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Abstract

Single-cell RNA sequencing (scRNA-seq) has quickly become an empowering technology to

profile the transcriptomes of individual cells on a large scale. Many early analyses of differ-

ential expression have aimed at identifying differences between subpopulations, and thus are

focused on finding subpopulation markers either in a single sample or across multiple samples.

More generally, such methods can compare expression levels in multiple sets of cells, thus lead-

ing to cross-condition analyses. However, given the emergence of replicated multi-condition

scRNA-seq datasets, an area of increasing focus is making sample-level inferences, termed

here as differential state analysis. For example, one could investigate the condition-specific

responses of cell subpopulations measured from patients from each condition; however, it is

not clear which statistical framework best handles this situation. In this work, we surveyed

the methods available to perform cross-condition differential state analyses, including cell-

level mixed models and methods based on aggregated “pseudobulk” data. We developed a

flexible simulation platform that mimics both single and multi-sample scRNA-seq data and

provide robust tools for multi-condition analysis within the muscat R package.
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Introduction

A fundamental task in the analysis of single-cell RNA-sequencing (scRNA-seq) data is the

identification of systematic transcriptional changes using differential expression analysis[1].

Such analyses are a critical step toward a deeper understanding of molecular responses that

occur in development, after a perturbation or in disease states[2,3,4,5]. Most of the current

scRNA-seq differential expression methods are designed to test one set of cells against another

(or more generally, multiple sets together), and can be used to compare cell subpopulations

(e.g., for identifying marker genes) or across conditions (cells from one condition versus an-

other)[6]. In such statistical models, the cells are the experimental units and thus represent

the population that inferences will extrapolate to.

Given the rise of multi-sample multi-group scRNA-seq datasets, where measurements

are made on hundreds to thousands of cells per sample, the goal shifts to making sample-level

inferences (i.e., experimental units are samples), in order to account for sample-to-sample as

well as cell-to-cell variability and make conclusions that extrapolate to the samples rather than

cells. We refer to this generally as differential state (DS) analysis, whereby a given subset of

cells (termed hereafter as subpopulation) is followed across a set of samples (e.g., individuals)

and experimental conditions (e.g., treatments), in order to identify subpopulation-specific

responses, i.e., changes in cell state. DS analysis: i) should be able to detect changes that

only affect a single cell subpopulation, a subset of subpopulations or even a subset of cells

within a single subpopulation; ii) is intended to be an orthogonal analysis to clustering or cell

subpopulation assignment; and, iii) can be considered a separate analysis to the search for

differential abundance of subpopulations across conditions.

We intentionally use the term subpopulation to be more generic than cell type [7,8],

which itself is meant to represent a discrete and stable molecular signature; however, the pre-

cise definition of cell type is widely debated[2,3]. In our framework, a subpopulation is simply

a set of cells deemed to be similar enough to be considered as a group and where it is of inter-

est to interrogate such sets of similarly-defined cells across multiple samples and conditions.

Therefore, cells from a scRNA-seq experiment are first organized into subpopulations, e.g.,

by integrating the multiple samples together[9] and clustering or applying a subpopulation-

level assignment algorithm[10] or cell-level prediction[11]; clustering and manual annotation

is also an option. Regardless of the mode or the uncertainty in subpopulation assignment,

the discovery framework we describe provides a basis for biological interpretation and a path

to discovering interesting expression patterns within subpopulations across samples. Even

different subpopulation assignments of the same data could be readily interpretable. For ex-

ample, T cells could be defined as a single (albeit diverse) cell subpopulation or could be

divided into discrete subpopulations, if sufficient information to categorize the cells at this

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/713412doi: bioRxiv preprint 

https://doi.org/10.1101/713412
http://creativecommons.org/licenses/by/4.0/


level of resolution is available. In either case, the framework presented here would focus on the

subpopulation of interest and look for expression changes across conditions. This naturally

introduces an interplay with the definition of cell types and states themselves (e.g., discrete

states could be considered as types) and thus with the methods used to computationally or

manually classify cells. Overall, our goal here is to explore the space of scRNA-seq datasets

with several subpopulations and samples, in order to understand the fidelity of methods to

discover cell state changes.

It is worth noting that extensive workflows for DS analysis of high-dimensional cytome-

try data have been established[12,13,14,15], along with a rich set of visualization tools and differ-

ential testing methods[16,17,13,18], and applied to, for example, unravel subpopulation-specific

responses to immunotherapy[19]. Notably, aggregation-based methods (e.g., representing each

sample as the median signal from all cells of a given subpopulation) compare favorably in

(cytometry) DS analysis to methods that run on full cell-level data[17]; however, in the cy-

tometry case, only a limited range of cell-level and aggregation approaches were tested, only

simplistic regimes of differential expression were investigated (e.g., shifts in means), and the

number of features measured with scRNA-seq is considerably higher.

