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Abstract

Depending on environmental demands, humans can learn and exploit multiple concur-

rent sets of stimulus-response associations. Mechanisms underlying the learning of such

task-sets remain unknown. Here we investigate the hypothesis that task-set learning re-

lies on unsupervised chunking of stimulus-response associations that occur in temporal

proximity. We examine behavioral and neural data from a task-set learning experiment

using a network model. We first show that task-set learning can be achieved provided the

timescale of chunking is slower than the timescale of stimulus-response learning. Fitting

the model to behavioral data confirmed this expectation and led to specific predictions

linking chunking and task-set retrieval that were borne out by behavioral performance

and reaction times. Comparing the model activity with BOLD signal allowed us to iden-

tify neural correlates of task-set retrieval in a functional network involving ventral and

dorsal prefrontal cortex, with the dorsal system preferentially engaged when retrievals

are used to improve performance.

Keywords

task-set learning, Hebbian plasticity, cognitive control, mixed selectivity, computational

model.

Introduction

Synaptic plasticity is believed to constitute the neurobiological basis of learning and2

memory. Changes of synaptic strength based on the activity of pre- and post-synaptic

neurons were first postulated by Hebb [Hebb, 1949] and later confirmed in electrophysio-4

logical experiments [Frégnac et al., 1988; Levy and Steward, 1983; Lisman, 2003; Lynch

et al., 1977; Malenka and Nicoll, 1999]. Such synaptic changes in turn modify the ac-6

tivity in the network as well as the response to incoming stimuli, and can implement

stimulus-action learning [Bathellier et al., 2013; Fusi et al., 2007; Reynolds et al., 2001;8

Rioult-Pedotti et al., 2000; Rumpel et al., 2005; Schultz and Dickinson, 2000; Xiong et al.,

2015]. Understanding how synaptic changes at individual synapses are related to learn-10

ing in behaving animals remains however a daunting challenge, especially for complex

cognitive tasks that go beyond simple stimulus-response associations.12

Depending on environmental demands, humans engaged in a given task are capable

of learning and exploiting multiple concurrent strategies. For instance, in the classical14

Stroop task [MacLeod, 1991; Stroop, 1935], an identical stimulus like a colored word leads
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to di↵erent responses depending on whether the current requirement is to read the word16

or identify its color. Human subjects are able to learn to flexibly switch between these two

di↵erent stimulus-response associations, often called task-sets [Sakai, 2008]. Studies of18

task-sets learning predominantly rely on abstract models that describe behavioral learning

without any physiological constraint [Botvinick et al., 2009; Collins and Koechlin, 2012;20

Collins and Frank, 2013; Daw et al., 2005, 2011; Dayan and Daw, 2008; Franklin and

Frank, 2018; Russek et al., 2017]. While these models are able to capture computational22

aspects of behavior, and correlate them with physiological measurements [Daw et al.,

2011; Donoso et al., 2014; Koechlin and Hyafil, 2007; Niv, 2009; Wilson et al., 2014],24

understanding the underlying biophysical mechanisms is an open issue.

One hypothesis [Rigotti et al., 2010b] states that learning of task-sets, and more gener-26

ally rule-based behavior, relies on unsupervised learning of temporal contiguity between

events. Events that occur repeatedly after each other are automatically associated as28

demonstrated in classical conditioning experiments [Hawkins et al., 1983; Kahana, 1996;

Rescorla, 1988; Rescorla et al., 1972; Sakai and Miyashita, 1991; Yakovlev et al., 1998]. If30

one thinks of individual stimulus-response associations as abstracted events, temporally

chunking two or more such events e↵ectively corresponds to learning a simple task-set32

or association rule. Hebbian synaptic plasticity naturally leads to unsupervised learning

of temporal contiguity between events [Blumenfeld et al., 2006; Fusi, 2002; Fusi et al.,34

2007; Griniasty et al., 1993; Li and DiCarlo, 2010; Ostojic and Fusi, 2013; Preminger

et al., 2009; Soltani and Wang, 2006; Wallis et al., 1993], and therefore provides a natural36

biological mechanism for learning task-sets [Rigotti et al., 2010b].

Here we explore the hypothesis that temporal contiguity is implemented in a neural38

network through simple Hebbian learning. Recurrence enables the network to learn from

its own activity and thus synaptic links are created between events separated in time. If40

the network is composed of hierarchical layers of cells selective to mixtures of stimuli and

responses, task-sets of increasing complexity can be encoded. We test this hypothesis in42

the context of human decision-making. To this end, we consider a specific experimental

task [Collins and Koechlin, 2012] where subjects have to learn multiple task-sets by44

merging associations between a unique set of stimuli and responses. We show that in

order to encode these concurrent task-sets e�ciently, plasticity between cells selective to46

a mixture of both a stimulus and a response has to be slower than plasticity between cells

selective to either a stimulus or a response.48

Fitting this model to behavior allows us to make specific predictions based on the

hypothesis that task-set learning relies on temporal chunking of events. One prediction50

pertains to the case when a task-set is retrieved correctly, an another one to the case

when this retrieval is maladaptive. We show that these predictions are borne-out by the52
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behavioral data at the level of individual subjects. Moreover, we show that the time-

series of the inference signal predicting task-set retrieval in the model correlates with54

BOLD signal recorded from fMRI [Donoso et al., 2014] in a functional network engaging

medial and dorsal prefrontal cortex. Dorsomedial and dorsolateral prefrontal cortex are56

engaged specifically when the retrieval of a task-set is used for optimal performance.

On the contrary, ventromedial prefrontal cortex is engaged negatively, irrespective of a58

possible task-set retrieval. This is equivalent to tracking the compatibility, when a reward

is received, between the network layer encoding task-sets, and the network layer encoding60

one-to-one stimulus-response associations.

These results show that simple Hebbian mechanisms and temporal contiguity may62

parsimoniously explain the learning of complex, rule-based behavior.

Results64

Behavioral evidence for task-set-driven behavior

To investigate the mechanisms for task-set learning, we examined a specific experiment66

performed by 22 human subjects (Experiment 1 [Collins and Koechlin, 2012], see Mate-

rials and Methods). In each trial, the subjects had to associate a visual stimulus with a68

motor response (Fig. 1a). The subjects needed to learn the correct associations based on

a feedback signal, which was misleading in 10% of the trials (see Methods). The set of70

correct stimulus-response associations, which we will denote as task-set in the following,

was fixed during a block of trials of random length (called an episode), and changed re-72

peatedly to a non-overlapping set without explicit indication. As the feedback was not

fully reliable, the subjects could not directly infer the task-set changes from the feedback74

on a single trial, but needed to integrate information.

The subjects’ behavior was compared between an open-ended session, in which the76

valid task-set was di↵erent in each episode, and a recurrent session in which only three

task-sets appeared repeatedly. In the open-ended session, as each task-set was seen only78

once, a correct response to one stimulus bore only minimal information about the correct

responses to the other stimuli (the responses to the three stimuli had to be di↵erent). In80

contrast, in the recurrent session, a correct response to a given stimulus fully predicted

the correct responses to the other stimuli. Learning full task-sets rather than individual82

associations therefore allowed subjects to increase their performance.

Behavioral data indicated that beyond individual stimulus-response associations, sub-84

jects indeed learned task-sets in the recurrent session [Collins and Koechlin, 2012]. Ad-

ditional evidence in that direction is displayed in Fig. 1b, where we show the proportion86
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of correct responses to stimuli seen for the first time after the first correct response in an

episode. This quantity was determined for the last third of the session, when the subjects88

had already experienced several times the three re-occurring task-sets within the recur-

rent session. If the subjects had perfectly learned the task-sets, they could directly infer90

the correct response to the newly seen stimulus from a single correct response to another

stimulus. The data shows that indeed some subjects perfectly learned full task-sets, so92

that their performance is maximal after the first correct trial. The performance averaged

over all subjects was significantly higher in the recurrent session compared to the open-94

ended session (T-test on related samples, second stimulus: 0.53 ± 0.05 vs 0.39 ± 0.04,

t=2.1, p=0.049; third stimulus: 0.65±0.05 vs 0.46±0.03, t=3.1, p=0.0049), demonstrat-96

ing that subjects exploited information from the correct response to a given stimulus to

infer the correct response to other stimuli. An important variability was however ob-98

served among subjects, as most of them did not learn task-sets perfectly, and some not

at all (a point we return to later).100

An additional observation consistent with task-set learning was that subjects do not

modify their behavior following a misleading noisy feedback occurring late in an episode102

(Fig. 1c, recurrent session: 0.94 ± 0.01 before, 0.94 ± 0.01 after, t=0.25, p=0.80 ; open-

ended session 0.94±0.01 before, 0.93±0.01 after, t=0.68, p=0.50). An isolated misleading104

negative feedback after extensive learning in an episode should be ignored because incon-

sistent with the current task-set. A switch to another task-set or simply a change in a106

single stimulus-response association would be detrimental to performance. This negative

feedback is indeed ignored by the subjects, indicating again they learn sets rather than108

individual stimulus-response associations.

