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Abstract 

Structural variants (SVs) and short tandem repeats (STRs) are important sources of genetic 

diversity but are not routinely analyzed in genetic studies because they are difficult to 

accurately identify and genotype. Because SVs and STRs range in size and type, it is necessary to 

apply multiple algorithms that incorporate different types of evidence from sequencing data 

and employ complex filtering strategies to discover a comprehensive set of high-quality and 

reproducible variants. Here we assembled a set of 719 deep whole genome sequencing (WGS) 

samples (mean 42x) from 477 distinct individuals which we used to discover and genotype a 

wide spectrum of SV and STR variants using five algorithms. We used 177 unique pairs of 

genetic replicates to identify factors that affect variant call reproducibility and developed a 

systematic filtering strategy to create of one of the most complete and well characterized maps 

of SVs and STRs to date. 
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Introduction 

Structural variants (SVs) and short tandem repeats (STRs) respresent a significant fraction of 

polymorphic bases in the human genome and have been shown to cause monogenic diseases 

and contribute to complex disease risk (Beck et al., 2015; Brandler et al., 2018; Carvalho and 

Lupski, 2016; Den Dunnen, 2017; La Spada and Taylor, 2010; Malhotra et al., 2011; Malhotra 

and Sebat, 2012; McMurray, 2010; Michaelson et al., 2012; Mirkin, 2007; Nelson et al., 2013; 

Pearson, 2003; Spielmann and Klopocki, 2013; Spielmann and Mundlos, 2013). STRs are 

polymorphic 1-6 base pair (bp) sequence repeats whose total size can range from ~10bp to 

more than 1kb while SVs capture diverse sequence variation greater than 50bp in size such as 

insertions, duplications, deletions, and mobile element insertions (MEIs). The full contribution 

of STRs and SVs to disease risk, quantitative molecular traits, and other human phenotypes is 

currently not understood because previous studies have typically genotyped SVs and STRs using 

arrays or low coverage sequencing which are limited in their ability to accurately identify and 

genotype these variants in many samples across different variant classes and sizes (Gamazon et 

al., 2011; Kong et al., 2012; Schlattl et al., 2011; Sudmant et al., 2015). The increasing adoption 

of high coverage whole genome sequencing data (WGS), however, has recently enabled the 

development of improved methods to identify STRs and different classes of SVs (Chiang et al., 

2017; Hehir-Kwa et al., 2016; Kosugi et al., 2019). 

While high-depth WGS data has made it possible to profile a wider spectrum of genetic 

variation, the variability in the size and characteristics of SV classes necessitates the use of 

several algorithmic approaches that differ in the types of evidence used to capture all classes of 

SVs. For instance, some algorithms specialize in identifying small SVs (50-5,000 bp) by using split 

or discordant read (abnormal insert size) information to determine the location of SV 

breakpoints with high resolution (Fan et al., 2014; Kronenberg et al., 2015; Layer et al., 2014b; 

Rausch et al., 2012). Other algorithms detect large SVs (>5 kb) by comparing the amount of 

reads that align to the reference genome to identify regions that differ in copy number 

between samples (Abyzov et al., 2011; Handsaker et al., 2015; Klambauer et al., 2012; Zhu et 

al., 2012), but with lower resolution breakpoint precision (Becker et al., 2018; Chaisson et al., 

2019; Hehir-Kwa et al., 2016; Lin et al., 2015). Finally, algorithms have also been designed to 

contend with more complex multi-allelic signatures, including regions with multiple copy 

number or repeat alleleles that are more challenging to genotype than biallelic variants 

(Handsaker et al., 2015; Klambauer et al., 2012). Genotyping SVs and STRs across many samples 

thus requires using several highly parameterized algorithms to discover each class of SVs, 

processing schemes to combine results from different algorithms, and detailed filtering to 

remove false positives or inconsistely genotyped variants. Such pipelines for SV/STR 

identification must also be sensitive to study-specific parameters such as library prepration 

methods, sequencing depth, cell/tissue type, and read length (Becker et al., 2018; Chaisson et 

al., 2019; Chiang et al., 2017; Hehir-Kwa et al., 2016; Kosugi et al., 2019; Lin et al., 2015). Thus, 
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due to the diversity of SV/STR calling algorithms and the need for complex downstream 

processing, it remains difficult to create a comprehensive SV and STR call set with consistent 

quality that covers the spectrum of variant sizes and subclasses.  

In addition to difficulties associated with complex pipelines for calling SVs and STRs, the need to 

perform de novo discovery and subsequent genotyping of variants across hundreds or 

thousands of samples leads to inconsistencies between variant calls across studies. A 

comprehensive catalog of SVs and STRs in the human genome would make it possible for 

different studies to genotype this same set of variants. While several efforts are underway to 

establish such catalogs of SVs (Audano et al., 2019; Chaisson et al., 2015; Chaisson et al., 2019; 

Chiang et al., 2017; Collins et al., 2017; Hehir-Kwa et al., 2016; Levy-Sakin et al., 2019; Sudmant 

et al., 2015) and STRs (Gymrek et al., 2016; Willems et al., 2017), most are limited in their 

number and diversity of samples or do not capture all types of variants due to the sequencing 

depth or algorithms employed. There is also a need to understand the extent to which 

differences in sample collection and preparation may impact SV and STR calling by measuring 

the reproducibility of variants called on genetic duplicate samples that share the same genome 

but were collected and prepped separately. A comprehensive reference catalog of high quality 

SVs and STRs discovered in a large set of subjects with deep WGS data could therefore be useful 

for calling and genotyping the full spectrum of variants across future studies involving hundreds 

to thousands of subjects. 

In this study, as part of the i2QTL consortium, we profiled 719 whole genomes from iPSCORE 

(D'Antonio et al., 2018; DeBoever et al., 2017; Panopoulos et al., 2017b) and HipSci (Kilpinen et 

al., 2017a; Streeter et al., 2017) with five variant calling algorithms to capture a wide spectrum 

of SVs including biallelic deletions and duplications, multi-allelic copy number variants (mCNVs; 

regions that have more than two copy number alleles segregating in the population), MEIs, 

reference MEIs (rMEI), inversions, unspecified breakends (BND), and STRs. We identified 

algorithm-specific quality metrics and SV genomic properties associated with the reproducibility 

of variant calling using 177 pairs of genetic replicates embedded in our collection (25 

monozygotic twin pairs and 152 fibroblast-iPSC pairs) and devised filtering and processing 

approaches to obtain a highly accurate, non-redundant call set across variant classes and 

algorithmic approaches. We compared our set of SVs with those identified in GTEx (Chiang et 

al., 2017) and 1KGP (Sudmant et al., 2015) and found that we capture the vast majority of 

common SVs likely discoverable in Europeans with short read sequencing and add novel, high-

quality variants at lower allele frequencies. Finally, we characterized the extent to which 

different classes of SVs and STRs are tagged by SNPs and indels. This study establishes methods 

for filtering SVs and STRs to obtain reproducible variant calls and provides a high-quality 

reference catalog of SVs and STRs that will benefit studies that investigate how these variants 

contribute to human disease. 
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Results 

The i2QTL sample set 

We generated the i2QTL variant calls dataset by calling SNVs, indels, SVs, and STRs using 719 

human WGS samples from 477 unique donors. (Figure 1A, Table S1, Table S2). The samples 

were obtained by combining data from two large induced pluripoitent stem cell (iPSC) 

resources: 1) iPSCORE (273 individuals, mean WGS coverage 50X, range 36-126X) (D'Antonio et 

al., 2018; DeBoever et al., 2017; Panopoulos et al., 2017b) and 2) HipSci (446 samples from 204 

individuals, mean WGS coverage 37X, range 35-78X) (Kilpinen et al., 2017b; Streeter et al., 

2017) (Figure 1B, C). The 477 individuals include members of all five 1KGP superpopulations 

(Auton et al., 2015): 415 European, 34 East Asian, 15 Admixed American, 7 South Asian, and 6 

African. While all 204 HipSci donors were unrelated, there were 183 donors in iPSCORE that are 

part of 56 unique families (2-14 individuals/family) (Figure S1), including 25 monozygotic (MZ) 

twin pairs (Figure 1D). For 152 HipSci individuals, we also obtained matched fibroblast and iPSC 

WGS data (Figure 1D). Between these 152 matched samples and 25 MZ twin pairs, we had WGS 

data for 177 genetic replicates, which we used to determine quality filtering thresholds and to 

calculate reproducibility of calls across all variant classes. 
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Figure 1. Variant Calling, Processing and i2QTL WGS Samples. (A) Illustration of the evidence types from short 

read sequencing data utilized in variant calling (top).  Description of the variant callers utilized, the types of 

variants they identify, and the evidence they use (middle).  Flowchart showing the processing, quality control (see 

Methods), and integration of SVs from different variant callers (bottom). (B) Pie chart showing the number of 

whole genome sequencing samples from the iPSCORE or HipSci studies used for variant calling and the cell type 

from which DNA was obtained.  (C) Distribution of the median coverage of whole genomes from iPSCORE (green) 

and HipSci (blue). (D) Number of genetic replicate samples included in the collection, including 25 monozygotic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/713198doi: bioRxiv preprint 

https://doi.org/10.1101/713198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

7

twin pairs (iPSCORE) and fibroblast-iPSC pairs from 152 unique donors (HipSci). These data enable robust variant 

calling for all classes of genetic variation along with reproducibility analysis.  

Comprehensive structural variant call set 

To identify SVs across a wide range of sizes (50 bp to > 1Mb) and classes, we called variants 

using four algorithms (Figure 1A): SpeedSeq (LUMPY/with CNVnator support)(Abyzov et al., 

2011; Chiang et al., 2015; Layer et al., 2014b) , Genome STRiP CNVDiscovery, Genome STRiP 

LCNVDiscovery(Handsaker et al., 2015), and MELT (Gardner et al., 2017). Together, these 

algorithms incorporate information from two evidence types: 1) read-pair signal (LUMPY and 

MELT), which includes detection of split reads (two portions of the same read map to different 

genomic locations) and discordant read pairs (aligned to the genome with abnormal insert size 

or orientation); and 2) read-depth (Genome STRiP CNVDiscovery, Genome STRiP 

LCNVDiscovery, CNVnator). Generally, read-pair signal enables discovery of shorter variants 

(50bp) and balanced events, while read-depth signal is limited to discovery of longer (>1kb)  

copy number variants (CNVs) which include biallelic deletions, biallelic duplications and multi-

allelic copy number variants (mCNVs). When variant calling algorithms utilize information from 

a group of samples to predict genotypes, study-specific differences in the WGS data (cell type 

assayed, library preparation technique) can cause erroneous variant calls. To account for this, 

we performed variant calling and genotyping separately in HipSci and iPSCORE samples for 

Genome STRiP and combined variant calls afterward to avoid batch effects during variant 

calling (Methods). Using read-pair signals we detected 223,371 SVs consisting of CNVs, 

inversions, MEIs, and novel adjacencies of indeterminate type referred to as “breakends” 

(BND). Among these SVs, biallelic deletions and biallelic duplications were also supported by 

supplementary read-depth evidence (CNVnator). Using read-depth signals alone (Genome 

STRiP), we detected 28,417 biallelic deletions, biallelic duplications, and mCNVs, bringing the 

initial call set to a combined 251,788 SVs, before additional processing (Figure S2-S6).  