In scRNA-seq data, aggregating cell-level counts into sample-level “pseudobulk” counts

for differential expression is not new; pseudobulk analysis has been applied to discover cell-type

specific responses of lupus patients to IFN-β stimulation[20] and in mitigating plate effects by

summing read counts in each plate[21]. In these cases, pseudobulk counts were used as input to

bulk RNA-seq differential engines, such as edgeR[22], DESeq2 [23] or limma-voom [24,25]. Also,

non-aggregation methods have been proposed, e.g., mixed models were previously used on

cell-level scRNA-seq expression data[26] to separate sample and batch effects, and variations

on such a mixed model could be readily applied for the sample-level inferences that are con-

sidered here. Various recent related developments have taken place: a compositional model

was proposed to integrate cell type information into differential analysis, although replication

was not considered[27]; a multivariate mixed effects model was proposed to extend univariate

testing regimes[28]; and, a tool called PopAlign was introduced to estimate low-dimensional

mixtures and look for state shifts from the parameters of the mixture distributions[29]. Ul-

timately, there is scope for alternative methods to the be applied to discovery of interesting

single-cell state changes.

In existing comparison studies of scRNA-seq differential detection methods[30,6,31],

analyses were limited to comparing groups of cells and had not explicitly considered sample-

level inferences or aggregation approaches. The rapid uptake of new single-cell technologies

has driven the collection of scRNA-seq datasets across multiple samples. Thus, it remains

to be tested whether existing methods designed for comparing expression in scRNA-seq data

are adequate for such cross-sample comparisons, and in particular, how sensitive aggregation
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methods are to detect subpopulation-level responses.

In this study, we developed a simulation framework, which is anchored to a reference

dataset, that mimics various characteristics of scRNA-seq data and used it to evaluate 15 DS

analysis methods across a wide range of simulation scenarios, such as varying the number of

samples, the number of cells per subpopulation, and the magnitude and type of differential

expression pattern introduced. We considered two conceptually distinct representations of

the data for each subpopulation, cell-level or sample-level, and from these, made sample-level

inferences. On cell-level data, we applied: i) mixed models (MM) with a fixed effect for

the experimental condition and a random effect for sample-level variability; ii) approaches

comparing full distributions (e.g., K-sample Anderson-Darling test[32]); and, as a reference

point, we applied well-known scRNA-seq methods, such as scDD [33] and MAST [34], although

these methods were not specifically intended for the across-sample situation. Alternatively,

we assembled sample-level data by aggregating measurements for each subpopulation (for

each sample) to obtain pseudobulk data in several ways; we then leveraged established bulk

RNA-seq analysis frameworks to make sample-level inferences.

All methods tested are available within the muscat R package and a Snakemake [35]

workflow was built to run simulation replicates. Since discovery of state changes in cell

subpopulations is an open area of research, multiple anchor datasets and simulated datasets

will be made openly available via Bioconductor’s ExperimentHub, to facilitate further bespoke

method development.

Using existing pipelines for integrating, visualizing, clustering and annotating cell sub-

populations from a replicated multi-condition dataset of mouse cortex, we applied pseudobulk

DS analysis to unravel subpopulation-specific responses within brain cortex tissue from mice

treated with lipopolysaccharide.

Results

Simulation framework. To explore the various aspects of DS analysis, we developed a

straightforward but effective simulation framework that is anchored to a labeled multi-sample

multi-subpopulation scRNA-seq reference dataset, and exposes parameters to modulate: the

number of subpopulations and samples simulated, the number of cells per subpopulation

(and sample), and the type and magnitude of a wide range of patterns of differential ex-

pression. Using (non-zero-inflated) negative binomial (NB) as the canonical distribution for

droplet scRNA-seq datasets[6,36], we first estimate subpopulation- and sample-specific means,

dispersion and library size parameters from the reference data set (see schematic in Fig-

ure 1a). Baseline multi-sample simulated scRNA-seq data can then be simulated also from

a NB distribution, by sampling from the subpopulation/sample-specific empirical distribu-
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tions of the mean, dispersion and library size. To this baseline, genes can be selected as

subpopulation-specific (i.e., mean different in one subpopulation versus the others), or as a

state gene (differential expression introduced in the samples from one condition), or neither

(equal relative expression across all samples and subpopulations); see Figure 1a. To introduce

changes in expression that represent a change in cell state, we follow the differential distribu-

tion approach of Korthauer et al.[33], adding changes in the mean expression (DE), changes

in the proportions of low and high expression-state components (DP), differential modality

(DM) or changes in both proportions and modality (DB); see Figure 1b. Here, the changes

are added to samples in a condition-specific manner, thus mimicking a subpopulation-specific

state change amongst replicates of one condition.

As a reference dataset, we used scRNA-seq data of Peripheral Blood Mononuclear

Cells (PBMCs) from 8 lupus patients measured before and after 6h-treatment with IFN-β

(16 samples in total)[20]; cells were already annotated into various immune subpopulations.