A network model for learning task-sets by chunking stimulus-110

response pairs

To examine the hypothesis that task-set-driven behavior emerges from unsupervised112

chunking of stimulus-response pairs, we studied a neurally-inspired network model (Fig. 1d),

that built on previous modeling studies of a trace conditioning task in monkeys [Fusi et al.,114

2007; Rigotti et al., 2010b]. The model consisted of two subnetworks, which we refer to

as the Associative Network (AN) and the Task-set Network (TN). The associative net-116

work is a simplified version of a neural decision-making network [Fusi et al., 2007; Wang,

2002; Wong and Wang, 2006]. It consists of a set of stimulus-selective populations and a118

set of action-selective populations. The stimulus-action associations are learned through

reward-modulated plasticity on the synapses between the two sets of populations [Fusi120

et al., 2007].
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The task-set network consists of neural populations that display mixed-selectivity to122

conjunctions of stimuli and actions [Rigotti et al., 2010b, 2013]. For instance, if the

associative network generates the action A2 in response to the stimulus S1, the corre-124

sponding population S1A2 is activated in the task-set network. Such mixed-selectivity

response can be implemented through random projections from the associative network126

to the task-set network [Lindsay et al., 2017; Rigotti et al., 2010a], which for simplicity

we don’t explicitly include in the model. Synapses between neural populations in the128

task-set network undergo temporal Hebbian learning, i.e. they are modified based on

the successions of stimulus-response pairs produced by the associative network [Ostojic130

and Fusi, 2013; Rigotti et al., 2010b]. If two stimulus-response pairs are produced often

after each other, the synapses between the corresponding mixed-selectivity populations132

in the task-set network are potentiated. When this potentiation exceeds a threshold set

by recurrent inhibition, the two populations are chunked together and systematically134

coactivated when one of the two stimulus-response associations occurs. Thus by means

of temporal chunking, this subnetwork implements a task-set as a merged pattern of136

co-activated populations. This coactivation is communicated to the associative network,

where it biases the stimulus-action associations at the next trial towards those encoded138

by the active populations in the task-set network. This e↵ective inference signal helps the

associative network determine the correct response to a stimulus di↵erent from the one140

in the current trial, and therefore implements task-set retrieval in the network model.

To keep the model easy to fit and analyze, this inference signal is implemented in a142

simplified manner, by directly modifying the synaptic weights in the associative network

(see Discussion for more realistic physiological implementations). The strength of this144

modification is a parameter in the model that represents the strength of task-set retrieval

(if it is zero, there is no retrieval). We will show that this specific parameter plays a key146

role in accounting for the variability in the subjects behavior.
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Figure 1: Task-set learning experiment and subject behavior. a, Schematic of the behavioral
task. Subjects had to learn associations between visual stimuli (represented here as {1, 3, 5}) and motor
responses (represented here as {d, f, j, k}). The set of correct stimulus-response associations, denoted
as task-set, was fixed during a block of trials of random length. The schematic shows the 3 task-sets
used in the recurrent session. The task-sets are non-overlapping from one episode to another in both
the recurrent and the open-ended session, meaning that an episode switch produces a change of correct
responses for all stimuli. b, Proportion of correct responses to stimuli seen for the first time after the
first correct response in an episode, during the last third of each experimental session. These newly seen
stimuli are labeled second or third according to their order of appearance. Dots display the average
for each subject. Violin plots display the shape of each distribution over subjects (Scott’s rule). The
black lines outline the mean ± s.e.m. c, Performance preceding and following a trial with misleading
feedback (non-rewarded correct response), at the end of episodes, averaged over all subjects (± s.e.m.).
The subjects performance did not change after a misleading feedback if it occurs at the end of an episode,
after being trained on the current task-set. d, Illustration of the network model. The associative network
(AN) is composed of a set of stimulus-selective populations and a set of action-selective populations. The
synaptic weights between the two sets of populations are modified through a reward-modulated, activity-
dependent Hebbian plasticity rule. At each trial, an action is selected via a soft and noisy winner-take-all
mechanism with respect to the current set of synaptic weights. The task-set network (TN) is composed
of neural populations selective to conjunctions of one stimulus and one action. Its activity is driven by
the associative network’s activity and by its own recurrent connectivity. The sequential activation of
neural populations in the task-set network induces the potentiation of the synapses between them. An
inference signal from the task-set network to the associative network biases future behavior according to
the patterns of activation in the task-set network. e, Illustration of the perfect, fully chunked encoding
in the task-set network of the 3 non-overlapping task-sets from the recurrent session.
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Task-set encoding in the network model enables task-set driven148

behavior

The task-set network is in principle able to chunk together stimulus-response pairs that150

occur often after each other. We first show how it enables task-set-driven behavior.

Consider an idealized situation at the end of the recurrent session of the experiment152

where full chunking has taken place, and the pattern of connectivity in the task-set

network directly represents the three task-sets (Fig. 1e). Due to the inference signal from154

the task-set network to the associative network, this pattern of connectivity will directly

influence the responses to incoming stimuli.156

The impact of this inference signal is the strongest at an episode change, when the

correct set of stimulus-response associations suddenly shifts (Fig. 2a,e,i). The associative158

network always needs to discover the first correct association progressively by trial and

error, by first depressing the set of stimulus-response synapses in the associative network160

corresponding to the previous task-set, and then progressively potentiating the synapses

corresponding the new set of associations (Fig. 2a). In the absence of task-set inference,162

this learning process happens independently for each stimulus (Fig. 2b,c). In the presence

of the idealized task-set network described above, once the first correct response is made,164

the task-set network produces the inference signal allowing the associative network to

immediately recover the other two correct associations in the new episode (Fig. 2j,k). As166

a consequence, the overall performance is increased (Fig. 2e) due to a sudden increase in

performance following the first correct response (Fig. 2f,g).168

A second situation in which the task-set inference strongly manifests itself is the case

of noisy, misleading feedback late in an episode. At that point, the associative network170

has fully learned the correct set of stimulus-response associations, and the performance

has reached asymptotic levels. The network therefore produces mainly correct responses,172

but as on 10% of trials the feedback is misleading, it still occasionally receives negative

reinforcement. In the absence of the task-set network, this negative feedback necessar-174

ily depresses the synapses that correspond to correct associations, leading to a decrease

in performance on the following trials (Fig. 2d,h). In contrast, in the presence of the176

idealized task-set network, the inference signal that biases the behavior towards the cor-

rect task-set is present despite the occasional negative feedback, and therefore allows the178

network to ignore it (Fig. 2d,h,l). The encoding of task-sets in the task-set network pat-

tern of connectivity therefore prevents the transient drop in performance, as seen in the180

experimental data (Fig. 1c).
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Figure 2: Task-set driven behavior in the network model with an idealized, perfect encoding
of task-sets. The behavior of the model is compared in presence (red lines) and in absence (blue lines)
of the inference signal from the task-set network, that allows task-set retrieval. a,e,i, Model dynamics
following an episode switch (at trial zero, the correct task-set shifts without explicit indication). a,
Strengths of synapses in the associative network between neural populations representing the new task-
set (solid lines) and the previous task-set (dashed lines). e, Performance (proportion of correct responses)
following the episode switch. i, Mean inference signal strength < J

INC

· (1 � JAN ) > from the task-
set network to the associative network. b,f,j, Task-set retrieval: same quantities as in (a,e,i) for the
stimulus seen for the first time after the first correct response in the new episode, aligned on the first
correct response. c,g,k, Same quantities as in (a,e,i), for the two stimuli seen for the first time after
the first correct response in an episode. As in Fig. 1b, These newly seen stimuli are labeled second or
third relatively to their order of appearance. d,h,l, E↵ect of misleading feedback: same quantities as in
(a,e,i,), aligned on a misleadingly non-rewarded correct trial at the end of episodes.
Average of 5000 sessions of 25 episodes, with 10% of noisy trials. Network parameter values: ↵ = 0.4,
� = 7, ✏ = 0, J

INC

= 1.
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Speed-accuracy trade-o↵ for learning task-sets in the network182

model

The idealized encoding described above requires that the task-set network e↵ectively184

and autonomously learns the correct pattern of connections corresponding to the actual

task-sets. We therefore next examined under which conditions synaptic plasticity in the186

task-set network leads to correct learning, i.e. correct temporal chunking.