Reproducibility of SV Calling is Associated with Quality Metrics 

Because there is considerable diversity in subtypes of SVs and disparities between detection 

algorithms, measuring structural variant quality is challenging. Here we used 177 genetic 

replicates (25 MZ twin pairs and 152 matched fibroblast and iPSC pairs) to measure 

reproducibility of SV calls for each variant class and SV calling approach under a range of quality 

metric filter thresholds. Because of complications in variant calling on sex chromosomes due to 

dosage differences in males and females, we analyzed reproducibility among 198,651 

autosomal SVs. Notably, we were able to assess the reproducibility of most variants in the SV 

call set since 44% of autosomal SVs (88,496) segregated in at least one monozygotic twin pair, 

65.4% (129,937) segregated in at least one fibroblast-iPSC pair (Figure 2A), and 71.8% (142,678) 

segregated in any of the 177 genetic replicates. For each variant that segregated in at least one 

genetic replicate pair, we assessed reproducibility by calculating how often a non-reference 

genotype in one replicate pair sample was called concordantly in the other replicate sample, 
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which we define as “replication rate” (RR, Methods). Replication rates were calculated for each 

SV separately among MZ twin pairs and fibroblast-iPSC pairs. The 25 MZ twin pairs were used to 

select filters because they have matched cell types and fewer somatic differences(D'Antonio et 

al., 2018) while the 152 matched fibroblasts-iPSC pairs were used to confirm the performance 

of these thresholds in the HipSci collection.  
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Figure 2. Replication Rate is Associated With Reported Quality Metrics. (A) Proportion of SVs and STRs that were 

non-reference (green) in at least one of the iPSCORE MZ twin pairs or HipSci fibroblast-iPSC pairs prior to filtering. 

(B) Replication rate of variants before and after filtering and deduplicating within caller. (C) Replication rate in MZ 

twins versus the number of total SpeedSeq (LUMPY) sites remaining that pass criteria when filtering variants to 

different thresholds for MSQ score (indicated by color). (D) Replication rate versus the number of total Genome 

STRiP sites remaining that pass criteria when filtering variants to different thresholds for GSCNQUAL score 

(indicated by color). (E) Replication rate in MZ twins for MELT sites that pass criteria when filtering variants under 

suggested hard site filters (left). Pink represents the result of filtering using all 4 exclusion criteria (rSD, s25, hDP, lc; 

see Methods). The number of total sites remaining that passed criteria is shown at right. 

Prior to filtering on quality metrics (Table S3), we observed that within the 25 MZ twin pairs 

CNVs (deletions, duplications and mCNVs) detected with Genome STRiP showed high 

reproducibility (RR > 0.96) as did the SpeedSeq deletions (RR > 0.9) and rMEIs (RR > 0.95), 

whereas SpeedSeq duplications and inversions (both RR < 0.77), BND (RR=0.65), and MELT MEIs 

(RR  = 0.59) had lower reproducibility (Figure 2B). Interestingly, we found that for all variant 

callers, increasingly strict quality metric filters yielded variant sets with higher average 

replication rates, supporting the premise that reproducibility is a predictor of variant quality 

(Figure 2 C-E). For example, we found strong relationships between Median Sample Quality 

(MSQ) score from SpeedSeq, the GSCNQUAL score from Genome STRiP, and qualitative filters 

from MELT and the average RR of filtered variants (Figure 3C-E). Notably, filtering MELT variants 

called in low complexity regions (“lc” tag in FILTER) improved reproducibility from 59% to 87.5% 

in MZ twins and applying all four MELT filters improved RR to ~95% (Figure 2E, Methods). Using 

RR we selected strict quality metric thresholds for each caller and variant class to achieve high 

specificity without removing a significant number of variants. We observed that within each 

algorithm, different variant classes required different levels of filtering stringency to attain the 

same reproducibility (Figure 3C,D). For instance, insertions and duplications were less reliably 

genotyped than deletions regardless of detection method (Chaisson et al., 2019; Chiang et al., 

2017; Kosugi et al., 2019), and SpeedSeq duplications required an MSQ score of 100 to attain 

>0.9 RR while deletions had an RR of 0.92 with no MSQ filtering (Figure 2C) in MZ twin pairs.  
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Figure 3. Length Distributions and Intersection between Variants Identified with each Algorithm. (A) Density plot 

showing the size spectrum of each variant caller before identifying multi-caller clusters. (B-D) Number of 

overlapping variants after identifying multi-caller clusters for deletions (B) duplications (C) and mCNVs (D). (E) 

Number of variants in the non-redundant call set separated by variant class and grouped in log linear bins by 

variant length. Points are drawn at the upper limit of each bin (eg. a bin from 50-100bp is drawn at 100bp). For 

STRs length represents the maximum number of bases different from the reference at each site (largest insertion 

or deletion observed). (F) The average replication rate of variants segregating in the 25 monozygotic twin pairs is 

represented for each length bin that contains at least 10 variants. GATK SNVs and indels previously discovered in 

iPSCORE samples (DeBoever et al., 2017) were used for (E) and (F). 
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After filtering, we obtained 50,980 autosomal variants (20.2% of initial call set) with generally 

high RR (>0.9) for all callers, although variants called by SpeedSeq and MELT tended to have 

lower RR than those called by Genome STRiP (Figure 2B) suggesting that variants called using 

read pair signal are less reproducibly genotyped between genetic replicates than than those 

called by read depth signals. We tested for batch effects by comparing allele frequencies 

between iPSCORE and HipSci samples and found that they largely agreed across algorithms 

(Figures S2, S3, S6). We compared the CNV genotypes to those called from SNP arrays for 216 

iPSCORE samples and found that the FDR for CNVs ranged from 3-7.8% depending on the SV 

type and algorithm, consistent with previous reports (Chiang et al., 2017; Sudmant et al., 2015). 

We also found that biallelic SVs generally obeyed Hardy-Weinberg across algorithms after 

filtering (Figures S2, S3, S6). Together, these results suggest that our stringent filtering 

approach can be used to obtain comparable, high quality variants across SV classes and 

algorithms. 

Creating a High Quality, Non-Redundant SV Call Set 

SV calling algorithms overlap in the types and sizes of variants they identify (Figure 3A) which 

can lead to the same genetic variant being called with slightly different breakpoints by different 

algorithms in the same subject or by the same algorithm in different subjects. To obtain a non-

redundant map of structural variation, we devised a graph-based approach to consolidate 

overlapping sites that are redundant with each other (Figure S7, Methods). We first clustered 

overlapping variants that were detected using the same algorithm and showed high genotype 

correlation and designated each cluster as a single distinct SV with a breakpoint defined by the 

highest quality variant (Figure 1A). We next stitched together neighboring variants from 

Genome STRiP whose genotypes were correlated because they likely represent a single variant 

that Genome STRiP called as multiple adjacent variants (Chiang et al., 2017). Finally we 

clustered overlapping variants identified by different algorithms with high genotype correlation 

and designated each “multi-caller” cluster as a single distinct SV (Figure 3B-D, Methods). We 

inspected variants identified by multiple algorithms and found that overlap between Genome 

STRiP and SpeedSeq was highest among deletions (55%), while duplications and mCNVs were 

only co-discovered 17% and 15% of the time respectively reflecting both the different size 

spectrums captured by the two methods (SpeedSeq captures smaller variants) and that 

evidence types (read-pair/read depth) do not always co-occur. SVs identified by more than one 

algorithm (i.e. with support from both read pair and read depth signals) had higher replication 

rates than SVs detected with a single algorithm (Figure S8), supporting the premise that the 

highest quality sites also tend to be the most reproducible. Overall, we collapsed 50,980 

variants to 37,296 non-redundant SVs which were used for downstream analyses (Table 1, 

Table S4, Figure S9,S10). We examined the numbers and proportions of non-reference calls for 

each of the 719 i2QTL samples (from 477 individuals) across variant calling algorithms and 

variant classes (Figures S2-3, 5-6). We observed high consistency in the number of variants per 

sample except for individuals with African ancestry who had more SVs per sample, consistent 
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with other variant types (Ramachandran et al., 2005; Sudmant et al., 2015). Taken together, 

these results show that the set of i2QTL SVs is of high quality and demonstrates the utility of 

using genetic replicate samples for SV filtering and processing.  

Variant Class No. Variants
No. Common 

Variants

SNV 41,826,418 7,013,178

INDEL 7,040,457 1,862,365

Deletion (DEL) 16,238 3,490

Duplication (DUP) 2,693 416

Multiallelic CNV (mCNV) 1,703 949

Other SV (BND) 4,612 1,377

Inversion (INV) 210 92

Reference Mobile Element 

Insertions (rMEI)
2,343 1,689

ALU 7,880 2,385

LINE1 1,175 262

SVA 442 115

Short Tandem Repeats (STR) 588,189 381,053

Total SV 37,296 10,775

Total SV/STR 625,485 391,828

Total 49,492,360 9,267,371

Copy 

Number 

Variants 

(CNV)

Mobile 

Element 

Insertions 

(MEI)

 

Table 1. Summary of i2QTL variants called from samples in the HipSci and iPSCORE collections.  Common variants 

are defined as those with ≥ 5% non-mode allele frequency (NMAF) for SVs and STRs and ≥ 5% MAF for SNVs and 

indels.   

Variant Length, Allele Frequency and Reproducibility 

Since SVs can vary widely in size and we are using short read data to call SVs, we assessed 

whether replication rate was related to SV length. While we could detect many more short SVs 

(< 1kb ) than long SVs, we observed that long SVs had higher RR (Figure 3E, F). Generally, SVs  

greater than 1kb were highly reproducible (> 95% RR) while shorter duplications and insertions 

tended to have the lowest RR, reflecting the relative lack of consistency in genotyping small 

read-pair based SVs. This dependence on length was observed across variant calling approaches 

and independent of allele frequency (Figure S11A,C). We also found that rare variants were 
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slightly less reproducible than common variants across SV classes (Figure S11B,D). These results 

highlight that it remains challenging to identify SVs in intermediate size ranges (~200 bp to 1 kb) 

using short read sequencing, because the interval is: 1) too small to distinguish from “noise” in 

read depth signal; 2) within the bounds of variability in insert size, making discordant read-

signal undetectable; and 3) too long to be directly sequenced with a single read. While 

challenges in the discovery of SVs in the ~200 bp to 1 kb range still exist, the i2QTL call set 

consists of high-quality SVs across a wide size range of SVs (~50 bp to >1 Mb).   

