 315

presumed optimum value without being strongly attracted back to it (e.g., see the arrow 316

in Fig. 6D). These results are inconsistent with the hypothesis that strong 317

thermodynamic constraints prevent large shifts in thermal sensitivity away from a 318

global optimum (hypothesis 2). 319

Our final hypothesis was that thermal sensitivity evolves in an adaptive manner and 320

that even if a global optimum exists, its influence on thermal sensitivity evolution is 321

very weak. This hypothesis was supported both by our analyses of trait macroevolution 322

and by a detected relationship between E and latitude (Fig. 7). The latter result agrees 323

with the expectation that thermally variable environments should impose selection for 324

phenotypes with low thermal sensitivity, and vice versa [3, 21]. However, a latitudinal 325

relationship could not be detected for Wop. One possible interpretation for this result is 326

that the smaller sample of Wop values did not permit the recognition of a latitudinal 327

association. Alternatively, and given the nonlinearity in the rising part of the TPC, it is 328

possible that E is a more meaningful measure of thermal sensitivity than Wop. While 329

the latter implicitly assumes that species experience temperatures close to Tpk, E is 330

able to capture the thermal sensitivity across the entire rise of the TPC. 331

In light of these results, a mechanistic interpretation of TPC evolution can be 332

derived from the comparison of phylogenetic heritabilities of TPC parameters (Fig. 2). 333

Contrary to E and Wop which have intermediate phylogenetic heritabilities, Tpk is 334

almost perfectly phylogenetically heritable and evolves relatively gradually (i.e., large 335

jumps in parameter space cannot be observed; see Fig. S6 in the S1 Appendix). Thus, 336

we expect TPCs to adapt to different thermal environments through both slight changes 337

in Tpk and larger changes in E. Fundamental differences in the selection mechanisms 338

underlying the evolution of these two parameters may explain this key difference in 339
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evolutionary patterns between them. Specifically, while Tpk and E are both associated 340

with latitude, the former responds to mean environmental temperature [27,43] while the 341

latter to temperature fluctuations [3, 21,22,27]. We hypothesize that a species adapted 342

to low temperatures is unlikely to adapt to a high-temperature environment rapidly 343

enough (i.e., through a large increase in Tpk) as it is pushed to its thermal tolerance 344

limits [44, 45]. In contrast, a species adapted to a fluctuating thermal environment (i.e., 345

having a low E value) should be able to survive in more thermally stable conditions and 346

eventually become a thermal specialist (with a high E value). Nevertheless, latitude, 347

trait identity, and species identity account for only 58% of the variance in E (Fig. 7), 348

indicating that shifts in E may also be driven by other factors such as biotic 349

interactions [14,46,47]. A systematic identification of drivers of thermal sensitivity as 350

well as the magnitude of their respective influence could be the focus of future studies. 351

For the thermal sensitivity of rmax in particular, the observed patterns of 352

non-gradual evolution could partly reflect the evolution of the TPCs of underlying 353

physiological traits on which rmax depends (e.g., photosynthesis rate and respiration 354

rate in phytoplankton). More precisely, it is possible that even moderate changes in the 355

TPCs of fundamental traits could have, in combination, strong knock-on effects on the 356

thermal sensitivity of rmax [23]. In support of this, we have previously shown that in 357

populations of photosynthetic cells, shifts in the thermal sensitivity of carbon allocation 358

efficiency will necessarily induce changes in the thermal sensitivity of rmax [26]. Further 359

research is clearly needed to identify how different traits and their thermal sensitivities 360

interact, and the extent to which such interactions can be modified through adaptation. 361

Nonetheless, it is worth emphasising that large adaptive shifts in thermal sensitivity can 362

be observed even for fundamental physiological traits such as respiration rate (Fig. 363

S9B,D), contrary to the MTE expectation of strong evolutionary conservatism [6–8]. It 364

remains to be seen whether this pattern reflects a similar lack of evolutionary 365

conservation in the shape of the thermal stability curves [48] of enzymes involved in 366

metabolic reactions. 367

Besides variation in thermal sensitivity that has a biological basis, “artificial” 368

variation may also be present, hindering the recognition of real patterns. For example, 369