Fig. 3a,c,e,g shows a simulation for a parameter set for which learning of task-sets188

proceeds successfully. At the beginning of the session, all populations within the task-set

network are independent as all synaptic weights are below threshold for chunking. As190

the associative network starts producing correct responses by trial and error, the weights

in the task-set network that connect correct stimulus-response pairs get progressively192

potentiated. While a fraction of them crosses threshold and leads to chunking during the

first episode (and therefore starts producing the task-set inference signal), the majority194

does not, reflecting the fact that the first task-set is not fully learned at the end of the

first episode. The potentiation in the task-set network continues over several episodes,196

and the weights in the task-set network that correspond to co-occurring stimulus-response

pairs eventually saturate to an equilibrium value. This equilibrium value is an increasing198

function of the probability that two stimulus-response pairs follow each other, and of

the potentiation rate in the task-set network (see Methods). The equilibrium synaptic200

weights in the task-set network therefore directly reflect the temporal contiguity between

stimulus-response pairs [Ostojic and Fusi, 2013] and thus encode the task-sets. If the202

equilibrium value is larger than the inhibition threshold in the task-set network, this

encoding will lead to the chunking of the activity of di↵erent populations and generate204

the inference signal from the task-set network to the associative network. The inference

sets in progressively as the synaptic plasticity in the task-set network advances, and206

increasingly biases the behavioral output produced by the associative network.

Learning in the task-set network is however strongly susceptible to noise, and need not208

necessarily converge to the correct representation of task-sets. One important source of

noise is the exploratory period following an episode switch, during which the associative210

network produces a large number of incorrect responses while searching for the correct

one. If the potentiation rate in the task-set network is too high, the synaptic weights in212

the task-set network may track too fast the fluctuating and incorrect stimulus-response

associations produced by the associative network, and quickly chunk together pairs of214

events that do not correspond to a correct task-set (Fig. 3b). Once these events are

chunked together, the task-set network sends an incorrect inference signal to the asso-216

ciative network, and generates further incorrect associations (Fig. 3f,h). As the network
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learns in an unsupervised fashion from its own activity, this in turn leads to more incor-218

rect associations in the task-set network. In such a situation, the presence of the task-set

network is at best useless and at worse detrimental to the performance of the network as220

a whole.

To determine under which conditions the plasticity in the task-set network leads to222

the correct learning of task-sets, we systematically varied the associative and task-set

networks learning rates and compared the performance in the models with and without224

the inference signal from the task-set network. Our results show that the presence of task-

set inference improves the network performance when the task-set network learning rate226

is slower than the associative network learning rate (Fig. 4a). As illustrated in Fig. 3b,f,h,

when learning in the task-set network is too fast, the network tracks noisy associations228

produced by the associative network, because of noise in the experimental feedback or

because of errors made at the transition between episodes. In contrast, slow learning230

allow the task-set network to integrate information over a longer timescale. While in

principle it would be advantageous to learn the task-set structure as quickly as possible,232

the requirement to average-out fluctuations due to erroneous feedback sets an upper-

bound on the learning rate in the task-set network. This is an instance of the classical234

speed-accuracy trade-o↵.

The correct learning of task-sets also depends on the strength of the inference signal.236

While strong inference leads to strong task-set retrieval and potentially large performance

improvement, it also makes the network more sensitive to incorrect chunking in the task-238

set network. Our simulation show that larger inference strengths need to be compensated

for by lower learning rates in the task-set network to produce an improvement in the240

performance (Fig. 4b). This is another manifestation of the speed-accuracy trade-o↵.
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Figure 3: Dynamics of task-set learning. Left column: slow learning rate in the task-set network
(TN) (Q

P

= 0.17); right column: fast learning rate in the task-set network (Q
P

= 0.4). a,b, Activation
of neural populations in the task-set network as a function of time during one session. In (a), learning
dynamics proceed correctly and lead to the chunking of populations that correspond to the same task-
set. As a result, the activation of one stimulus-response association causes the co-activation of the other
two in the same task-set. In contrast, in (b) learning does not proceed correctly and chunking does
not take place. c,d, Average values of task-set network synaptic strengths between neural populations
corresponding to each of the three correct task-sets, as well as “spurious” synaptic strengths between
neural populations from di↵erent task-sets or that do not correspond to any task-set at all. e,f, Average
value of the inference signal from the task-set network to the associative network connectivity. g,h,
Performance of the network.
Task-sets presentation is periodic for illustration purposes. (a,b) corresponds to 1 run of the recurrent
session. (c,d,e,f,g,h) corresponds to the average over 500 runs of the recurrent session.
The values of parameters other than Q

p

were ↵ = 0.4, � = 7, ✏ = 0, and J
INC

= 0.7.
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Figure 4: Slow versus fast learning: conditions for correct encoding of task-sets in the
network model. a, Di↵erence in the performance of the network model with or without task-set
inference, plotted as function of the associative network learning rate ↵ and the task-set network learning
rate Q

P

, (with � = 7 and inference strength J
INC

= 0.7). b, Same di↵erence in performance but plotted
as function of the inference strength J

INC

and the task-set network learning rate Q
P

, (with � = 7 and
associative network learning rate ↵ = 0.4).
We computed the performance averaged over the 5 first correct responses for a stimulus, in the last third
of the session, on an average of 200 runs of the recurrent session and with 10% noisy trials.
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Fitting the model to behavioral data242

Having described the dynamics in the model, we next proceeded to fit the model pa-

rameters to the subjects’ behavioral data. The full network model contains only five244

free parameters, which we determined independently for each subject by maximizing the

likelihood of producing the same sequence of responses. To determine the importance of246

task-set retrieval in the model, we compared the fit obtained from our two nested models

: the full model (associative network connected to the task-set network, 5 parameters),248

as well as the associative network model alone, without the inference signal that allows

task-set recovery (3 free parameters). The full model with task-set inference provides250

a significantly better fit to the behavioral data in the recurrent session than does the

model without task-set inference (Fig. 5a, Bayesian Information Criterion (BIC), T-test252

on related samples t = 14, p = 4.3 · 10�12). In the open-ended session, in which a

given task-set never reoccurs between episodes, the two models provide instead indis-254

tinguishable fits. On average over subjects, the learning rate in the associative network

(↵ = 0.35, � = 0.0073) is twice the learning rate in the task-set network (Q
P

= 0.17,256

� = 0.0070), which is consistent with our initial prediction that the learning rate in the

task-set network needs to be slower than in the associative network.258

As mentioned earlier, an important behavioral variability was present among subjects.

This variability was particularly apparent in the performance following an episode switch,260

where some subjects increased their performance much faster than others in the recurrent

session, compared to the open-ended session (Fig. 1b). Inspecting the parameter values262

obtained for di↵erent subjects revealed that the most variable model parameter between

the recurrent and the open-ended sessions was the strength of the inference signal for264

task-set retrieval in the model (Fig. 5b, T-test on related samples t = 14.8, p = 1.5 ·
10�12). The value of this parameter appeared to directly account for the inter-subject266

variability, as it correlated with the di↵erence between BIC values obtained for models

with and without task-set inference (linear regression r2 = 0.81, p = 1.4 · 10�8, Fig. 5c)268

as well as with the subjects’ performance following the first correct trial in an episode

(linear regression r2 = 0.60, p = 2.5 · 10�5, Fig. 5d). These findings further suggest270

the variability in that parameter is directly linked with the subject’s ability to recover

task-sets. This was confirmed by examining the results of a behaviorally-independent272

post-test debriefing used in the original study to classify subjects as either exploiting task-

set structure (“exploiting” subjects) or not (“exploring” subjects). Exploiting subjects274

systematically corresponded to higher performance on trials following a correct response,

and higher values of the inference parameter in the model (Fig. 5c,d).276

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/713156doi: bioRxiv preprint 

https://doi.org/10.1101/713156


Figure 5: Fitting the model to experimental data: the model with inference (AN-TN)
captures the statistical structure of the data, and accounts for the variability between
subjects. a, Model comparison for the recurrent session. Bayesian Information Criterion, computed as
in [Bishop, 2007], for the models with and without task-set inference. The model provides a significantly
better fit with inference than without. b, Estimate of the inference strength J