Comparison between SVs in i2QTL, GTEx and 1KGP 

We next investigated what proportion of the SVs in the i2QTL call set are novel compared to 

previous SV call sets by comparing the the 37,296 non-redundant i2QTL SVs with the existing 

1KGP (Sudmant et al., 2015) and GTEx (Chiang et al., 2017) SV call sets. GTEx used 148 deeply 

sequenced genomes and the 1KGP project used 2,504 shallowly sequenced genomes (7.4x) to 

call the same SV classes present in i2QTL (excluding BNDs in 1KGP and nonreference MEIs in 

GTEx) and are therefore strong benchmark datasets. The i2QTL SV call set captured the vast 

majority of common deletions, duplications, mCNVs, inversions, rMEIs and MEIs present with 

non-mode allele frequency (NMAF) greater than 0.05 in either study, including 77% of variants 

present in 1KGP Europeans and 79% of variants present in GTEx (Figure 4A,B). Out of all SV 

classes, we captured the smallest proportion of common GTEx duplications (49%) and BNDs 

(17%), likely due to differences in filtering stringency, WGS data quality, and breakpoint 

merging approaches. In total, 83% of common i2QTL SVs (NMAF > 0.05) were co-discovered by 

one or both of these studies (Figure 4C). Common deletions had the highest co-discovery rate 

(87%) while mCNVs had the lowest (~66%), consistent with the idea that mCNV discovery 

benefits from high read-depth and large numbers of samples (Handsaker et al., 2015). Rare 

variants (NMAF < 0.05) were more likely to be unique to either set, with ~40% of sites from 

GTEx and 1KGP represented in the i2QTL call set (Figure 4C). In total, 43% of i2QTL SVs were not 

found in either GTEx or 1KGP. These novel variants were predominantly rare, tended to have 

shorter lengths, and, excluding those identified by Genome STRiP, had on average 12% lower 

replication rates than co-discovered variants (Figure 4C, S12-S14). This is expected given that 

small SVs are the most difficult to genotype and rare variants are more likely to be false 

positives or negatives (Figure S11). Overall the i2QTL call set contains a significant number of 

novel, high-quality variants at lower allele frequencies missing from 1KGP and GTEx and 

captures most common SVs present in 1KGP and GTEx indicating that the call set contains most 

common SVs in Europeans. 
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Figure 4. Comparison to other SV calling studies   (A,B) The fraction of variants from either (A) 1KGP (European 

population) or (B) GTEx that were also captured in our study in different non-mode allele frequency (NMAF) bins.  

(C) Fraction of i2QTL SVs that were co-discovered in 1KGP, GTEx, both 1KGP and GTEx, or were unique to i2QTL 

(novel), divided by whether variants were common (> 0.05 NMAF) or rare (< 0.05 NMAF) in unrelated i2QTL 

samples indicated by absence or presence of hatching respectively. (D,E) Non-reference allele frequency of 

variants co-discovered in i2QTL and (D) 1KGP (Europeans) or (E) GTEx in their respective discovery samples. Here, 

the non-reference allele frequency among unrelated i2QTL donors is used, and the density is plotted with orange 

indicating more observations, and blue fewer.  

To assess how similar genotyping sensitivity was between studies, and confirm that overlapping 

sites were likely to have the same breakpoint, we compared the non-reference allele 

frequencies of sites that we classified as co-discovered. We found that overall the non-
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reference allele frequencies of i2QTL variants were highly correlated (r >0.9) with their matched 

GTEx and 1KGP variants (Figure 4D,E). This was true across variant classes in both studies, with 

the exception of duplications in 1KGP, which were less correlated (r=0.74), likely as a result of 

limited genotyping sensitivity in 1KGP due to the use of low coverage WGS data (Figure 

S15,S16). These results support that the i2QTL SV call set is accurate and contains most 

common SVs discoverable using short read sequencing data as well as novel, rare SVs, making it 

a valuable resource for examining functional differences between the SV classes (Jakubosky et 

al., 2019). 

STR genotyping 

We genotyped STR variants at over 1.6 million reference sites using HipSTR (Willems et al., 

2017) which employs a hidden Markov model to realign reads around each STR locus (Figure 

1A). HipSTR models PCR stutter artifacts to genotype STRs and because of such artifacts, 

greater genotyping sensitivity and accuracy of predicted de-novo STR alleles can be achieved 

with PCR-free WGS data. In light of this, HipSci samples, which were generated with a PCR-free 

library preparation, were genotyped separately and then these alleles were used as a reference 

to genotype iPSCORE samples, which were prepared using a PCR-based library prep, and the 

results for both sample sets were combined into one call set with consistent alleles. To retain 

only high-quality STR calls, we applied the genotype specific filters suggested by HipSTR 

(Willems et al., 2017) and required all sites to have an 80% call rate in iPSCORE or HipSci 

samples. This resulted in 588,189 autosomal variants with high reproducibility across the range 

of gentotyped expansion/deletion sizes (1 bp to 150 bp) (overall 94.5%, > 90%  in all size bins); 

these variants were substantially more reproducible than indels in this same size range called 

by GATK in the i2QTL call set, which overall showed low replication rates (62%) (Figure 3E-F, 

Figure S17-18). Because HipSTR STRs and GATK indels overlap in size and location, it is likely 

that some variants are present in both datasets. To compare the genotyping quality of these 

possibly redundant variants, we intersected GATK indels with 1.6 million HipSTR STR reference 

loci (Figure S11E). Interestingly, we found that indels (2-100 bp) called by GATK that overlapped 

an STR locus that was genotyped non-reference in at least one sample by HipSTR had higher RR 

(77.3%) than those that overlapped STR loci not genotyped as polymorphic by HipSTR (56%), or 

those that did not overlap an STR region (64.7%). These findings suggest that it is useful to filter 

large GATK indels (>30bp) because they have low RR (42%), and that STR genotypes are more 

reproducible than GATK indels. 

Linkage disequilibrium tagging for SVs and STRs 

Given the large amount of GWAS and QTL studies performed using genotyping arrays, we next 

asked to what extent different classes of SVs and STRs are tagged by SNPs and indels. We 

calculated the maximum linkage disequilibrium (LD) between common SVs and STRs (NMAF > 

0.05) within 1Mb of an expressed gene in iPSCs and SNPs/indels (Methods) (Jakubosky et al., 
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2019) within 50kb of the SVs/STRs. We found that 97.7% of STRs are tagged by a SNP or indel 

with R
2
 > 0.8 while SVs classes ranged from 44.2% to 86.7% of variants tagged with R

2
 > 0.8 

(Figure 5). Duplications and mCNVs were the most poorly tagged classes likely because they are 

often located near segmental duplications where SNPs and indels are poorly genotyped 

(Chaisson et al., 2015; Handsaker et al., 2015; Sudmant et al., 2015). These results indicate that 

most common STRs and some classes of SVs are assayed well by proxy using SNP and indel 

genotypes, but to increase the coverage of SVs, particularly mCNVs and duplications, studies 

need to include the genotyping of these variant classes in their samples.   

 

Figure 5. Linkage Disequilibrium of Structural Variants and Short Tandem Repeats with nearby SNPs and Indels.  

Distribution of maximum linkage disequilibrium (R
2
) between common SVs and STRs (non-mode allele frequency > 

0.05) and SNVs or indels within 50kb, considering only SVs/STRs that are within 1MB of an expressed gene in iPSCs. 

Discussion 

In this study, we discovered and genotyped SVs and STRs in 719 high-coverage WGS samples 

from 477 unique donors. We detected a wide spectrum of variants across different sizes as 

most STRs are in the 10bp to 1kb range whereas SVs may span more than 100 kb. We leveraged 

genetic replicates, such as twin pairs and fibroblast-iPSC matched samples, to test variant 

calling accuracy and determine filtering approaches to retain only high-quality SVs and STRs. 

Our filtered call set has very high replication rate (on average >90% for all SV callers), indicating 

high genotype quality for detected SVs and STRs. The call set captures most of the common 
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variants identified in 1KGP (Sudmant et al., 2015) and GTEx SV variant calling efforts and also 

contributes novel short (~100-1,000 bp) and rare (NMAF < 5%) variants. The high quality, non-

redundant i2QTL SV set described here will serve as a useful reference for other studies and is 

particularly valuable for genetic association analyses that aim to identify SVs that influence 

disease risk or quantitative molecular traits like gene expression. 

We used five algorithms designed for calling variants across many samples to detect different 

classes of SVs and STRs and compared the RR in genetic replicates (MZ twin pairs and 

fibroblast-iPSC pairs) to identify factors that impact RR. We found that we needed to call 

variants separately in the iPSCORE and HipSci WGS collections and implement specific filtering 

strategies to account for dataset-specific features such as library preparation techniques to 

achieve high RR. Given the variability in library preparation methods, future improvements to 

SV calling algorithms may explicitly adjust for specific library features such as PCR-free 

sequencing. We also observed differences in RR between different classes and sizes of SVs and 

different algorithms. We found that SVs in the 100-1,000bp range remain harder to identify and 

genotype likely due to the limitation of using short reads. We also observed that accuracy was 

highest for large (>10 kb)  duplications, deletions, and mCNVs suggesting that FDR estimates 

from orthogonal data sets such as arrays may overestimate accuracy for SV call sets since they 

generally assess the largest and easiest-to-genotype variants. Future studies that combine deep 

short read WGS with long read sequencing data may be able to improve the detection and 

genotyping of SVs in the 100-1,000bp range by directly sequencing them or assembling the 

short and long reads.  

We used genetic replicates to identify algorithm- and SV-specific thresholds and applied these 

thresholds to filter the initial set of SV calls and create a high quality catalog of SVs and STRs 

that complements previous SVs identified using low depth WGS or fewer samples (Chiang et al., 

2017; Sudmant et al., 2015). We also developed approaches for collapsing redundant SVs and 

harmonizing SVs called by different algorithms across hundreds of samples. Comparing our SV 

catalog to previous sets of SVs from the 1KGP and GTEx projects shows that the i2QTL SV call 

set captures most common (NMAF > 0.05%) SVs in Europeans. However, consistent with others 

types of genetic variants, we found that African ancestry samples had more SVs than 

Europeans. Future sequencing studies are needed to fully catalog SVs in other ancestries and 

identify rare, population-specific SVs. Such multi-ancestry SV catalogs will be indispensable for 

population sequencing studies such as All of Us (Sankar and Parker, 2017) that aim to integrate 

genetic and health data for patients from diverse and admixed ancestries. 

The filtering scheme and catalog of SVs and STRs presented here can be used in future genetic 

association and sequencing studies that aim to study the impact of SVs/STRs. One method for 

utilizing this catalog for calling SVs and STRs is to impute variants via tagging SNPs and indels; a 

benefit of this approach is that imputation is possible using both array- and sequenced-based 

genotyping. A second option when sequencing data is available is to skip the de novo SV and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/713198doi: bioRxiv preprint 

https://doi.org/10.1101/713198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

18

STR discovery step and instead genotype the reproducible variants reported here. This will 

restrict genotyping to high-quality sites and may lessen the burden of filtering variant calls. A 

third option is to perform de novo discovery, genotyping, processing, and filtering using the 

approaches and thresholds that we have identified. While it may be possible that some filtering 

thresholds need to be adjusted for specific studies, the thresholds provided here likely provide 

a good starting point for genotyping and filtering de novo discovered SVs and STRs in other 

datasets. 