E estimates can be inaccurate if trait measurements at the rise of the TPC are limited 370

and only span a narrow range of temperatures [17]. To prevent this issue, we only kept 371

E estimates if at least four trait measurements were available at the rise of each TPC. 372

Further variation in thermal sensitivity can be introduced if trait values are measured 373

instantaneously (without allowing sufficient time for acclimation) or under suboptimal 374

conditions (e.g., under nutrient- or light-deficient conditions). Such treatments can lead 375

to systematic biases in the shape of the resulting TPCs, which may strongly differ from 376

TPCs obtained after adequate acclimation and under optimal growth 377

conditions [23,49–52]. Regarding our study, the datasets that we used only included 378

TPCs that were experimentally determined after acclimation and under optimal 379

conditions. 380

In any case, it is worth stressing that TPC adaptation is generally associated in the 381

ecological literature with shifts in Tpk or Bpk and less so with changes in thermal 382

sensitivity [3]. A possible explanation for this is that the mechanisms that could lead to 383

changes in E may occur under more complex selective environments or longer timescales 384

than those in most evolutionary ecology experiments. In particular, gradual changes in 385

Tpk may be achieved through evolutionary shifts in the melting temperature of enzymes, 386

i.e., the temperature at which 50% of the enzyme population is deactivated [48,53]. In 387

contrast, changes in thermal sensitivity may be the outcome of i) evolution of enzymes 388

with different heat capacities [48,54,55], ii) changes in the plasticity of cellular 389

membranes [3, 56], or even iii) restructuring of the underlying metabolic network [57]. 390

Overall, our results emphasize the need to consider variation in E, as has been 391
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pointed out before [14,16,17,26]. In particular, a number of studies had previously 392

identified right skewness in the E distributions of multiple traits and taxonomic 393

groups [14, 16, 17]. However, a clear explanation for this pattern was lacking, given that 394

E was expected to be strongly thermodynamically constrained and thus almost 395

invariable across species [6–8]. Our study fills this gap by showing that the distribution 396

of E is the outcome of frequent convergent evolution, driven by the adaptation of 397

species from different clades to similar environmental conditions. In other words, as 398

species encounter new environments through active or passive dispersal [58–60], they 399

face selection for particular values of thermal sensitivity, which often results in large 400

shifts in E. This process explains both the low variation in E among species groups 401

(Fig. 4) and the shape of its distribution. More precisely, the high degree of right 402

skewness probably reflects the fact that most environments select for thermal 403

generalists, with high E values being less frequently advantageous. Our findings have 404

implications for ecophysiological models which may benefit from accounting for 405

variation in thermal sensitivity among species or individuals. This could both yield an 406

improved fit to empirical datasets [61] and provide a more realistic approximation of the 407

processes being studied. Finally, the existence of adaptive variation in thermal 408

sensitivity is likely to partly drive ecological patterns at higher scales (e.g., the response 409

of an ecosystem to warming). How differences in thermal sensitivity among species 410

influence ecosystem function is largely unaddressed [28,61] but highly important for 411

accurately predicting the impacts of climate change on diverse ecosystems. 412

Methods 413

Phylogeny reconstruction and relative time calibration 414

We specified the General Time-Reversible model [62] with Γ-distributed rate variation 415

among sites [63] as the evolutionary model in RAxML. The topology was kept fixed 416

between the two gene partitions (i.e., one partition for the alignment of the small 417

subunit rRNA gene sequences and one partition for the alignment of cbbL/rbcL gene 418

sequences), whereas the parameters of the evolutionary model were allowed to differ. 419

Out of the 1,500 resulting tree topologies, we selected the tree with the highest 420

log-likelihood and performed bootstrapping (using the extended majority-rule 421

criterion) [64] to evaluate the statistical support for each node. 422

For time calibration, we used the alignment of small subunit rRNA gene sequences 423

only, as DPPDiv can only be run on a single gene partition. We executed two DPPDiv 424

runs for 9.5 million generations, sampling from the posterior distribution every 100 425

generations. After discarding the first 25% of samples as burn-in, we ensured that the 426

two runs had converged on statistically indistinguishable posterior distributions by 427

examining the effective sample size and the potential scale reduction factor [65,66] for 428

all model parameters. More precisely, we verified that all parameters had an effective 429

sample size above 200 and a potential scale reduction factor value below 1.1. To 430

summarise the posterior distribution of calibrated trees into a single relative 431

chronogram, we kept 4,750 trees per run (one tree every 1,500 generations) and 432

calculated the median height for each node using the TreeAnnotator program [67]. 433