INC

from the task-set
network to the associative network connectivity in the model with task-set inference, for both sessions.
c, Subject by subject di↵erence between BIC values obtained for models with and without task-set
inference, as a function of the inference strength parameter. Subjects are classified as “exploiting” or
“exploring” from a post-test debriefing. The grey line displays a least-squares regression. d, Subject by
subject performance following the first correct trial in an episode, as a function of the inference strength
parameter. The performance was computed by considering the 10 trials following the first correct trial
of each episode. The grey line displays a least-squares regression.
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Testing model predictions for task-set retrieval

We next examined a specific subset of experimental trials where task-set retrieval is278

expected to take place. In the model, how quickly two stimulus-response pairs are chunked

together depends on how often they co-occur, as well as on the value of the learning rate280

in the task-set network. Once two pairs are chunked together, the correct response to

the stimulus corresponding to one of the pairs leads to the retrieval of the task-set, and282

biases the response to the stimulus from the second pair. When the pairs are not chunked

together, the responses to the two stimuli are instead independent. The basic prediction284

is therefore that the responses to the stimulus from the second pair should di↵er between

trials when chunking has or has not taken place, depending on the learning progress.286

We first tested this prediction in a situation where chunking should lead to the re-

trieval of the correct task-set. We focused on one trial in each episode, the trial that288

followed the first correct response (Fig. 6a). Running our model on the full sequence of

preceding experimental events (on a subject-by-subject basis, using parameters fitted to290

each subject and actual sequences of stimuli and responses) produced a prediction for

whether chunking had occurred for this trial (chunked or independent, Fig. 6a, orange292

and grey respectively). The model with inference predicted that the proportion of cor-

rect responses on chunked trials should be higher than on independent trials due to the294

inference signal implementing task-set retrieval. In the model without inference where

the associative network is independent of the task-set network, the performance on the296

two types of trials is instead indistinguishable. Comparing the proportion of correct re-

sponses on experimental trials classified in the two categories showed a significant increase298

for chunked trials compared to independent trials (Fig. 6b: (i) model without inference

t = 0.64, p = 0.53, (ii) model with inference t = 6.9, p = 1.4 · 10�7, (iii) subjects t = 2.8,300

p = 8.8 · 10�3, (iv) chunked trials, model without inference versus model with inference

t = 11, p = 6.3·10�10, (v) chunked trials, model without inference versus subjects t = 5.9,302

p = 2.3 · 10�5), so that the model prediction with inference was directly borne out by

experimental data. The task-set retrieval predicted by the model therefore led to a clear304

increase of subjects’ performance. Moreover, reaction times on chunked trials were sig-

nificantly lower than on independent trials, showing that the inference helped subjects to306

be faster at responding (Fig. 6c, t = 8.7, p = 1.7 · 10�9). This provides a supplementary

validation, as the model was not fitted on reaction times. Note that a potential confound308

could be induced if the chunked trials appeared on average later in an episode than in-

dependent trials. A direct comparison however showed that the distributions of chunked310

and independent trials were indistinguishable (Fig. S3a, ks = 0.085, p = 0.62).

We next tested the predictions of the model on trials where chunking leads to the312

retrieval of an incorrect task-set. Such a situation happens because of the presence of 10
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% of trials with misleading feedback, which may indicate to the subject that the produced314

response was correct although it was not. Our model predicted that in this case incorrect

task-set recovery leads to a decrease of the performance on the next trial. To test this316

prediction, we first detected the misleading trials, and then used the model to classify

each of them as either chunked or independent (Fig. 6d). Comparing in the experimental318

data the responses on chunked trials with the performance of the model without task-set

inference showed that indeed the subjects’ performance was significantly reduced when320

the model predicted an incorrect task-set retrieval (Fig. 6e: (i) chunked trials, model

without inference versus model with inference t = 5.8, p = 1.0 · 10�5, (ii) chunked trials,322

model without inference versus subjects t = 5.2, p = 2.2 · 10�5).

The two behaviors described above (retrieval of a correct task-set after the first correct324

response, and retrieval of an incorrect task-set after a misleading feedback) cannot be

predicted by the model without inference: we thus assessed the generative performance326

of our chunking mechanism and falsified the model without inference [Palminteri et al.,

2017].328
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Figure 6: Testing the predictions of the temporal chunking mechanism on specific trials.
a, Schematic of the prediction for correct task-set retrieval. For each episode, and subject by subject,
we compute the probability of making a correct choice after the first correct trial following an episode
switch. Trials are classified from a model-based criterium as “chunked” or “independent”, respectively
depending on the presence or absence of an inference from the task-set network to the associative network.
b, Because of task-set inference, the model predicts a significant increase of performance on chunked
trials compared to independent trials. This is not predicted by the associative network alone (“Model
without inference”). Subject’s performance on these trials matches the model with inference. The error
bars are larger for the independent trials because this category contains half the number of data, as
shown in figure S3. c, Log of subjects’ reaction times in seconds, for trials classified as chunked or
independent. d, Schematic of the prediction for task-set retrieval following misleading rewarded trials.
After each episode switch, the subject is making incorrect choices. On 10% of these trials the feedback is
misleadingly rewarded (e.g. 3f , which corresponds to a correct association for the previous task-set, but
not for the current task-set). Because of the inference from the task-set network, the previous task-set can
be incorrectly inferred by the model from this positive feedback: it’s a “chunked” trial. e, Probability of
making a correct association after a misleadingly rewarded noisy trial classified as a chunked trial by the
model. Because of the inference from the task-set network, the model predicts an incorrect association
at the next trial, producing a decrease in performance. This decrease is not predicted by the associative
network alone. Subject’s performance on these trials matches the model with inference.
Violin plots display the shape of each distribution (Scott’s rule). Dots display the average for each
subject. The black lines outline the mean ± s.e.m.
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Task-set inference related activity in ventromedial, dorsomedial,

and dorsolateral prefrontal nodes330

The neural populations in the task-set network represent neurons selective to conjunctions

of stimuli and responses. Temporal synaptic chunking between these neural populations332

over the course of learning created task-sets in the model, and predicted precisely timed

retrievals, correct or maladaptive, and borne out by individual subjects’ behavior. We334

aimed at understanding where this signal was implemented in the brain, using blood-

oxygen-level-dependent signal recorded from functional magnetic resonance imaging (40336

subjects, Experiment 2 [Donoso et al., 2014], see Fig. S2 for model fit on this dataset).

We first investigated neural correlates of the trial-by-trial synaptic strength of the338

chosen association in the associative network, W
chosen

, at the onset decision (controlling

for trial di�culty, through time-series of reaction times, see Methods). As shown in Fig.340

S5 (top), we found positive linear e↵ects in striatum and ventromedial prefrontal cortex,

and negative linear e↵ects in dorsal anterior cingulate cortex, anterior supplementary342

motor area and lateral prefrontal cortex, in both experimental sessions. These results

confirm previous findings in the field of value-based decision making [Alexander and344

Brown, 2011; Chib et al., 2009; Daw et al., 2006; Donoso et al., 2014; Lebreton et al.,

2009; Neubert et al., 2015; Palminteri et al., 2015; Tanaka et al., 2004].346

We then focused on the correlations between BOLD signal and the trial-by-trial in-

ference signal strength which we found to distinguish the two experimental sessions,348

computationally and behaviorally (at the onset feedback, trial di�culty and prediction

error were controlled with W
chosen

and the time series of positive rewards, see Methods).350

In the recurrent session (Fig. S5, bottom), BOLD activity correlated positively with the

inference signal strength in dorsolateral prefrontal cortex, dorsal anterior cingulate cortex352

and anterior supplementary motor area ; and negatively in ventromedial prefrontal cor-

tex. In contrast, in the open-ended session, we found no significant positive or negative354

e↵ect in frontal lobes corresponding to this parametric modulator. These results showed

important di↵erences between the two sessions, and suggested that a functional network356

engaging medial and dorsolateral prefrontal cortex is activated when the task-sets had to

be learned and used (recurrent session versus open-ended session).358

Hence we defined a functional network from significant BOLD activations in both

sessions for the task-set network inference signal at the onset feedback. To do so, we360

performed a between-subjects ANOVA (contrasts REC+OE and -REC-OE, see Table 7

and Methods), which showed dorsomedial and dorsolateral prefrontal cortex correlated362

positively with the value of the inference signal. Ventromedial prefrontal cortex correlated

negatively with the value of the inference signal, i.e. positively with the compatibility364
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between encoding in the two subnetworks (see Methods) when a reward is received.