Overall, this study provides a roadmap for discovering and genotyping SVs from WGS data and 

establishes a high-quality catalog of SVs and STRs that can be used in future genotyping efforts. 

A companion paper (Jakubosky et al., 2019) examines how the i2QTL SVs and STRs 

characterized here influence gene expression and contribute to disease risk. These studies 

demonstrate that SVs and STrs can be reliably identified and genotyped for hundreds of 

samples and used to study the impact of this class of genetic variation on human health. 

Methods 

Abbreviations  

1KGP: 1000 Genomes Project 

Indel: Small insertion/deletion variant 

SV: Structural Variant 

SNV: Single nucleotide variant 

SNP: Single nucleotide-polymorphism 

WGS: Whole-genome sequencing 

FDR: False discovery rate 

MAF: Minor Allele Frequency 

NMAF: Non-Mode Allele Frequency 

MSQ: Median Sample Quality 

 

Variant Callers: 

• SS:  SpeedSeq SV pipeline (LUMPY read-pair evidence with read depth support from CNVnator) 

• GS: Genome STRiP CNVDiscovery pipeline (read depth evidence),  

• GS LCNV: Genome STRiP LCNVDiscovery pipeline (read depth evidence) 

• MELT: MELT mobile element insertion discovery 

• HipSTR: HipSTR short tandem repeat genotyper 

 

Types of Genetic Variants Detected: 

• DEL: Biallelic deletion ascertained by LUMPY, GS, GS LCNV 
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• DUP: Biallelic duplication ascertained by LUMPY, GS, GS LCNV 

• mCNV: multiallelic copy number variant ascertained by LUMPY, GS, GS LCNV. This is defined as a 

variant that has at least 3 predicted alleles.   

• INV: inversion ascertained by LUMPY 

• rMEI: reference mobile element insertion  

• BND: generic “breakend” ascertained by LUMPY. May include deletions and duplications 

that lack read-depth evidence, balanced rearrangements (INV), MEI or other 

uncategorized break points. 

• ALU: Non-reference Alu element insertion identified by MELT 

• LINE1: Non-reference LINE-1 element insertion identified by MELT 

• SVA: Non-reference SVA (SINE-R/VNTR/Alu) element insertion identified by MELT 

• STR: short tandem repeat variant, detected by HipSTR.  Included variants have at least 

one individual with a change in length from the reference. 

• CNV: copy number variant (deletion or duplication structural variant). Encompasses DEL, 

DUP, mCNV 

• MEI: Non-reference mobile element insertion ascertained by MELT, including ALU, 

LINE1, and SVA elements 

 

1. Subject enrollment  

273 subjects were recruited as part of the iPSCORE study, of which 215 subjects have been 

previously described (D'Antonio et al., 2018; DeBoever et al., 2017; Panopoulos et al., 2017b). 

Data for additional 204 subjects was obtained from the HipSci Collection(Kilpinen et al., 2017a; 

Streeter et al., 2017). The iPSCORE collection was approved by the Institutional Review Board of 

the University of California at San Diego (Project #110776ZF). Each of the subjects provided 

consent, filled out a questionnaire, had blood drawn, and had a 1 mm skin biopsy taken from 

which fibroblasts were obtained. Five individuals provided consent only for cardiovascular 

studies, therefore they were removed from downstream analyses. Family relatedness, sex, age, 

and ethnicity were recorded in the questionnaire. Detailed pedigree information for iPSCORE 

available in Panopoulos et al. (D'Antonio et al., 2018; DeBoever et al., 2017; Panopoulos et al., 

2017b) (dbGAP: phs001035). In total, we utilized a total of 477 HipSci and iPSCORE subjects, 

276 were females and 201 were males, and collectively subjects ranged in age from 5 and 89 

years of age (Figure S1A). Notably, iPSCORE individuals were included in 56 families composed 

of two or more subjects (range: 2 to 14 subjects) and 86 single individuals (Figure S1B, Table 

S1). Overall, 167 iPSCORE individuals were unrelated. All iPSCORE individuals were grouped into 

one of five superpopulations (European, African, Admixed American, East Asian, and South 

Asian) on the basis of genotype data (D'Antonio et al., 2018; DeBoever et al., 2017; Panopoulos 

et al., 2017b) and HipSci samples were similarly categorized (Kilpinen et al., 2017a) (Figure S1C). 

For HipSci, some subjects had multiple iPSC clones with WGS. For these subjects, we chose the 
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pair of fibroblast and iPSC WGS samples that had the highest reproducibility for Genome STRiP 

calls (see Section 3.3 below). 

2. WGS Processing 

IPSCORE: WGS sequencing for iPSCORE individuals has previously been described in detail 

DeBoever et al. (DeBoever et al., 2017) and is available on dbGaP (dbGAP: phs001035). DNA 

isolated from either blood (254 samples) or fibroblasts (19 samples) (Table S2, Figure 1A), was 

PCR-amplified and sequenced on Illumina HiSeqX (150 base paired-end). We obtained an 

average of 180.9 billion total raw bases per sample (range 117.81 to 523.49 billion bases). The 

quality of raw fastq files was assessed using FASTQC (Brown et al., 2017). Reads were then 

aligned to the human b37 genome assembly with decoy sequences included and a Sendai virus 

contig with the BWA-mem algorithm under default parameters (Li and Durbin, 2009).  

HipSci: We downloaded cram files associated with 446 genomes (mean depth 36.3X) generated 

with a PCR free protocol from 204 healthy donors (ENA Study Accession: ERA828) (Kilpinen et 

al., 2017a). Genomes were previously aligned to hs37d5 genome, a reference identical to the 

one used for iPSCORE alignments with the exception of the inclusion of a Sendai virus contig. 

Cram files were converted to the bam file format and merged when necessary using samtools(Li 

et al., 2009) 

Bam files from both iPSCORE and HipSci were sorted with sambamba (Tarasov et al., 2015) and 

duplicates were marked with biobambam2 

(https://gitlab.com/german.tischler/biobambam2). 

3. Variant Calling, Processing, and QC analysis of SV and STRs 

Code Availability 

Code used for analyses and variant processing can be found on GitHub 

(https://github.com/frazer-lab/i2QTL-SV-STR-analysis). 

3.1 Quality Control Methods Overview 

3.1.1 Replication rate and filtering strategy for SVs and STRs 

To minimize the number of poorly genotyped structural variants (SVs) and maximize quality 

across multiple variant calling approaches, we used the replication rate (RR) metric, calculated 

as the proportion of non-reference genotypes that were also called non-reference in a paired 

genetic replicate, as a measure of the reproducibility (and quality) of a variant. The rationale 

behind this approach is that variants that have high genotyping accuracy should be genotyped 
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consistently in different samples with the same genome and that variants with low genotyping 

accuracy will differ between samples with the same genome. Under this logic, variants should 

be consistently genotyped in samples with the same genomes (e.g. technical duplicates, 

monozygotic twins) and discrepancies would result from false negative or false positive 

genotypes. 

To determine RR for all variant classes, we used genetic duplicate samples in the form of 

monozygotic twin pairs (n=25) and fibroblast iPSC pairs (n = 152). We used RR to assess the 

reproducibility of variants under different filtering conditions; the filters were specific to the 

unique quality metrics measured by each calling algorithm. Using the relationships between 

filters and RR that we identified, we selected filtering criteria for each variant class in each 

caller to maximize the quality (specificity) and the number of variants (sensitivity) called. 

Because there may be a greater number of somatic variations between fibroblasts and iPSC 

clones (D'Antonio et al., 2018) due to reprogramming, replication rates in monozygotic twins 

were used to select thresholds, and iPSC-fibroblast pairs were used for additional confirmation. 

For this analysis, one member of each pair of genetic duplicates was chosen arbitrarily as the 

“comparison sample”, and the concordance of non-reference sites in this sample was assessed 

with respect to the other sample. Replication rate was calculated on all autosomal SVs on a site-

by-site basis as the number of pairs with matching non-reference genotypes divided by the 

total number of pairs with at least one non-reference genotype. Average RRs reported for 

particular SV classes were calculated as the average RR over all SVs in that class. 

3.1.2 Batch effects and Hardy Weinberg Equilibrium 

The i2QTL Consortium includes WGS data from iPSCORE and HipSci (Kilpinen et al., 2017a; 

Panopoulos et al., 2017a), which are different in aspects which may affect variant calling: 1) 

mean coverage is higher for iPSCORE (50.4X, compared with 36.6X); 2) while most iPSCORE 

donors had WGS from blood and only 14 from skin fibroblasts, all HipSci donors had WGS from 

skin fibroblasts; and 3) HipSci samples were sequenced using a PCR-free protocol (Figure S1, 

Figure 1, Table S2). To limit the batch effects associated with these differences, in cases where 

a variant caller used information from the entire set of samples to build a global model 

(Genome STRiP (Handsaker et al., 2015) and HipSTR (Willems et al., 2017)), we genotyped or 

performed discovery separately in iPSCORE samples and HipSci samples, which were 

additionally divided into two groups for fibroblast and iPSC samples. 

We compared allele distributions for autosomal variants ascertained for unrelated members of 

each collection (167 unrelated iPSCORE samples and 204 HipSci samples) after variant calling 

and filtering to ensure that differences between WGS from each collection did not create 

widespread systematic artifacts in variant calling. Allele distributions were compared between 

the studies using a chi-squared test with a Bonferroni correction. For instance, for an insertion, 

the number of samples with zero, one, or two copies of the insertion in iPSCORE were 

compared to the number of samples with zero, one, or two copies of the insertion in HipSci 
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using the chi-squared test. Variants with Bonferroni-corrected p<0.05 were tagged in the VCF 

file. For this analysis, missing genotypes were also included as a unique allele when present. 

We calculated Hardy Weinberg Equilibrium to identify variants that could be affected by batch 

effects in variant calling or that were poor quality. We used all unrelated blood/fibroblast 

samples and considered autosomal biallelic duplications and deletions from Genome STRiP 

(Handsaker et al., 2015) as well as all variant classes ascertained by SpeedSeq (Chiang et al., 

2015) and MELT (Gardner et al., 2017). We tested HWE using a chi-squared test to compare the 

counts of the observed genotypes to those expected given HWE. SVs with Bonferroni corrected 

HWE p<0.05 were flagged as potentially not obeying HWE.  

3.1.3 Number of Calls ascertained Per Sample 

Consistency in the number of non-reference calls per sample is associated with variant calls 

from high-quality WGS sequencing data, samples of similar ancestry, and algorithm 

performance. We counted the number of calls per sample for all algorithms to assess whether 

there were differences in the number of SVs identified in samples from each study, ancestry, or 

cell type from which the WGS was derived.  

