Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Fast and robust ancestry prediction using principal component analysis

Daiwei Zhang, Rounak Dey, View ORCID ProfileSeunggeun Lee
doi: https://doi.org/10.1101/713172
Daiwei Zhang
1University of Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rounak Dey
2Harvard University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Seunggeun Lee
1University of Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Seunggeun Lee
  • For correspondence: leeshawn@umich.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Population stratification (PS) is a major confounder in genome-wide association studies (GWAS) and can lead to false positive associations. To adjust for PS, principal component analysis (PCA)-based ancestry prediction has been widely used. Simple projection (SP) based on principal component loading and recently developed data augmentation-decomposition-transformation (ADP), such as LASER and TRACE, are popular methods for predicting PC scores. However, they are either biased or computationally expensive. The predicted PC scores from SP can be biased toward NULL. On the other hand, since ADP requires running PCA separately for each study sample on the augmented data set, its computational cost is high. To address these problems, we develop and propose two alternative approaches, bias-adjusted projection (AP) and online ADP (OADP). Using random matrix theory, AP asymptotically estimates and adjusts for the bias of SP. OADP uses computationally efficient online singular value decomposition, which can greatly reduce the computation cost of ADP. We carried out extensive simulation studies to show that these alternative approaches are unbiased and the computation times can be 10-100 times faster than ADP. We applied our approaches to UK-Biobank data of 488,366 study samples with 2,492 samples from the 1000 Genomes data as the reference. AP and OADP required 7 and 75 CPU hours, respectively, while the projected computation time of ADP is 2,534 CPU hours. Furthermore, when we only used the European reference samples in the 1000 Genomes to infer sub-European ancestry, SP clearly showed bias, unlike the proposed approaches. By using AP and OADP, we can infer ancestry and adjust for PS robustly and efficiently.

Footnotes

  • https://www.github.com/daviddaiweizhang/fraposa

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted July 24, 2019.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Fast and robust ancestry prediction using principal component analysis
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Fast and robust ancestry prediction using principal component analysis
Daiwei Zhang, Rounak Dey, Seunggeun Lee
bioRxiv 713172; doi: https://doi.org/10.1101/713172
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Fast and robust ancestry prediction using principal component analysis
Daiwei Zhang, Rounak Dey, Seunggeun Lee
bioRxiv 713172; doi: https://doi.org/10.1101/713172

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3689)
  • Biochemistry (7789)
  • Bioengineering (5674)
  • Bioinformatics (21282)
  • Biophysics (10576)
  • Cancer Biology (8173)
  • Cell Biology (11937)
  • Clinical Trials (138)
  • Developmental Biology (6762)
  • Ecology (10401)
  • Epidemiology (2065)
  • Evolutionary Biology (13863)
  • Genetics (9708)
  • Genomics (13070)
  • Immunology (8139)
  • Microbiology (19983)
  • Molecular Biology (7842)
  • Neuroscience (43053)
  • Paleontology (319)
  • Pathology (1279)
  • Pharmacology and Toxicology (2258)
  • Physiology (3351)
  • Plant Biology (7232)
  • Scientific Communication and Education (1312)
  • Synthetic Biology (2004)
  • Systems Biology (5537)
  • Zoology (1128)