Figure 7: One-way ANOVA defining the functional network engaged in the TN inference
signal computation. The functional network is defined from activations from the parametric modulator
corresponding to the TN inference signal, in both sessions (contrasts REC+OE and -REC-OE, FWE
p = 0.05).
dlPFC: dorsolateral prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial
prefrontal cortex; [x y z] are MNI coordinates; REC: Recurrent session; OE: Open-Ended session.

This functional network was used for a ROI analysis on the trial-by-trial inference366

signal to test the hypothesis of a specific e↵ect of task-set retrieval in the recurrent session

(ventromedial, dorsomedial and dorsolateral prefrontal cortex respectively left, middle,368

and right columns of Fig. 8a). These ROI were thus chosen from the analysis of a di↵erent

contrast (REC+OE, see Methods) that did not promote di↵erences (REC versus OE).370

First, we tested these ROIs at the onset feedback for W
chosen

(top row) and for receiving

positive reward (thus on “prediction” error, middle row): both were significantly encoded372

in the three ROIs, but no di↵erence between experimental sessions was observed. The

task-set network inference signal was also significantly encoded in the three ROIs (bottom374

row). However, the correlation with this signal in dorsomedial and dorsolateral prefrontal

cortex was significantly stronger in the recurrent session, compared to the open-session376

(dmPFC: t = 3.0, p = 3.2 ·10�3 ; and dlPFC: t = 4.6, p = 1.6 ·10�5), i.e. when this signal

was needed to improve performance in the task. Activations in ventromedial prefrontal378

cortex did not discriminate significantly between the two sessions (t = 0.16, p = 0.87).

This analysis showed a di↵erence of neural activity in the dorsal system corresponding380

to the necessity of learning and using (recurrent session) or not (open-ended session)

the model of the task. We controlled our neural findings by performing analyses with382

ROI selected from several meta-analyses ([Glasser et al., 2016; Lancaster, 1997; Shirer

et al., 2012; Yarkoni et al., 2011], see Methods). As shown in Fig. S6, dorsolateral384

and dorsomedial prefrontal cortex were specifically recruited in the recurrent session and

implicated in the computation of the inference signal for task-set retrieval.386

Because of the specific timing predicted by the inference signal, we pushed further

this analysis by looking at the magnetic resonances responses at feedback onset, in these388

ROI, to a similar GLM where the inference signal had been replaced by the succession

of 5 parametric regressors : an event-related regressor including only the first occurrence390

(per episode) of inference for a chunked trial (related to Fig. 6a,b,c), and the same event-

related regressor shifted one or two trials preceding and following. This analysis is showed392
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Figure 8: ROI analysis with the functional network defined from the ANOVA. Caption next
page.
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Figure 8: ROI analysis with the functional network defined from the ANOVA. The areas
represented in blue are representing the regions identified in the previous analysis (Fig. 7) for the
TN inference signal, using a significant threshold of FWE p = 0.05. a,b,c, They are tested at the
onset feedback, thus independently, for the parametric modulators of the time series of W

chosen

, positive
rewards, and the inference signal. b, Same GLM, in the recurrent session, but we replaced the parametric
regressor of the task-set network inference signal by five sparser time-series constituted of only one trial
per episode and the corresponding events shifted one or two trials preceding and following it. This trial
was chosen as the first chunked trial of the model behavioral predictions (per episode, if it existed from
su�cient learning, Fig. 6a,b,c).
E↵ect sizes in arbitrary units for the recurrent and the open-ended session. Error bars correspond to
the standard error of the mean over the 40 subjects. dlPFC: dorsolateral prefrontal cortex; dmPFC:
dorsomedial prefrontal cortex; vmPFC: ventromedial prefrontal cortex

in Fig. 8b and confirmed that neural activity in these three ROI exhibits no response

in the trials immediately preceding the first detected chunked trial. On the contrary,394

dorsomedial response is significant at the first detected chunked trial, and ventromedial

and dorsolateral responses are significant from this trial onwards. The specific timing396

predicted by the model for this first detected chunked trial per episode is thus borne out

both behaviorally (Fig. 6) and neurally (Fig. 8).398

Discussion

Task sets emerged in our model through unsupervised temporal chunking of stimulus-400

action associations encoded by mixed-selective neural populations. When repeated, a

task-set could be retrieved from a single stimulus-action association by reactivation of the402

whole chunk. This retrieval then biased the downstream decision-making circuit through

an inference signal. The model predicted finely timed, abrupt changes in behavioral404

responses in a task-set learning experiment [Collins and Koechlin, 2012; Donoso et al.,

2014]. The retrieval of a task-set had both adaptive (reduction of exploration) and406

sometimes maladaptive e↵ects (retrieval of an incorrect task-set) on the following trial

performance. Our analysis of BOLD activity established a functional network engaging408

ventromedial, dorsomedial, and dorsolateral prefrontal cortex that correlated with the

inference signal for task-set retrieval. The dorsal system was engaged preferentially in410

the situation where the retrieval of a task-set was used to improve performance.

Biologically plausibility of the temporal chunking mechanism.412

The temporal chunking mechanism is implemented through simplified, but biologically

plausible processes. The reward-dependent Hebbian learning and winner-take-all mecha-414

nisms of the associative network builds on previous studies in the field of conditional asso-

ciative learning [Fusi et al., 2007; Soltani et al., 2017; Soltani andWang, 2010; Wang, 2002;416
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Wong and Wang, 2006]. Hebbian plasticity in the task-set network is slower, activity-

mediated and unsupervised, creating task-sets as chunks of temporally contiguous events.418

The required mixed-selectivity can be obtained from randomly connected neurons re-

ceiving feed-forward inputs coming from sensory and motor areas and has been widely420

observed in the prefrontal cortex [Asaad et al., 1998; Genovesio et al., 2005; Rigotti et al.,

2013; Wallis et al., 2001]. Moreover, learning at behavioral timescales can be generated422

through sustained neural activity and extended STDP [Brunel, 1996; Compte et al., 2000;

Curtis and Lee, 2010; Drew and Abbott, 2006; Miller and Cohen, 2001; Murray et al.,424

2017; Rougier et al., 2005; Van Rossum et al., 2000]. Finally, the inference signal for

task-set retrieval solves an exclusive-or problem, as di↵erent task-sets map from the same426

set of stimuli and actions. It can be implemented through random projections from an

extra-pool of non-linear mixed selective cells both selective to the “internal” synaptic428

chunk (task-set) and to external events like the presentation of a stimulus [Fusi et al.,

2016; Rigotti et al., 2013].430

Neural correlates of task-set retrieval.

Consistent with the literature on the neural correlates of goal-directed behavior, we found432

that the inference signal predicting the retrieval of a task-set correlated specifically with

BOLD activity in ventromedial, dorsomedial and dorsolateral prefrontal networks.434

First, the associative network “prediction error” correlated with activity in striatum

and ventromedial prefrontal cortex [Daw et al., 2006; Lebreton et al., 2009; Palminteri436

et al., 2015; Tanaka et al., 2004]. Ventromedial prefrontal cortex also correlated negatively

with the inference signal, i.e. positively with the compatibility between encoding in the438

two subnetworks when a reward was received (as a prediction error-like signal). This is

potentially in accordance with the role of ventromedial prefrontal cortex in monitoring440

the Bayesian actor reliability in this experiment [Donoso et al., 2014].

Second, dorsal prefrontal cortex was preferentially engaged when the model of the task442

(i.e., the task-sets) is useful and integrates into the behavioral policy (recurrent versus

open-ended sessions, while controlling for trial perceived di�culty, as implemented by444

reaction times [Shenhav et al., 2013, 2014]). Dorsolateral prefrontal cortex is known to

be specifically engaged for temporally integrating and organizing multimodal information446

[Duncan, 2001; Kim et al., 2008; Ma et al., 2014; Miller, 2000; O’Reilly, 2010; Sakai,

2008]. Previous work showed that neurons in the anterior cingulate cortex monitor the448

allocation and the intensity of control [Behrens et al., 2007; Dosenbach et al., 2006; Enel

et al., 2016; Khamassi et al., 2013; Rushworth et al., 2007; Shenhav et al., 2013]. In450

this specific experiment, but through a Bayesian framework, the dorsal anterior cingulate

cortex was shown to be specifically selective to switch-in events [Donoso et al., 2014].452
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Stability/flexibility trade-o↵ from the unsupervised temporal chunk-

ing mechanism.454

Our model builds on an attractor concretion mechanism [Rigotti et al., 2010b] while being

simplified: we don’t make the hypothesis of the existence of fixed attractors. Instead, the456

synaptic weights are modified immediately from the start and continuously. Thus, the

task-set network can learn from its own activity, combining prior statistical information458

to future learning, crucial in non-stationary problems. In order for this mechanism to be

stable when learning concurrent task-sets, learning has to be slower as the representational460

complexity increases.