 

3.2 SpeedSeq  

3.2.1 Variant Calling 

We used the split and discordant read pair-based structural variant caller LUMPY 

(v0.2.13)(Layer et al., 2014a) under its implementation in SpeedSeq (v0.1.2)(Chiang et al., 2015) 

to call duplications, deletions, inversions and other novel adjacencies referred to as 

“breakends” (BNDs). We ran LUMPY on each of 719 samples (478 from the HipSci collection and 

478 from the iPSCORE collection) using the “speedseq sv” command with the -P option to retain 

probability curves in the output VCFs, -d to CNVnator (v0.3.3)(Abyzov et al., 2011) to calculate 

absolute copy number information on each sample, and -x to exclude a published list of 

genomic regions (ceph18.b37.lumpy.exclude.2014-01-15.bed) known to be potentially 

misassembled regions (Layer et al., 2014a; Li, 2014). Calls from individual samples were then 

genotyped using SVTyper (v0.1.4), before being combined into a single VCF file. Individual VCF 

files were sorted, and merged using svtools (v0.3.2) with the “sort” and “merge” command 

(slop 20bp) to remove overlapping breakpoints, resulting in a single VCF file with the most 

probable sites.  Each sample was then genotyped at these merged sites using SVTyper and 

annotated with an absolute copy number using the “svtools copynumber” command. Variants 

were merged into a single VCF file, pruned, and reclassified under suggested parameters(Chiang 

et al., 2017). Individual VCFs were merged using “svtools vcfpaste” and further processed to 

remove additional identical variants using “svtools prune”. This set of breakpoints was then 

reclassified by using “svtools classify” to identify high confidence copy number variants by 

regressing the estimated copy number and “allele balance” information (non-
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reference/reference reads at an SV site) as well as to identify mobile element insertions in the 

reference genome (rMEI, which appear as deletions in our call set). 

 

3.2.2 Variant Processing 

Because metrics such as replication rate may select variants that are reproducible artifacts, to 

remove as many known low-quality sites as possible, we first applied filtering guidelines 

suggested in a previous study (Chiang et al., 2017) as follows : 1) deletions that were less than 

418bp were required to have split read support; 2) all non-BND variants were required to be at 

least 50bp in length; 3) BND calls required 25% percent support from either split or paired end 

reads; and 4) QUAL > 100 inversions were required to have at least 10% of evidence from split 

or paired end reads. Finally, to ensure a baseline level of genotyping consistency at each site, 

variants were filtered if they had a missing rate of > 10%.   

3.2.3 Variant Redundancy Collapsing 

After running the Speedseq/SVtools pipelines and filtering variants as described above, the 

variant call set still contained overlapping variants suspected to be identical. To produce a 

single set of non-overlapping unique calls, we performed additional pruning steps. To identify 

and prune putatively identical calls that remained in our call set we implemented a graph-based 

approach: 1) we constructed a graph where SVs with reciprocal overlap of at least 50% are 

nodes connected by an edge; 2) we created a correlation matrix for each set of connected 

components using the allele balance (non-reference/reference reads at an SV site) at each site 

across individuals; 3) we refined the graph, retaining only the edges between SVs with r > 0.25 

at a given site, which are likely to represent a single breakpoint; 4) we iterated through 

connected components, and chose variants with the highest median sample quality (MSQ) 

score, pruning other variants in the subgraph; and 5) in cases where one call was fully 

contained within another call and there was a correlation of at least 0.5 in allele balance 

between them, indicating that both calls were genotyped as non-reference in the same 

individual(s), only the site with the highest MSQ score was retained.   

3.2.4 Replication Rate Analysis and Filter Selection 

During SpeedSeq quality analysis we investigated supporting reads (SU) and median sample 

quality (MSQ) as possible filtering criteria. MSQ was strongly associated with RR in iPSCORE 

twins and HipSci fibroblast iPSC pairs (Figure S2A, B) while the number of supporting reads was 

not (data not shown). For variant filtering, we determined variant class-specific MSQ 

thresholds, with the goal of ensuring at least 90% replication rate across all variant classes and 

retaining the maximal number of variants. Classes of variation that were highly reproducible 

before quality score filtering (>90% replication rate) were filtered at a 20 MSQ score, a 

threshold used in previous efforts (Chiang et al., 2017). With this approach, we performed 

additional filtering as follows: 1) deletions and rMEIs must have MSQ > 20; 2) duplications, 
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inversions and BND calls must have MSQ > 100, 90, and 90 respectively. Deletions and rMEIs 

were genotyped most reproducibly, prior to filtering, while duplications were less reliably 

genotyped, reflecting the sensitivity of split read versus discordant read signal. After filtering, 

RR was on average 97% in twin pairs and slightly worse (92%) in fibroblasts-iPSC pairs (Figure 

S2C).   

3.2.5 Batch effect and Hardy Weinberg analysis 

We tested variants on autosomes that passed the filters described above and 196 variants with 

missing rate > 10% but that otherwise passed filters for differences in allele distribution or 

deviations from HWE as described above (Section 3.1.2). We found that only 544 of 25,537 sites 

tested had different allele distributions (2.1%, Figure S2D). We also observed that 1,256 

variants (4.9%) deviated from HWE, suggesting that batch effects do not affect SpeedSeq 

variant calls. We also observed that allele frequencies were highly correlated between variants 

detected in iPSCORE and HipSci. 

 

3.2.6 Calls Per Sample 

After variant calling, we found that the number of SVs identified was consistent across samples, 

regardless of the study or cell type (Figure S2E-F). In agreement with previous SV discovery 

studies, we observed on average 10.2% more SpeedSeq variants per sample for those of African 

ancestry (4,260/sample) (Chiang et al., 2017; Sudmant et al., 2015) as compared to samples 

that were not predicted to be of African ancestry (3,863/sample).  

  

3.3 Genome STRiP CNVDiscovery  

3.3.1 Variant Calling and Genotyping 

Genome STRiP (svtoolkit 2.00.1611) CNVDiscovery (Handsaker et al., 2015), a population level 

read-depth based caller, was used to identify and genotype biallelic duplications and deletions 

as well as multiallelic CNVs (mCNVs) with suggested discovery parameters for deeply 

sequenced genomes (window size: 1000bp, window overlap: 500bp, minimum refined length: 

500bp, boundary precision: 100bp, reference gap length: 1000). Because Genome STRiP is 

sensitive to differences in cell replication rate between samples derived from different cell 

types as well as in sequencing depth, we ran CNVDiscovery separately for iPSCORE fibroblast 

and blood samples and HipSci fibroblast samples. At the midstage of Genome STRiP discovery, 

10 iPSCORE samples and 6 HipSci samples were removed from their respective discovery runs 

due to excessive variation in the number of calls per sample (exceeding the median call rate 

across all samples plus 3 median absolute deviations). To produce a call set where all sites were 

genotyped in all samples, sites discovered in either iPSCORE or HipSci samples were next 

genotyped using SVGenotyper in the opposite set (genotyping separately within these 

respective sets) and the combined list of discovered sites was genotyped in the remaining 
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HipSci iPSC samples, which were excluded from discovery. Using this strategy, the Genome 

STRiP dataset was not biased by the presence of somatic CNVs in iPSCs, and differences due to 

WGS library preparation specific to each study were minimized. Additionally, output VCF files 

from genotyping each subset of samples were annotated to match those from variant discovery 

using the SVAnnotator ( “-A CopyNumberClass, \  -A CNQuality \  -A VariantsPerSample \  -A 

NonVariant \  -A Redundancy” ), to ensure that quality metric information was available for 

each variant within each subset of samples for downstream processing. 

 

3.3.2 Replication Rate analysis: 

A commonly suggested filtering parameter for SV detection is the per site quality score 

GSCNQUAL, described as being comparable for filtering of both duplication and deletion events 

(Andersson et al.). We thus tested the RR of Genome STRiP variants ascertained in iPSCORE 

samples as well as the replication of variants ascertained in the HipSci fibroblast samples 

(Figure S3A-B). Here we found that GSCNQUAL was highly correlated with RR in both twin pairs 

and iPSCs, but duplications and mCNVs had higher RR among twin pairs than iPSC-fibroblast 

pairs. Furthermore, deletions in both iPSCORE and HipSci sites were more reproducible under 

less stringent filtering than duplications and mCNVs. We selected 2, 12, and 14 as the minimum 

GSCNQUAL score required for deletions, mCNVs and duplications, respectively. We then filtered 

variants that were monoallelic in the data set as well as sites that had more than 10% of non-

iPSC genotypes marked as low quality (LQ format field). These standard filters were applied 

before proceeding to combine the discovery sets of iPSCORE and HipSci and other data 

processing.   

3.3.3 Variant Redundancy Collapsing 

To collapse redundant variants that were obtained through separate SV discovery for iPSCORE 

and HipSci samples, we first filtered the HipSci discovery set and the iPSCORE discovery set to 

those passing filters described above, and then intersected the call sets using bedtools(Quinlan, 

2014; Quinlan and Hall, 2010). Overlapping sites were required to meet the following criteria in 

order to be considered redundant: 1) at least 50% reciprocal overlap; 2) Pearson correlation 

coefficient in the copy numbers of non-iPSC samples > 0.95; and 3) differences in less than 5% 

of non-mode genotypes in non-iPSC samples. To process these overlaps, we considered cases 

where two sites exactly overlapped (same coordinates), choosing the site with the largest sum 

of GSCNQUAL scores from iPSCORE and HipSci (Non-iPSC) samples sets as the high quality 

“primary” site and marking the other as “redundant”. Pairs of sites with exact overlaps were 

then removed from the analysis, and the remaining intersections were processed using a graph-

based method similar to the one developed for Speedseq. Briefly, overlapping sites (nodes) 

were connected by edges weighted according to the average percentage overlap (the average 

of the percentage overlap of site B with A and the percentage overlap of site A with B) and 
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which variant had the largest sum of GSCNQUAL scores from iPSCORE and HipSci (Non-iPSC) 

samples. Then, we iterated through connected components of the graph; chose the pair of sites 

that had the highest average overlap; and marked the variant with the largest sum of 

GSCNQUAL scores as the “primary site” and the other variants in the cluster as redundant. For 

the X chromosome, the computation of correlation and differences among non-mode samples 

was done separately for males and females, requiring that sites pass criteria in males, females 

or both males and females, depending on whether each subgroup had variability. This was done 

to control for bias in correlation coefficients due to the difference in reference copy number for 

males and females on the X chromosome. Overall, this process resulted in 7,987 sites being 

reduced to 3,856 non-redundant primary sites.  

 

3.3.4 Stitching of CNVs 

Genome STRiP occasionally reports a single CNV as several adjacent CNVs (Chiang et al., 2017). 

To address this issue, we analyzed sites that passed filtering, and were non-redundant, 

computing the correlation and distance between every pair of adjacent sites.  We observed 

high genotype correlation between sites that overlapped or were close to each other (within 

~40kb) (Figure S4A). Pairs of sites were considered for stitching into a single CNV if they had 

high overall correlation (r > 0.9) between copy number genotypes and at least 80% 

concordance between copy number genotypes of non-mode samples for each variant (union). 

Because variants that are very far from one another are less likely to be fragmented variant 

calls, we also selected a maximum distance between a pair of variants to consider for stitching. 