Sharpe-Schoolfield model fitting 434

We followed the same approach for fitting the Sharpe-Schoolfield model as in 435

reference [27]. Briefly, we set Tref to 0°C, as for B0 to be biologically meaningful (see 436

Fig. 1), it needs to be normalised at a temperature below the minimum Tpk in the 437

study. Thus, a Tref value of 0°C allowed us to include TPCs from species with low Tpk 438
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values in the analyses. Also, as certain specific TPC parameter combinations can 439

mathematically lead to an overestimation of B0 compared to the true value, 440

B(Tref) [68], we manually recalculated B(Tref) for each TPC after obtaining estimates 441

of the four main parameters (B0, E, Tpk, and ED). For simplicity, these recalculated 442

B(Tref) values are referred to as B0 throughout the study. Finally, Bpk and Wop were 443

calculated based on the estimates of the four main parameters. 444

To ensure that all TPC parameters were reliably estimated, we filtered the resulting 445

estimates based on the following criteria: i) B0 and E estimates were rejected if fewer 446

than four experimental data points were available below Tpk. ii) Extremely high E 447

estimates (i.e., above 4 eV) were rejected. iii) Wop values were retained if at least four 448

data points were available below Tpk and two after it. iv) Two data points below and 449

after the peak were required for accepting the estimates of Tpk and Bpk. v) ED 450

estimates were kept if at least four data points were available at temperatures greater 451

than Tpk. 452

Estimation of phylogenetic heritability for all TPC parameters 453

As in the previous subsection, the methodology that we used here was identical to that 454

in reference [27]. In short, we specified a phylogenetic mixed-effects model for each of 455

the two large TPC datasets with MCMCglmm. The models had a combined response 456

with all TPC parameters transformed towards normality. The uncertainty for each 457

estimate was obtained with the delta method [69] or via bootstrapping (for ln(Wop)) 458

and was incorporated into the model. Missing estimates in the response variables (i.e., 459

when not all parameter estimates could be obtained for the same TPC) were modelled 460

according to the “Missing At Random” approach [36,37]. Regarding fixed effects, a 461

separate intercept was specified for each TPC parameter. Species identity was treated 462

as a random effect on the intercepts and was corrected for phylogeny through the 463

integration of the inverse of the phylogenetic variance/covariance matrix. For each 464

dataset, two Markov chain Monte Carlo chains were run for 200 million generations and 465

estimates of the parameters of the model were sampled every 1,000 generations after the 466

first 20 million generations were discarded as burn-in. Tests to ensure that the chains 467

had converged and that the parameters were adequately sampled were done as 468

previously described. 469

Free and stable model fitting 470

We fitted the free and the stable models of trait evolution to estimates of ln(E) and 471

ln(Wop), using the motmot.2.0 R package (v. 1.1.2) [70,71] and the stabletraits 472

software [41] respectively. To obtain each fit of the stable model, we executed four 473

independent Markov chain Monte Carlo chains for 30 million generations, recording 474

posterior parameter samples every 100 generations. Samples from the first 7.5 million 475

generations were excluded, whereas the remaining samples were examined to ensure that 476

convergence had been achieved. 477

Investigation of a putative relationship between latitude and 478

ln(E) and ln(Wop) 479

We examined the relationship of thermal sensitivity with latitude by fitting regression 480

models with MCMCglmm to all four TPC datasets combined. The response variable 481

was ln(E) or ln(Wop), whereas possible predictor variables were i) latitude (either in 482

radian units and using a cosine transformation, or as absolute latitude in degree units), 483

ii) the trait from which thermal sensitivity estimates were obtained, and iii) the 484

interaction between latitude and trait identity. To properly incorporate multiple 485
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measurements from the same species (where available), we treated species identity as a 486

random effect on the intercept. We fitted both phylogenetic and non-phylogenetic 487

variants of all candidate models. Two chains per model were run for five million 488

generations each, with samples from the posterior being captured every thousand 489

generations. We verified that each pair of chains had sufficiently converged, after 490

discarding samples from the first 500,000 generations. To identify the most appropriate 491

model, we first rejected models that had a non-intercept coefficient with a 95% Highest 492