This mechanism also enables the encoding of a synaptic trace of any sequence of462

events, even incorrect, as a transition probability (weak but non-zero) between chunks or

with an isolated neural population. The brain relies on estimates of uncertainty within464

and between task-sets [Collins and Koechlin, 2012; Courville et al., 2006; Donoso et al.,

2014; Gershman and Niv, 2012; Kepecs and Mainen, 2012; Rushworth and Behrens, 2008;466

Soltani and Izquierdo, 2019; Yu and Dayan, 2005]. More specifically, Collins and Koechlin

[Collins and Koechlin, 2012] have shown that the Bayesian likelihood (“reliability”) of468

each task-set in memory is evaluated. Inferences on the current and alternative task-sets

have been found to occur in medial and lateral prefrontal cortices respectively [Donoso470

et al., 2014]. The coupling between these two tracks permits hypothesis testing for optimal

behavior. Future work could investigate how an estimate of uncertainty (or reliability472

over task-sets) is retrieved from the synaptic weights of our model. This synaptic trace

could then be used by the cholinergic and noradrenergic systems to modify the relative474

influence of top-down control (TN-like) versus bottom-up experience-dependent (AN-

like), integration of information [Aston-Jones and Cohen, 2005; Sara, 2009], or to regulate476

the learning rates and the exploration parameters [Doya, 2002; Farashahi et al., 2017]

responsible for the stability/flexibility trade-o↵ of this temporal chunking mechanism.478

Temporal chunking in layers of mixed-selective cells is a plausible

implementation of multi-step transition maps and generalization.480

Cognitive control and learning are linked and depend on the formation of hierarchical

representations in the brain [Badre, 2008; Badre et al., 2009, 2010]. Plasticity and recur-482

rence between mixed-selective cells in prefrontal cortex create a conjunctive code seeding

a flexible “representational medium” [Duncan, 2001; Ma et al., 2014; Manohar et al.,484

2019; Miller, 2000]. Through simple Hebbian learning at decreasing timescales in decou-

pled layers of mixed-selective cells, momentarily stable chunks combining states, action,486

rewards, or more abstract “task-sets” can be encoded, as well as the transition statistics
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between them, to create hierarchically more complex chunks. A local change in the state488

transition function of the task, or during reward devaluation, will have the e↵ect of flex-

ibly depressing the newly unused synaptic link without relearning the whole transition490

rule. This “model-free” mechanism thus encodes the discounted occupancy of a state

(or action, or any task-relevant feature), averaged over trajectories beginning from that492

state, leading to model-based behavior [Behrens et al., 2018; Russek et al., 2017] while

also accounting for limited memory capacity [Blumenfeld et al., 2006; Nassar et al., 2018;494

Ostojic and Fusi, 2013].

This mechanism can also generalize. Augmenting our network with a generaliza-496

tion layer composed of neurons selective to the combination of three stimuli and three

actions could produce faster learning of a new task-set by biasing lower cortical struc-498

tures. In this simplistic scheme, generalization is a top-down, gating-like mechanism

solving exclusive-or problems between layers of cells of decreasing complexity. Caching500

multi-steps transitions in a single value (model-free) or not (model-based) would then be

equivalent to learning at slower timescales in an increasingly complex hierarchy of cortex502

layers [Murray et al., 2014].
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Materials and Methods

Experimental procedures518

The experimental task

We modeled a specific human experiment for concurrent task-set monitoring, previously520

reported in [Collins and Koechlin, 2012; Donoso et al., 2014]. The detail of the experi-

mental procedures can be found in the original papers, here we provide only a summary.522

Data from [Collins and Koechlin, 2012] are called Experiment 1. Data from [Donoso

et al., 2014] are called Experiment 2. The experimental designs are identical. Experiment524

1 is a behavioral experiment including 22 subjects. Experiment 2 involves 40 subjects,

with fMRI acquisition.526

Subjects had to search for implicit associations between 3 digits and 4 letters by trial528

and error. In each trial, a visual stimulus (a digit on the screen in {1, 3, 5} or {2, 4, 6})
was presented to the subject (Fig. 1a). The subject had to take an action by pressing a530

letter on a keyboard in {d, f, j, k}. The outcome (reward or no reward) was announced

with a visual and auditory feedback. A visual measure of the cumulative collected profit532

was displayed on the screen. For each trial of Experiment 1, the subject had 1.5 seconds

to reply during the presentation of the stimulus. The average length of a trial was 2.9s.534

For Experiment 2, the mean of a trial was either 6s or 3.6s, whether BOLD activity is

acquired or not. MRI trials were longer, introducing jitters at stimulus or reward onsets536

for signal decorrelation.

538

A correct association between the stimulus and the action led to positive reward with

a probability 90%. An incorrect association between the stimulus and the action led to a540

null reward with a probability 90%. 10% of (pseudo-randomized) trials were misleading

noisy trials, yielding to a positive reward for an incorrect association, and vice-versa.542

Thus a null feedback could be produced either by a behavioral error, by a change in

correct associations, or by noise. The introduction of noisy trials prevented subjects from544

inferring a change in correct associations from a single unrewarded trial.

546

The correct set of responses to stimuli remained unchanged over a block of 36 to 54

trials. Such a block is called an episode. The transition from one episode to another is548

called an episode switch and was not explicitly cued. This transition imposes a change

of correct responses from all stimuli, so a change of task-set. Task-sets were always550

non-overlapping from one episode to the other, i.e. each and every of the three stimulus-
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response associations di↵er after an episode switch. Within a given set, two stimuli were552

never associated with the same action.

An experimental session was a succession of 25 episodes for Experiment 1, and 24554

episodes for Experiment 2. BOLD activity was acquired only during the 16 last episodes

of Experiment 2.556

In each experiment, subjects performed two distinct sessions: an open-ended and a558

recurrent session. In the open-ended session, task-sets were di↵erent in each episode, so

there was no possibility for the subject to retrieve and reuse a formerly learned one. In560

the recurrent session, only 3 task-sets reoccurred across episodes (Fig. 1a), and subjects

could reuse previously learned task-sets. Subjects were not informed about the distinc-562

tion between the two sessions. The order of the sessions was changed between subjects

to counteract for potential session-ordering e↵ect. Di↵erent digits were used from one564

session to the other.

566

Having to manipulate at least 3 di↵erent task-sets was crucial: indeed when there

are only 2 of them, the second one could be inferred from the first one by elimination.568

With 3 task-sets, and after an episode switch, some exploration is required to find the

next mapping to use. More possible actions than the number of stimuli were used to570

avoid learning the third stimulus-response association by simple elimination when two

associations were already known.572

Debriefing574

After each session, subjects performed a post-test debriefing. They were presented with 6

task-sets and rated them depending on their confidence in having seen them or not during576

the experiment. For the recurrent session, 3 out of the 6 task-sets were actually presented

during the experiment. For the open-ended session, the 6 task-sets were all part of the578

experiment. From the debriefing of the recurrent session, subjects were classified in two

di↵erent groups. Exploiting subjects ranked higher confidence for the 3 seen task-sets,580

compared to the 3 unseen task-sets. Exploring subjects, on the contrary, ranked at least

1 unseen task-set with more confidence than one of the 3 seen task-sets.582

Network model

The network model is based on [Rigotti et al., 2010b]. It is composed of two interacting584

subnetworks, the associative and task-set networks, illustrated in (Fig. 1d). In contrast
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to Rigotti et al. [2010b], we do not explicitly model temporal dynamics within a trial,586

but instead use simplified, instantaneous dynamics between populations replacing many

mixed-selective neurons [Fusi et al., 2016]. Moreover the feedback from the task-set588

network to the associative network is implemented in a simplified manner. Full details of

the model implementation are given below.590

The associative network

The associative network (AN ) is based on [Fusi et al., 2007]. This subnetwork imple-592

ments in a simplified fashion the associations between input stimuli and output actions

performed by a classical winner-take-all decision network [Brunel and Wang, 2001; Fusi594

et al., 2007; Wang, 2002].