To do so, we examined the number and percentage of adjacent variant pairs that passed 

genotype correlation requirements at different distance thresholds, and selected 30 kb, which 

maximized the number and percentage of pairs passing these requirements (Figure S4B). We 

then identified correlated adjacent CNVs to be stitched using a graph-based method: 1) a 

genotype correlation matrix was created for all the CNVs on each chromosome using estimated 

copy numbers across samples; 2) a graph was drawn with CNVs as nodes, connecting a pair of 

CNVs with an edge if they resided on the same chromosome and had correlation from their 

copy number estimates >0.9; 3) for each connected component in the graph with more than a 

single CNV, CNVs were sorted by position and each adjacent pair was examined for potential 

stitching; and 4) CNVs were merged if they passed the correlation/concordance criteria 

described above and were within 30kb of one another. This approach ensured that only highly 

correlated adjacent CNVs were merged. In cases where a set of CNVs was chosen to be 

stitched, a new breakpoint spanning the start point of the first CNV to the end point of the last 

CNV (sorted by start point) was defined, referred to hereafter as the “stitch” breakpoint, while 

the other CNVs in the cluster were considered “constituent” sites. Note that in cases when a 

stitch cluster was made up of a single CNV containing one or more smaller CNVs, the large CNV 

was identified as a stitch breakpoint. Overall, this process lead to 3,558 sites being combined 

into 1,252 putative “stitch” breakpoints, 355 of which were large breakpoints in the call set that 

contained smaller breakpoints, and 897 were new breakpoints. The set of 897 new stitch 
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breakpoints (not already genotyped in our set), were then genotyped across all samples using 

Genome STRiP SVGenotyper (CNVDiscovery), separately for iPSCORE samples, HipSci fibroblast 

samples, and HipSci iPSC samples (as was described in initial discovery 3.3.1). Finally, we 

compared the genotypes of the stitched breakpoint with the genotypes of the constituent sites, 

and those that did not have high correlation (average r < 0.9 across all constituents) were 

“unstitched”, and if the stitch breakpoint was one of the 897 new breakpoints genotyped, it 

was marked for filtering. If the new stitched breakpoint had over 10% low quality flagged 

genotypes (LQ) or was non polymorphic, the stitch cluster was also unstitched, and the 

breakpoint marked for filtering. 

The vast majority of new stitch breakpoints were closely correlated with the constituents 

(862/897, 96%), suggesting that our stitching strategy indeed identified single CNVs that were 

broken into fragments (Figure S4C). An additional 7/862 correlated sites failed low quality 

genotype filtering criteria, yielding 855/897 (95%) new stitch breakpoints which passed all 

criteria.  Overall, the process yielded 1207 unique sites (855 newly stitched sites and 353 sites 

that had been previously genotyped) comprised of 2-30 distinct CNVs each (Figure S4D). For 

analysis of the non-redundant set, we filtered these constituent sites and retained the stitch 

breakpoints. After the filtering, deduplication, and stitching process, remaining non-redundant 

variants had high replication fractions in each individual twin pair and fibroblast iSPC pair 

(Figure S4C) and high average replication rates on a per site basis (Figure 3A). 

3.3.5 Batch effect and Hardy Weinberg analysis 

After filtering, variant collapsing and stitching, we tested for differences in allele distribution 

and deviations from HWE as described above (Section 3.1.2).  Non-mode allele frequency was 

highly correlated between unrelated samples from iPSCORE and HipSci (Figure S4D) though a 

small number of variants (276/10,302 autosomal CNVs) were identified as having possible 

differences in allele distribution or deviation from HWE.   

3.3.6 Calls Per Sample 

After variant calling and collapsing, we observed approximately the same number of calls per 

sample among iPSCORE and HipSci fibroblast samples, and no notable outliers among them 

(Figure S4E). As with other variant callers, we saw larger numbers of calls per sample among 

samples from the African predicted superpopulation (~28% more calls per sample). 

Additionally, we found a small number of low quality genotypes per sample (Figure S4F) on the 

samples from which we performed discovery. HipSci iPSCs have higher rates of low quality 

genotypes because they were excluded from filtering that of sites based on their percentage of 

genotypes that were tagged as low quality (FORMAT = LQ) because they were genotyped 

separately and excluded from the CNVDiscovery pipeline. These results suggest that the 

discovery and genotyping approach was successful in preventing systematic batch effect 

variants.  
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3.4 Genome STRiP LCNVDiscovery 

3.4.1 Variant Calling 

To identify CNVs longer than 100 kb, which we refer to as long CNVs (LCNVs) we used the 

LCNVDiscovery module of the Genome STRiP toolkit (svtoolkit 2.00.1611). This pipeline uses 

information from depth of coverage in fixed-size bins across the genome, and while sample 

normalization is performed across samples, individual samples are called separately. Prior to 

LCNVDiscovery, we generated depth profiles for all genomes using GenerateDepthProfiles with 

suggested parameters (maximumReferenceGapLength = 1000, profileBinSize = 10000). Then, 

similar to our approach in Genome STRiP CNVDiscovery, iPSCORE samples, Hipsci fibroblasts 

and HipSci iPSCs were processed separately when running the LCNVDiscovery module 

(maxDepth=50). We collected the calls from each sample and filtered them with the suggested 

parameters (NBINS ≥10 and a SCORE ≥1000). Sites that were entirely contained within the 

centromere or overlapped the entire centromere were removed and variant sites were 

required to have an absolute copy number greater than 2.75 or less than 1.25 for duplications 

and deletions, respectively (Figure S5A).  

3.4.2 Variant Processing and QC 

Genome STRiP LCNVDiscovery identifies sites per individual sample, so it is necessary to identify 

redundant sites that are called in different samples. To find redundant CNVs representing a 

single breakpoint, sites with a reciprocal overlap of at least 80% were grouped into clusters and 

a single breakpoint spanning the minimum start position to the maximum end position of CNVs 

in the group was used to represent the merged site. Individual CNVs that were within these 

clusters were marked as merged constituents, and excluded from non-redundant set, while 

those that didn’t overlap with CNVs from another individual were considered unique variants 

that were present in only a single sample (Figure S5A-B). Absolute copy number estimates were 

rounded in order to produce integer copy number estimates similar to Genome STRiP 

CNVDiscovery. We identified 73 redundant sites comprised of 2 to 19 CNVs detected in 

individuals. On average, twin replication rates of the filtered variants was > 75% but very few 

large common variants were identified (Figure S5C). After filtering and collapsing variants, we 

obtained 432 unique LCNV sites, with 200 duplications, 166 deletions, and 66 mCNV (size range: 

100 kb to 5 Mb, Figure S5D). On average each individual had 4 large duplications and 3 large 

deletions (Figure S5E). 

 

3.5 MELT  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/713198doi: bioRxiv preprint 

https://doi.org/10.1101/713198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

29

3.5.1 Variant Calling 

Mobile element insertions (MEIs) were called using the Mobile Element Locator Tool (MELT) 

(Gardner et al., 2017). We used the MELT (v2.0.2) SPLIT workflow to discover, genotype, merge 

and annotate MEI calls for ALU, SVA and LINE1 elements. We also included discovered 1KGP 

MEI sites (Sudmant et al., 2015) as priors in “MELT GroupAnalysis”.   

 

3.5.2 Replication Rate Analysis and Filter Selection 

While MELT does not output quantitative quality scores, it does flag variants that meet one or 

more of several criteria. These criteria include: 1) sites that overlap low complexity regions (lc), 

2) have more than 25% missing genotypes (s25), 3) have a ratio of evidence for the left and 

right breakpoint (LP/RP) that is > 2 standard deviations from the ratio among all other sites 

(rSD), or 4) have a larger than expected number of discordant read pairs that are also split reads 

(hDP). We tested whether the flags, or combinations or flags, were associated with RR and 

found that filtering on all suggested criteria improved RR considerably for detected MEIs, 

raising it from below 0.6 to ~0.9 for ALU, LINE, and SVA elements (Figure S6A-B). Among these 

quality metrics, filtering on low complexity resulted in the best improvement compared with 

the other individual filters; however, filtering on all quality tags was necessary to improve RR to 

0.9. Additionally, MELT outputs a quality tranche score from 1-5 (defined as “ASSESS”) that 

describes the types of evidence used to determine the location of the insertion site. For 

example, the highest quality insertion sites are given a score of 5, and has a target site 

duplication sequence flanking the MEI supported by split reads. Filtering with higher quality 

tranche score thresholds also improved replication rate, either before or after filtering using all 

flags (data not shown). We chose to filter variants that that were flagged for any criteria, and 

also required a quality tranche score of 5, for maximum stringency and best RR improvement. 

After filtering, individual twin and fibroblast-iPSC pairs had high replication percentages (>0.9 

Figure S6C).   

3.5.3 Batch effect and Hardy Weinberg analysis 

We tested all MELT variants for differences in allele distribution and deviation from HWE as 

described above (Section 3.1.2) and found that only 527/9,566 autosomal MEIs had differences 

in allele distribution (49/527) or showed deviation from HWE (492/527) (Figure S6D). 

Additionally, non-reference allele frequency in iPSCORE and HipSci was highly correlated (r > 

0.9), suggesting batch effects did not influence MEI calls. 

 

3.5.4 Calls Per Sample 

MELT variants were highly consistent in calls per sample in both studies, (mean 1,107 and 1,097 

calls/sample in iPSCORE and HipSci fibroblast samples respectively) and in all cell types, while 
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having very few missing genotypes (median 1/sample, Figure S6E-F). We observed an increased 

number of ALU, LINE1, and SVA elements per sample in samples from individuals of African 

ancestry (1,144 ALU/118 LINE1/53 SVA per sample versus 952 ALU/ 105 SVA/ 45 SVA sample for 

Non-African samples from iPSCORE). 

 

3.6 HipSTR 

3.6.1 Variant Calling 

Short tandem repeat (STR) variants were genotyped using the HipSTR algorithm (v0.5.61) 

(Willems et al., 2017), on a set of 1,527,077 GRCh37 autosomal STR regions that were provided 

by the tool (https://github.com/HipSTR-Tool/HipSTR-

references/raw/master/human/GRCh37.hipstr_reference.bed.gz). Because only HipSci WGS 

data was PCR-free, special considerations were required to run HipSTR, as it uses PCR stuttering 

models to genotype repeats and assumes all WGS samples were generated using the same 

pipeline. For STR genotyping, PCR-free data produces more accurate genotypes, thus we first 

ran HipSTR at STR sites in all 446 HipSci samples under standard settings. Next, we genotyped 

the iPSCORE samples using the HipSci genotypes as references (--ref option). Finally, we 

genotyped iPSCORE samples separately without using the HipSci genotypes as reference alleles. 

We used only the diploid genotype option, as we lacked phased SNVs for all samples.  

3.6.2 Filtering and Preliminary Replication Rate Analysis 

To filter HipSTR variants, we first used the supplied “filter_vcf.py” script with recommended 

thresholds for individual genotypes (min-call-qual = 0.9, max-call-flank-indel = 0.15, max-call-

stutter = 0.15, --min-call-allele-bias= -2, min-call-strand-bias= -2). This procedure converts 

genotypes that do not pass these thresholds to “missing”. We examined the number of variant 

calls per sample and the number of missing genotypes when variants were genotyped in 

iPSCORE, iPSCORE using HipSci reference alleles, and in HipSci samples (Figure S16). Among 

iPSCORE samples, we observed a median of 122,249 calls per sample in African ancestry 

individuals and 111,613 calls per samples in non-African ancestry individuals (Figure S16A-D). 