Posterior Density (HPD) interval that included zero. We then selected the model with 493

the lowest mean DIC value. To report the proportions of variance explained by the 494

fixed effects (Varfixed), by the random effect (Varrandom), or left unexplained (Varresid), 495

we calculated the marginal and conditional coefficients of determination [72]: 496

R2
m =

Varfixed
Varfixed + Varrandom + Varresid

, (4)

R2
c =

Varfixed + Varrandom
Varfixed + Varrandom + Varresid

. (5)

Supporting information 497

S1 Appendix. 498
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47. Bestion E, Garćıa-Carreras B, Schaum CE, Pawar S, Yvon-Durocher G.
Metabolic traits predict the effects of warming on phytoplankton competition.
Ecol Lett. 2018;21(5):655–664.

48. Pucci F, Rooman M. Physical and molecular bases of protein thermal stability
and cold adaptation. Curr Opin Struct Biol. 2017;42:117–128.

49. Thomas MK, Aranguren-Gassis M, Kremer CT, Gould MR, Anderson K,
Klausmeier CA, et al. Temperature–nutrient interactions exacerbate sensitivity to
warming in phytoplankton. Glob Chang Biol. 2017;23:3269–3280.

50. Bestion E, Schaum CE, Yvon-Durocher G. Nutrient limitation constrains thermal
tolerance in freshwater phytoplankton. Limnol Oceanogr Lett. 2018;3(6):436–443.

51. Rohr JR, Civitello DJ, Cohen JM, Roznik EA, Sinervo B, Dell AI. The complex
drivers of thermal acclimation and breadth in ectotherms. Ecol Lett.
2018;21(9):1425–1439.

52. Wang H, Atkin OK, Keenan TF, Smith N, Wright IJ, Bloomfield KJ, et al..
Thermal acclimation of leaf respiration consistent with optimal plant function;
2018. Available from: bioRxiv:434084. Cited 4 June 2019.

53. Somero GN. Proteins and temperature. Annu Rev Physiol. 1995;57(1):43–68.

54. Hobbs JK, Jiao W, Easter AD, Parker EJ, Schipper LA, Arcus VL. Change in
heat capacity for enzyme catalysis determines temperature dependence of enzyme
catalyzed rates. ACS Chem Biol. 2013;8(11):2388–2393.

July 23, 2019 21/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2019. ; https://doi.org/10.1101/712885doi: bioRxiv preprint 

https://doi.org/10.1101/712885
http://creativecommons.org/licenses/by/4.0/


55. DeLong JP, Gibert JP, Luhring TM, Bachman G, Reed B, Neyer A, et al. The
combined effects of reactant kinetics and enzyme stability explain the
temperature dependence of metabolic rates. Ecol Evol. 2017;7(11):3940–3950.

56. Cooper BS, Hammad LA, Montooth KL. Thermal adaptation of cellular
membranes in natural populations of Drosophila melanogaster. Funct Ecol.
2014;28(4):886–894.

57. Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the
self-organization of ecosystems. Proc Natl Acad Sci U S A.
2017;114(15):E3091–E3100.

58. Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science.
2002;296(5570):1061–1063.

59. Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A. Environmental
distribution of prokaryotic taxa. BMC Microbiol. 2010;10(1):85.

60. Doblin MA, van Sebille E. Drift in ocean currents impacts intergenerational
microbial exposure to temperature. Proc Natl Acad Sci U S A.
2016;113(20):5700–5705.

61. Johnston ASA, Sibly RM. The influence of soil communities on the temperature
sensitivity of soil respiration. Nat Ecol Evol. 2018;2(10):1597–1602.
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