596

The associative network is composed of neural populations selective to a single task-

related aspect, either a stimulus or an action. Each population is either active or inactive598

in any trial, so that the activity is modeled as being binary. Any stimulus-selective

neural population {S
i

}
i=1..3 projects excitatory synapses to all response-selective neu-600

ral population {A
j

}
i=1..4. The corresponding synaptic strength is noted JAN

Si!Aj
2 [0, 1].

The behavioral output in response to a stimulus is determined based on these synaptic602

strengths, which moreover plastically change depending on the outcome of the trial (re-

ward or no reward).604

Action selection in the associative network In any given trial, following the pre-606

sentation of a stimulus S
i

, the associative network stochastically selects an action based

on the strengths of the synapses from the population S
i

= 1 to the populations that608

encode actions. Specifically, the action A
j

is selected with the probability

P (A
j

|S
i

) =
✏

n
A

+ (1� ✏)
exp(�JAN

Si!Aj
)

nAP
k=1

exp(�JAN

Si!Ak
)

(1)

where n
A

is the number of possible actions, 1/� is the strength of decision noise and ✏610

accounts for the network’s internal estimate of expected uncertainty [Yu and Dayan, 2005].

The associative network therefore e↵ectively implements a soft and noisy winner-take-all612

mechanism: all actions are equiprobable for high decision noise, whereas the probability

of the action with the largest synaptic strength tends to 1 for low decision noise.614

Synaptic plasticity in the associative network Learning of the basic stimulus-

action associations is implemented through plastic modifications of the synaptic strengths616
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in the associative network. Following an action, the synaptic strengths are updated

according to a reward-modulated, activity-dependent learning rule:618

JAN

Si!Aj
 JAN

Si!Aj
+ ↵+(r, Si

, A
j

) · (1� JAN

Si!Aj
)� ↵�(r, Si

, A
j

) · JAN

Si!Aj
(2)

where r is the obtained reward (r = 0 or 1), and ↵+ and ↵� are respectively the rates

of potentiation and depression which depend on the reward as well as the activity of620

pre- and post-synaptic populations. Note that the update rule implements soft bounds

on synaptic strengths, and ensures biological plausible saturation of neural activity, as622

well as forgetfulness [Amit and Fusi, 1994; Fusi, 2002; Fusi et al., 2007; Ostojic and Fusi,

2013].624

The synaptic plasticity is local, so that only synapses corresponding to the active pre-

synaptic population S
i

are updated. Moreover, for simplicity, all non-zero potentiation626

and depression rates are equal and given by a parameter ↵. We therefore have

↵+(r = 1, S
i

= 1, A
j

= 1) = ↵�(r = 1, S
i

= 1, A
j

= 0) = ↵ (3)

if the reward is positive, and628

↵+(r = 0, S
i

= 1, A
j

= 0) = ↵�(r = 0, S
i

= 1, A
j

= 1) = ↵ (4)

if the reward is null. All other potentiation and depression rates are zero.

The simplest implementation of the associative network therefore has three free pa-630

rameters: the learning rate ↵ and noise parameters � and ✏. When fitting the model to

human behavior, we have examined the possibility of adding complexity by distinguishing632

the learning rates corresponding to distinct reward and pre/post- synaptic events. The

presented results on model fits, model dynamics and model predictions concerning the634

recurrent session in the present study are not modified by this extension.

The task-set network636

The task-set network (TN ) is composed of mixed-selective neural populations, which

are selective to conjunctions S
i

A
j

of one stimulus and one action. As in the associa-638

tive network, the activity of each population in the task-set network is represented as

binary (either active or inactive). The task-set network is fully connected: any neural640

population S
i

A
j

projects excitatory synapses to all other neural populations S
k

A
l

, with

strength JTN

SiAj!SkAl
2 [0, 1]. The strengths of these synapses are plastically updated, and642

determine the co-activation of populations in the task-set network. This co-activation

e↵ectively encodes task-sets. Full details of the model implementation are given below.644
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Activation of populations in the task-set network At each trial, a stimulus S
i

646

is presented and the associative network selects an action A
j

. In the task-set network,

this leads to the activation of the population S
i

A
j

. Depending on the synaptic strengths,648

this may in turn lead to the co-activation of other populations in the task-set network.

Specifically, if the synaptic strength JTN

SiAj!SkAl
is greater than the parameter g

I

, the650

population S
k

A
l

is activated. This step is iterated until no additional population gets ac-

tivated. Here the parameter g
I

represents an inhibitory threshold equivalent to a constant652

negative coupling between all populations in the task-set network, and implements in a

simplified way a competition between excitatory neural populations through recurrent654

feedback inhibition.

These activation dynamics are assumed to be fast on the timescale of a trial, and656

therefore implemented as instantaneous.

Synaptic plasticity in the task-set network The synapses in the task-set network658

are updated following an unsupervised, Hebbian plasticity rule. This update is driven by

the sequential activation of neural populations in the task-set network, and thus by the660

associative network dynamics (Fig. 1d).

When two populations in the task-set network are activated on two consecutive trials,662

the synapses connecting them are potentiated. Noting S
t

A
t

the task-set network neural

population active at trial t, and S
t+1At+1 the neural population active at trial t+ 1, this664

potentiation is given by

JTN

StAt!St+1At+1
 JTN

StAt!St+1At+1
+Q

P

· (1� JTN

StAt!St+1At+1
) (5)

where the parameter Q
P

represents the learning rate for potentiation.666

At each trial, all the synapses from the active neural population S
t

A
t

= 1 are depressed

(pre-activated depression [Ostojic and Fusi, 2013]), implementing an e↵ective homeostatic668

control. This depression is given by

JTN

StAt!SkAl
 JTN

StAt!SkAl
�Q

M

· JTN

StAt!SkAl
(6)

where Q
M

is the rate of depression.670

The ratio Q
p

/Q
m

between the potentiation and the depression rates determines the

asymptotic values of the synaptic strengths [Ostojic and Fusi, 2013]. To produce co-672

activation of populations in the task-set network and therefore the learning of task-sets,

this asymptotic value needs to be higher than the inhibition threshold g
I

. To avoid any674
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redundancy between the parameters we fixed g
I

to 0.5 and Q
M

= QP

10 , so that Q
p

is the

only free parameter.676

Interaction between associative network and task-set network To implement

the e↵ect of the task-set network dynamics and learning on the output of the network,678

the pattern of activity in the task-set network needs to influence the activation in the

associative network. In our model this interaction is implemented in a simplified fashion.680

If the previous trial was rewarded, the activation in the associative network on the

next trial is biased towards the stimulus-action combinations that correspond to activated682

populations in the task-set network. This e↵ective inference signal is implemented by

modulating the strength of synapses in the associative network. Specifically, If r = 1 and684

S
k

A
l

= 1 in the task-set network on the previous trial, the synaptic strength from S
k

to

A
l

in the associative network is increased according to686

JAN

Sk!Al
 JAN

Sk!Al
+ J

INC

· (1� JAN

Sk!Al
) (7)

where the parameter J
INC

specifies the strength of the inference signal.

The strength of the inference signal thus corresponds to the discrepancy between688

the task-set network prediction and the associative network encoding when a reward is

received (or its negative counterpart, the compatibility).690

Model fitting to behavioral data and simulation

The model without task-set inference has 3 free parameters, and the model with task-692

set inference has 5 free parameters. The parameter set is composed of the associative

network learning rate ↵, the task-set network learning rate Q
P

, the parameters of the694

soft and noisy winner-take-all mechanism (decision noise 1/� and uncertainty ✏), and the

inference strength J
INC

from task-set network to associative network connectivity.696

Both models were fitted to behavioral data using the standard maximum likelihood es-

timation (MLE). We provide the model with the subject’s set of actions and we define698

the model performance on a trial as the model’s likelihood of observing the subject’ re-

sponse at the next trial. The Bayesian information criterion (Fig. 5a) uses the likelihood700

computed by MLE but introduces a penalty term for model complexity depending on the

size of the observed sample. We also compared the AIC (Akaike information criterion)702

for both models and reached identical conclusions. A larger log-likelihood and lower BIC

and AIC correspond to best model fits. We combined a grid search on initial parameters704

values with a gradient descent algorithm from the SciPy optimization toolbox. Parame-

ters were estimated subject by subject.706
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On average over subjects (see Fig. S1), the learning rate in the associative network708