While four samples from non-African ancestry individuals had a surprisingly large number of 

STRs, all but one individual self-reported as having partial African ancestry (Figure S16D). 

iPSCORE genotypes at HipSci reference alleles had similar numbers of calls per sample (median 

110,023/sample) compared to the genotypes from iPSCORE alone (Figure S16E). African 

ancestry samples, however, had a smaller number of calls using the HipSci reference alleles 

likely because HipSci did not include African ancestry samples, so the African samples in 

iPSCORE were only genotyped for STRs discovered in Europeans. HipSci samples had about 

twice as many calls per sample (222,321/sample for HipSci fibroblast samples) compared to 

iPSCORE and fewer missing calls per sample, demonstrating that using PCR-free WGS provides 

better accuracy for STR genotyping. To obtain a high-quality set of STRs, we required >80% call 
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rate for variants from each subset. We excluded one iPSCORE sample from this missingness 

calculation that had more than 70,000 missing calls. This filter resulted in high replication rates 

(> 92%) in each twin pair for both genotyping methods in iPSCORE, and even higher replication 

rates (>95%) in fibroblast-iPSC pairs for HipSci genotyping likely due to more accurate STR 

genotyping in the PCR-free WGS (Figure S17). Overall, the replication rate before all filtering 

and after processing improved from ~78% to ~94.4% in iPSCORE twins (Figure 3B).   

3.6.3 Combining the iPSCORE and HipSci data 

HipSTR genotypes were combined between iPSCORE and HipSci by creating a single combined 

VCF file using the HipSci genotypes and iPSCORE genotypes at HipSci alleles. We additionally 

added iPSCORE genotypes for STRs that were unique to iPSCORE to the VCF file.   

3.7 Unifying SpeedSeq and Genome STRiP CNVDiscovery and LCNVDiscovery Call 

Sets 

Since different variant callers may detect the same variants using different methods, we 

developed a strategy to integrate variants from Genome STRiP and SpeedSeq call sets that were 

likely to represent the same site. To approach this problem, we used a graph-based method 

similar to those used to identify duplicates within SpeedSeq and Genome STRiP prior to this 

step (Sections 3.2.3 and 3.3.3). To generate clusters of overlapping SVs, we first intersected our 

filtered Genome STRiP calls (redundant sites removed, GSCNQUAL filtered, stitching sites 

included, stitched constituents excluded) with filtered SpeedSeq variants (redundant sites 

removed, standard filters, MSQ filtered) and retained all SV pairs with >50% reciprocal overlap 

or where one site completely contains another. SV pairs were required to have the same SV 

types, with exception being that mCNVs were allowed to match with both duplications and 

deletions and deletions were allowed to match with rMEI (as they appear as deletions). We 

built a graph where edges were represented by connected SV pairs that pass these overlap 

thresholds and SV type compatibility parameters. We iterated through connected components, 

testing every combination of elements in each connected component, and generating a new 

graph, connecting pairs of variants if they passed correlation thresholds between copy number 

genotypes (Genome STRiP) variants or allele balance ratios (SpeedSeq) at the sites. If the 

connected component contained a duplication and deletion from SpeedSeq and an mCNV from 

Genome STRiP, SV pairs were allowed to connect if their genotype evidence had a correlation 

(
 
) > 0, while other components required an 

 
> 0.5. We then iterated through connected 

components of this new graph and selected the highest degree variant (connected to the most 

other variants) from each caller with the highest quality score (GSCNQUAL for Genome STRiP, 

MSQ for SpeedSeq) from which we chose one variant as the “primary” variant and all other 

variants as “secondary.” All variants in each cluster were marked with a cluster ID. In cases 

where a Genome STRiP deletion overlapped a SpeedSeq rMEI, the SpeedSeq variant was 

chosen as the primary site, and the Genome STRiP variant was assigned as secondary. In all 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/713198doi: bioRxiv preprint 

https://doi.org/10.1101/713198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

32

other scenarios, the Genome STRiP variant was chosen as the primary variant and the SpeedSeq 

variant was the secondary due to the comparably higher replication rates for Genome STRiP 

variants and the granularity of having integer copy numbers.  

This method assures that highly correlated variants with significant overlap are clustered 

together, and that generally, the larger, higher quality variants are chosen as representative 

primary sites. Sites that were assigned as primary sites from the intersection clusters, as well as 

unique variants from either variant call set that were not included in intersection clusters, were 

then selected to produce a non-redundant set of sites necessary for global analyses of SVs 

(Figure 4,5).  

 

3.8 Comparison to SV Genotypes from Arrays 

To estimate the false discovery rate (FDR) of the merged CNV call set we used 216 

MEGA_Consortium_v2 arrays available for iPSCORE samples to perform an intensity rank sum 

(IRS) test to assess whether the SV genotypes after filtering agree with genotypes from array 

data. SNP arrays were analyzed using the Illumina GenomeStudio software (v2011.1) and were 

required to have an overall call rate of <97%. The log(R ratio) was obtained from the final 

report. We used the Genome STRiP Intensity Rank Sum Annotator to compare genotypes for a 

subset of the SV calls that were present in the 216 samples for which we had array data using 

the log R ratio as input.  Before testing, the intensity matrix was first adjusted for covariates by 

regressing out the effects of batch and plate on a probe-wise basis using the statsmodels 

(v0.9.0) linear regression module. To assess our filtering strategy we tested 2,563 /15,437 

SpeedSeq duplications and deletions, and 4,233/18,171 Genome STRiP CNVs that were present 

in at least one of the 216 individuals (before any filtering) and contained at least 3 probes and 

computed IRS FDR as in 1KGP (Sudmant et al., 2015).  Restricting our analysis to 2,376 filtered 

and deduplicated SpeedSeq variants with array probes, we observed that deletions and 

duplications had an FDR of 5.35% and 3% respectively. Similarly, among 1,848 filtered and 

deduplicated Genome STRiP variants containing array probes, we observed that deletions, 

duplications and mCNVs had an FDR of 5.4%, 7.8%, and 7% respectively. These FDR estimates 

were similar to those in 1KGP and GTEx, although the probe density of arrays limited the 

number of sites we could test.  

 

3.9 Comparison of i2QTL SVs to 1000 Genomes Project and GTEx SV Call-Sets 

To investigate the quality and completeness of our SV calls, we compared them to GTEx v6p SV 

calls (Chiang et al., 2017)  which used 147 deeply sequenced whole genomes (median 49.9X 

depth), and the robustly characterized 1000 Genomes Project Phase-3 call-set (Sudmant et al., 
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2015) derived from 2,504 shallowly sequenced samples (7.4X depth). While the GTEx call-set 

contains relatively few samples, the whole genome sequencing data and variant calling 

approach were similar to the approach used in i2QTL (Genome STRiP and SpeedSeq), and were 

thus used as a benchmark. Before analysis, we obtained VCF files with genotypes from 1KGP 

phase 3 (link?) and GTEx V6p (dbGaP accession number phs000424.v7.p1). Phased genotypes 

from 1KGP SVs were converted to unphased genotypes using the alternative allele information 

to enable comparison with the unphased SVs from i2QTL and GTEx. This enabled us to compute 

non-mode allele frequency for 1KGP and GTEx SVs to match the frequency measures used in 

this study. Because of the significant diversity of the 1KGP cohort (26 populations, 70% 

European) as compared to i2QTL (6 subpopulations, 80% European), we filtered the 1KGP data 

to 1,755 European samples, and used variants present in at least one of these samples. For co-

discovery analyses, we used non-redundant sites from i2QTL as well as variants that passed 

filters and were part of redundancy clusters to maximize the potential overlap between sets. To 

identify putative co-discovered sites between i2QTL and either GTEx or 1KGP, CNVs (DUP, DEL, 

mCNV), rMEI and inversions from each call-set were intersected using “bedtools intersect” and 

co-discovered sites were selected using the following approach: 1) excluding inversions, all 

variants were required to have at least 25% reciprocal overlap, or if one variant was fully 

contained within the other, it was required to span at least 20% of the larger variant; inversions 

were required to have 80% reciprocal overlap; 2) variant classes were required to match with 

the exception of mCNVs, which were allowed to match with either duplications or deletions; for 

BND sites, we considered breakpoints within 50bp of each other to be matching; and 3) 

because we included 1KGP MEIs as priors in our MELT pipeline, MEIs co-discovered with 1KGP 

were known, and did not require overlap analysis. For overlap reported with i2QTL, we 

computed the fraction of sites co-discovered by one or both call-sets, considering non-

redundant clusters a single site. 

 

4 LD Tagging 

For each of the 42,921 total non-redundant SVs and STRs that were within 1MB of an expressed 

gene in iPSCs (Jakubosky et al., 2019), we used bcftools (Li et al., 2009) to extract all SNPs 50 kb 

upstream and downstream. For each SV or STR, we calculated LD as the correlation (Pearson R
2
) 

with the genotypes of each surrounding SNV or indel genotyped in i2QTL WGS and selected the 

variant with the strongest LD.   
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Supplemental Tables 

Table S1: Subject Information. Phenotypic information about 477 individuals from iPSCORE and 

HipSci with WGS used in this study including age, sex, predicted superpopulation, reported and 

annotation of family, twin status, presence in the unrelated set.   

 

Table S2: WGS information. Information describing WGS samples included in variant calling 

including cell type, subject, study, and also median coverage for each genome.  
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Variant Caller Variant Class Applied Filtering Parameter Threshold Rationale 

DEL Per Site GSCNQUAL 2 RR

DUP Per Site GSCNQUAL 14 RR

mCNV Per Site GSCNQUAL 12 RR

ALL Per Site % Low Quality Genotypes (LQ tag) < 10%

ALL Per Site Contained in Centromere N/A Suggested (Methods)

ALL Per Site NBINS ≥ 10 Suggested (Methods)

ALL Per Site SCORE ≥ 1000 Suggested (Methods)

ALL Per Genotype Absolute Copy Number  1.25 <  or  > 2.75  Suggested (Methods)

DEL Per Site MSQ 20 RR

DUP Per Site MSQ 100 RR

rMEI Per Site MSQ 20 RR

INV Per Site MSQ 90 RR

BND Per Site MSQ 90 RR

BND Per Site ≥ 25% PE/SR support N/A Chiang et al. 2017

INV Per Site QUAL >100 Chiang et al. 2017

INV Per Site ≥ 10% PE or SR support N/A Chiang et al. 2017

ALL Per Site % Missing < 10%

ALL Per Site low complexity (lc) N/A RR/Gardner et al. 2017

ALL Per Site >25% missing (s25) N/A RR/Gardner et al. 2017

ALL Per Site
LP/ RP > 2.0 standard deviations 

(rSD)
N/A RR/Gardner et al. 2017

ALL Per Site
more discordant pairs are also split 

than expected (hDP) 
N/A RR/Gardner et al. 2017

ALL Per Site ASSESS =5 RR

ALL Per Genotype call quality (Q) 0.9

ALL Per Genotype
Fraction reads with flanking indel 

(DFLANKINDEL/DP)
 ≤ 0.15

ALL Per Genotype
Fraction Reads With Stutter  

(DSTUTTER/DP)
≤ 0.15

ALL Per Genotype log10 allele bias p-value (AB)  >-2

ALL Per Genotype  log10 strand bias p-value (FS) >-2

RR/Willems et al. 2017HipSTR

MELT

SpeedSeq

Genome STRiP 

LCNVDiscovery

Genome STRiP 

CNVDiscovery

 

Table S3.  Filtering parameters overview. Table describing the filtering parameters used when 

generating the i2QTL SV/STR call set, stratified by variant caller and variant class when 

necessary.  The “Applied” column indicates whether the filter was applied to set specific low-

quality genotypes to missing on a per sample basis within each variant class (“Per Genotype” 

filters) or whether the filter was used to filter an entire site for removal from downstream 

analysis (“Per Site” filtering). The column “Filtering Parameter” indicates the specific filter, 

 

Table S4 Non redundant structural variants . Table describing the non-redundant variants 

including position, variant class, variant caller, and evidence supporting the site. 
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Supplemental Figures 

 

 

Figure S1. i2QTL Subject Information. (A) Age distribution of WGS donors stratified by sex. (B) 

Size of families in iPSCORE. (C) Number of individuals from iPSCORE and HipSci assigned to each 

of the 1000 Genomes Project superpopulations using genotype data (Auton et al., 2015).  
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Figure S2:  SpeedSeq Quality Control (A and B) Replication rate in (A) iPSCORE monozygotic 

twins and (B) HipSci fibroblast iPSC pairs as a function of the number of total sites that pass 

filtering thresholds for median sample quality score (MSQ). (C) Replication rate distribution in 

monozygotic twin pairs (upper) and fibroblast iPSC pairs (lower). (D) Comparison of non-

reference allele frequency of calls in iPSCORE unrelated samples and HipSci fibroblast samples, 

colored by whether their genotype distributions were flagged for deviation from Hardy 

Weinberg Equilibrium (blue) or potential systematic differences between genotypes in HipSci 

and genotypes in iPSCORE (“Batch”, purple), or both (red). (E) Number of events per individual 

after filtering for each variant type. (F) Number of events with a missing genotype after 

filtering.  
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Figure S3: Genome STRiP Quality Control. (A, B) Replication rate in (A) iPSCORE monozygotic 

twins and (B) HipSci fibroblast iPSC pairs as a function of the number of total sites that pass 

filtering thresholds for GSCNQUAL. (C) Replication rate distribution in monozygotic twin pairs 

(upper) and fibroblast iPSC pairs (lower). (D) Comparison of percent of samples different from 

the copy-number mode in iPSCORE unrelated samples and HipSci fibroblast samples, colored by 

whether their genotype distributions were flagged for deviation from Hardy Weinberg 

Equilibrium (blue) or potential systematic differences between genotypes in HipSci and 

genotypes in iPSCORE (“Batch”, purple), or both (red). (E) Number of duplication or deletion 

events per individual after filtering. (F) Number of events with a genotype tagged as LQ (low 

quality) after filtering.  Note that we filtered to variants that were less than 10% LQ rate among 

iPSCORE samples and HipSci fibroblast samples. Therefore, we observed more LQ sites among 

HipSci iPSCs.   
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Figure S4:  Genome STRiP Stitching. (A) 2D histogram showing the distance and correlation 

between pairs of adjacent CNVs, colored by the number of pairs of sites. This information was 

used to decide the maximum distance threshold used to stitch neighboring sites. (B) Number of 

pairs that passed stitching requirements versus the percentage which passed stitching 

requirements for different thresholds of maximum distance between variants (see Methods). 
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We chose a threshold of 30kb (green) as this maximized the percent of pairs that passed 

stitching requirements, and few pairs of sites greater than 30kb apart were correlated. (C) 

Mean correlation of the stitched breakpoint genotypes with the genotypes of the constituent 

sites. In cases where the stitched breakpoint correlated at less than 0.9, it was discarded and 

the site was “unstitched”. Stitch breakpoints were also unstitched if more than 10% of samples 

had low quality (LQ) genotypes among the 477 iPSCORE and HipSci (fibroblast) samples (D) 

Number of sites combined into stitched breakpoints.   
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Figure S5. Genome STRiP LCNV Quality Control and Filtering. (A) Number of variants identified 

by the Genome STRiP LCNV pipeline at each filtering step. (B) Because GS LCNV variants are 

detected separately for each sample, all breakpoints are not genotyped in each sample, and 

large common variants may have different coordinates in distinct samples. Therefore, we 

collapsed all variants with reciprocal overlap >80% into single sites. Here we show the number 

of clusters of overlapping variants and the number of sites per cluster. (C) Replication 

percentage in each iPSCORE twin pair (D) Length distribution and (E) number of duplications 

and deletions per sample for variants after filtering and collapsing.   
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Figure S6:  MELT Quality Control. (A and B) Replication rate in (A) iPSCORE monozygotic twins 

and (B) HipSci fibroblast iPSC pairs as a function of the number of total sites that pass filtering 

thresholds various parameters that are suggested by MELT, colors show how many of these 

filters were applied. (C) Replication rate distribution in monozygotic twin pairs (upper) and 

fibroblast iPSC pairs (lower). (D) Comparison of non-reference allele frequency of calls in 

iPSCORE unrelated samples and HipSci fibroblast samples, colored by whether their genotype 

distributions were flagged for deviation from Hardy Weinberg Equilibrium (blue) or potential 

systematic differences between genotypes in HipSci and genotypes in iPSCORE (“Batch”, 

purple), or both (red). (E) Number of events per individual after filtering for each variant type. 

(F) Number of events with a missing genotype after filtering.  
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Figure S7. Collapsing Redundancies Within and Between Variant Callers. (A) Strategy for 

collapsing redundancies between callers by identifying clusters of overlapping variants with 

high correlation between variants. While the approach for SpeedSeq and Genome STRiP was 

slightly different (Methods), overall, the goal was to select a single high-quality site to represent 

a cluster of correlated variants. (B) Illustration of the strategy for identifying redundant sites 

called by multiple algorithms.  Here, similar to collapsing variants within caller, overlapping 

variants from different algorithms that had correlated genotyping information were 

represented as a graph. Edges were drawn between variants that did not overlap if genotype 

correlation was above a specific threshold (Methods), and the highest degree, highest quality 

variant was chosen from either Genome STRiP or SpeedSeq to represent the cluster.  
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Figure S8. Replication rate of variants that are identified by multiple callers. (A, B) Average 

replication rate of variants that were or were not discovered by multiple callers stratified by (A) 

variant type or (B) variant caller. 
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Figure S9. Length Distribution of Non-Redundant Variants. Length distribution of variants in 

the non-redundant call set as identified in 477 individuals. The length for STRs is calculated as 

the maximum absolute difference in base pairs from the reference allele at a site while the 

length for CNVs (DEL, DUP, mCNV) is the size of a single copy unit. For rMEI, ALU, LINE1, and 

SVA the length represents the estimated insertion size of the variant. For inversions, the length 

is the distance between the two breakpoints. 
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Figure 10. Allele Frequency Distribution of Non-Redundant Variants. Distribution of the non-

mode allele frequency in each variant class for i2QTL unrelated samples. 
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Figure S11. Effect of Length and Allele Frequency on Replication Rate Within Callers. (A and B) 

Replication rate versus log10 variant length (A) and non-mode allele frequency (B) for 

deduplicated variants passing filters from each variant caller, stratified by variant class, prior to 

unifying between variant callers.  (C and D) Replication rate versus log10 length for each variant 

caller after regressing out the effect of non-mode allele frequency (C) and versus non-mode 
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allele frequency (D) after regressing out the effect of log10 length. Points represent the centers 

of equally sized bins with error bars showing 95% confidence intervals around the mean. 

Regression lines are shown with shading representing 95% confidence intervals. (E) Replication 

rate of indels that overlap STR reference regions that are genotyped as non-reference in at least 

one individual by HipSTR (orange), or are not polymorphic in HipSTR (red), or do not overlap an 

STR region (green) divided into bins by length.   

Each point represents the center of a bin.  

 

Figure S12. Comparing Allele Frequency Distribution of Known and Novel Variants. 
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Figure S12. Comparing Allele Frequency Distribution of Known and Novel Variants. Non-mode 

allele frequency distributions of known (defined as overlapping GTEx or 1KGP variants, gray) 

and novel variants (defined as not overlapping GTEx or 1KGP variants, green) among unrelated 

i2QTL samples.   
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Figure S13. Comparing Length Distribution of Known and Novel Variants. Distribution of 

variant sizes in known and novel variants among unrelated i2QTL samples after intersection 

with 1000 Genomes Project and GTEx version 6 SV maps.   

 

 

Figure S14. Replication rate of Novel and Known Variants. Average replication rate of novel 

and known variants (A) by caller and (B) by class. Error bars indicate 95% confidence interval 

around the mean.  
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Figure S15. Allele Frequency Comparison of variants co-Discovered in i2QTL and the 1000 

Genomes Project. Non-reference allele frequency of overlapping variants in i2QTL and 

1KGP(Sudmant et al., 2015), stratified by variant class.  
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Figure S16. Allele Frequency Comparison of variants co-Discovered in i2QTL and GTEx. Non-

reference allele frequency of overlapping variants in i2QTL and the GTEx V.6 SV call set(Chiang 

et al., 2017) in their respective cohorts, stratified by variant class. For i2QTL variants, the non-

reference allele frequency is computed among unrelated samples.   
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Figure S17. HipSTR Quality Control Before Merging Genotypes from iPSCORE/HipSci.(A-C) 

Number of non-reference calls per sample for HipSTR genotypes on (A) iPSCORE samples, (B) on 

iPSCORE samples using HipSci genotypes and (C) on HipSci samples. (D) Outliers from A and B 

are largely samples from individuals with African predicted super population (shown light grey) 

or that self-reported as partly African. One iPSCORE outlier sample (A, bottom right) was 

excluded from call rate filtering (80%) of variants. (E) Number of non-reference genotypes 

discovered in iPSCORE samples versus number discovered in iPSCORE samples by genotyping 

HipSci reference alleles. The majority of non-reference sites in iPSCORE were also polymorphic 
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in the HipSci sample set, and the genotypes were similar, however, variants unique to the 

African samples are not well represented (shown in light grey), as none of the HipSci samples 

were of African ancestry.  

 

 

 

Figure S18. HipSTR Replication Rates in Twin Pairs and iPSC Fibroblast Pairs for Different 

Genotyping Subsets.  (A-C) Replication rate per twin pair after quality filtering for HipSTR 
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genotypes (A) on iPSCORE samples, (B) on iPSCORE samples using HipSci genotypes and (C) on 

HipSci samples. Here, we observed higher replication percentages among HipSci samples, due 

to the PCR free protocol of these WGS samples.  
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