(↵ = 0.35, � = 0.0073) is twice the learning rate in the task-set network (Q
P

= 0.17,

� = 0.0070). The inference strength from the task-set network to the associative network710

is high in the recurrent session (J
INC

= 0.70, � = 0.037), and its value is significantly

lower in the open-ended session (J
INC

= 0.16, � = 0.0062, see Fig. 5b).712

We also compared model simulations ex post (model recovery [Palminteri et al., 2017]),714

with and without task-set inference. In a simulation, the model’s actions are random

depending on the trial by trial probability set computed from the winner-take-all mech-716

anism. The model performance is now the probability predicted by the model for the

correct action, at each trial. Model simulation reproduce model fits and data, which718

ensures that we are not overfitting subjects’ data.

fMRI whole brain analysis720

The model-based fMRI analysis was performed with SPM 12. The detail of the data

acquisition can be found in [Donoso et al., 2014].722

All parametric modulators are z-scored to ensure between regressor and between subjects

commensurability [Lebreton and Palminteri, 2016]. For each onset, they are orthogonal-724

ized to avoid taking into account their shared variance. fMRI data were analyzed us-

ing an event-related General Linear Model. Regressors of non-interest include subjects’726

lapses, post-pause trials at the beginning of each scanning run, and movement parame-

ters. Event-related regressors of interest modeled separately the onset decision (stimulus728

presentation timing, covering the decision time window) and the onset feedback (outcome

presentation timing). The regressors are based on the best fitting parameters at the sub-730

ject level.

732

At the onset decision, the regressor includes orthogonalized parametric modulations

following this order :734

• The first modulator is the time-series of reaction times, an index of trial di�culty

and a specific motor preparation-related activity.736

• The second modulator is the associative network synaptic strength from the pre-

sented stimulus selective neural population to the chosen action selective neural738

population. We call this parameter W
chosen

and it is also an index of trial di�culty.

At the onset feedback, the regressor includes orthogonalized parametric modulations740

following this order :
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• The first parametric modulator isW
chosen

. This control ensures that the correlations742

observed are not simply caused by the monitoring of the certainty on the chosen

association (prediction error) or else the trial di�culty.744

• The second parametric modulator is the time series of positive rewards.

• The third parametric modulator is the trial-by-trial average value of the inference746

signal from the task-set network to the associative network. It is thus the average,

over the number of connections implicated, of the task-set network inference on the748

update of associative network synaptic weights. We call it TN inference.

All the mentioned time series are convolved with the hemodynamic response function750

to account for the hemodynamic lag e↵ect.

752

The subject by subject statistical maps are combined to make generalizable inferences

about the population. We use a random e↵ect analysis approach [Holmes and Friston,754

1998]. We identify activations using a significance threshold set to p = 0.05 (familywise

error FWE corrected for multiple comparison over the whole brain).756

For conciseness, and because and mixed-selectivity has been found in prefrontal cortex

[Fusi et al., 2016], we do not report posterior activations (parietal, temporal and occipital758

lobes).

Note that we did a preliminary control analysis using the link between the associative760

network and Q-learning [Watkins and Dayan, 1992] by searching for any correlation be-

tween BOLD activity and the prediction error, i.e. the di↵erence between the perceived762

outcome and the associative network synaptic strength of the trial-by-trial chosen asso-

ciation. As expected from previous studies [Daw et al., 2006; Kim et al., 2006; Lebreton764

et al., 2009; O’Doherty et al., 2004; Tanaka et al., 2004], we found ventromedial prefrontal

cortex and striatal activity to correlate positively in the recurrent and in the open-ended766

session. The MNI peak coordinates and number of voxels in the cluster were respectively

[�12, 56, 20], T = 11.2, 901 voxels in the recurrent session, and [�12, 8,�12], T = 14.3768

and 1419 voxels in the open-ended session.

770

We first investigated neural correlates of the trial-by-trial synaptic strength of chosen

association in the associative network, at the onset decision (W
chosen

), and the neural772

correlates of the trial-by-trial inference signal strength from the task-set network to the

associative network, at the onset feedback. Results are shown in Fig. S5.774
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One-way ANOVA and second control ROI analysis

In order to test the hypothesis of a specific e↵ect of task-set retrieval, we extract the betas776

from medial and lateral prefrontal nodes, and compare them from the two conditions: the

recurrent and the open-ended session. This comparison is valid as soon as the region of778

interest is selected independently from the statistical maps of betas [Poldrack, 2007], i.e.

the selected ROI need to be based on a di↵erent contrast that the one currently studied.780

We defined a functional network by the co-activations in both sessions, for the trial-

by-trial task-set network inference signal to the associative network (ANOVA REC+OE782

for dorsomedial and dorsolateral prefrontal cortex, ANOVA -REC-OE for ventromedial

prefrontal cortex, FWE 0.05, Table 7), which thus did not promote di↵erences. Our ROI784

of ventromedial, dorsomedial and dorsolateral prefrontal cortex were selected from the

obtained thresholded maps (FWE p = 0.05) from this ANOVA analysis, and were used786

to test di↵erences between REC and OE.

We further controlled our results by running other independent ROI analysis using :788

• the Stanford Functional Imaging in Neuropsychiatric Disorders Lab [Shirer et al.,

2012]790

• the Glasser parcellation [Glasser et al., 2016]

• the Neurosynth meta-analysis [Yarkoni et al., 2011]792

• the WFU PickAtlas [Lancaster et al., 2000; Lancaster, 1997; Maldjian et al., 2003]

Results are shown in Fig. S6.794

Software

All simulations were done with Python 2.7 (using numpy and scipy, and the scikit-learn796

package [Pedregosa et al., 2011]. The fMRI analysis was done with Matlab and SPM12

[Ashburner et al., 2014].798
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Supplemental Figures

Figure S1: The table summarizes the full network (AN-TN, with inference) and the asso-
ciative network alone (AN, without inference) models fitting performances and average
parameters. Related to Fig. 5. DF, degrees of freedom; AIC, Akaike information criterion; BIC,
Bayesian information criterion; ↵, learning rate in the AN; 1/�, decision noise; ✏, uncertainty; Q

P

,
learning rate in the TN; J

INC

, inference strength. All are expressed as mean ± s.e.m.

Figure S2: Model comparison for the recurrent session, for Experiment 2. Related to Fig. 5.
Bayesian Information Criterion, computed as in [Bishop, 2007], for the models with and without task-set
inference. The model provides a significantly better fit with inference than without (p = 9.1 · 10�5,
t = 4.1).
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Figure S3: Task-set retrieval prediction. Experiment 1. Related to Fig. 6a,b,c. a, Distributions
of trial numbering for the two categories of trials, chunked and independent. The distributions are
not significantly di↵erent (a Kolmogorov-Smirnov test gives ks = 0.085, p = 0.62). b, Distributions
of episode numbering for the two categories of trials, chunked and independent. We consider only one
trial per episode. Generally, independent trials are from early episodes, and chunked trials are from late
episodes, consistently with the expected learning progress.

Figure S4: Experiment 1 - Histograms over subjects of the di↵erence of performance after 5
first consecutive correct trials, between the recurrent session and the open-ended session.
Related to Fig. 6. The classification of subjects is based on the model prediction. The di↵erence between
the two distributions is statistically significant (a Kolmogorov-Smirnov test gives p = 3 · 10�4)

.
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Figure S5: Neural correlates of the synaptic strength in the associative network, and of
the inference from the task-set network to the associative network. top, Activations (FWE
p = 0.05) from the parametric modulator corresponding to the synaptic strength of the chosen association
in the associative network, W

chosen

, at the onset decision. bottom, Activations (FWE p = 0.05) from
the parametric modulator corresponding to the inference from the task-set network to the associative
network, at the onset feedback. No activation (FWE p = 0.05) was found in the open-ended session.
dlPFC: dorsolateral prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial
prefrontal cortex; [x y z] are MNI coordinates; REC: Recurrent session; OE: Open-Ended session.
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Figure S6: Control independent ROI analysis: neural correlates of the inference signal from
the task-set network to the associative network, at the onset feedback. top, Statistical
di↵erence between activations in the recurrent session and in the open-ended session, in independent ROIs
for dorsolateral prefrontal cortex. bottom, Statistical di↵erence between activations in the recurrent
session and in the open-ended session, in independent ROIs for dorsomedial prefrontal cortex.
dlPFC: dorsolateral prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; vmPFC: ventromedial
prefrontal cortex; [x y z] are MNI coordinates.
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