Importantly, our simulation framework is able to reproduce important characteristics of in-

dividual scRNA-seq datasets (e.g., mean-dropout and mean-variance relationships) from a

countsimQC [37] analysis (see Supplementary File 1) as well as sample-to-sample variability,

as illustrated by pseudobulk-level dispersion-mean trends (Supplementary Figure 1a). By

varying the proportion of subpopulation-specific and DS genes, we are able to generate multi-

ple subpopulations that are distinct but proximal, and clearly separated from one another in

lower-dimensional space (Figure 1c); in particular, parameters control the distinctness of each

subpopulation and of the group-wise state changes. Subpopulation-specific log-fold-changes

(logFCs) further allow modulating differential expression to be of equal magnitude across all

subpopulations, or such that a given subpopulation exhibits a weakened, amplified, or null

(logFC = 0) differential signal (Figure 1c). Taken together, we constructed a simulation that

replicates aspects of individual scRNA-seq datasets, mimics sample-to-sample variability and

offers a high level of flexibility to introduce subpopulation-specific identities (e.g., via marker

genes) as well as condition-specific state changes.
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Figure 1: Schematic overview of muscat’s simulation framework. a. Given a count matrix of
features by cells and, for each cell, pre-determined subpopulation identifiers as well as sample labels
(0), dispersion and sample-wise means are estimated from a negative binomial distribution for each
gene (for each subpopulation) (1.1); and library sizes are recorded (1.2). From this set of parameters
(dispersions, means, library sizes), gene expression is sampled from a negative binomial distribution.
Here, genes are selected to be “type” (subpopulation-specifically expressed; e.g., via marker genes),
“state” (change in expression in a condition-specific manner) or equally expressed (relatively) across all
samples (2). The result is a matrix of synthetic gene expression data (3); b. Differential distributions
are simulated from a NB distribution or mixtures thereof, according to the definitions of random
variables X, Y and Z. c. t-SNE plots for a set of simulation scenarios with varying percentage
of “type” genes (top), DS genes (middle), and difference in the magnitude (logFC) of DS between
subpopulations (bottom). d. Schematic overview of cell- and sample-level approaches for DS analysis.
Top panels show a schematic of the data distributions or aggregates across samples (each violin is a
group or sample; each dot is a sample) and conditions (blue or orange). The bottom panels highlights
the data organization in sub-matrix slices of the original count table.
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Aggregation versus non-aggregation methods. The starting point for a differential state

analysis is a (sparse) matrix of gene expression, either as counts (with library or size factors)

or normalized data (log-transformed expression values, residuals[38,39]), where each row is a

gene and each column a cell. Each cell additionally has a subpopulation (cluster) label as well

as a sample label; metadata should be linked to samples, such that they can be organized

into comparable groups with sample-level replicates (e.g., via a design matrix). The data pro-

cessing aspect, depending on whether to aggregate data to the subpopulation-sample level, is

described in the schematic in Figure 1d. The methods presented here are modular and thus

the subpopulation label could originate from an earlier step in the analysis, such as cluster-

ing[40,41,42] after integration[43,9] or after inference of cell-type labels at the subpopulation-[10]

or cell-level[11]. The specific details and suitability of these various preprocessing steps is an

active area of current research and a full evaluation of them is beyond the scope of the current

work; a comprehensive review was recently made available[44].

For aggregation-based methods, we considered various combinations of input data (log-

transformed expression values, residuals, counts), summary statistics (mean, sum), and meth-

ods for differential testing (e.g., limma-voom, limma-trend, edgeR) that are sensible from

a methodological perspective. For example, limma-voom and edgeR operate naturally on

pseudobulk counts, while we have also used limma-trend on the mean of log-transformed

expression values. MAST [34] was run on log-transformed library-size-normalized counts (log-

counts); Anderson-Darling (AD) tests[32] and scDD [33] on both logcounts and standardized

residuals (vstresiduals)[38]. For the AD tests, we considered two distinct approaches to test for

equal distributions, with alternative hypotheses having samples different either sample-wise

or group-wise (see Methods).

Performance of differential state detection. First, we generated null simulations where

no genes are truly differential (across conditions), to evaluate the ability of methods to control

error rates (3 replicates in each of 2 conditions, K = 2 subpopulations). We observed ap-

proximately uniform p-value distributions across many methods (Supplementary Figure 2a),

with a few exceptions. For MM-vst methods, p-value frequencies increased linearly with their

value, and scDD showed a small bias at high p-values. The Anderson-Darling tests, regardless

of whether they were run comparing groups or samples, deviated the furthest from uniform

and were the most unstable across replicates.

To compare the ability of methods to detect DS genes, we simulated S1 = S2 = 3

samples across 2 conditions. To retain the empirical distribution of library sizes, we simulated

the same number of genes, G, as in the reference dataset, and selected a random subset of

4,000 genes for further analysis to reduce runtimes. We simulated K = 3 subpopulations

and introduced 10% of genes with DS, with equal magnitude of differential expression across
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edgeR.sum(counts)
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Figure 2: DS method performance across p-value adjustment types, differential distri-
bution categories, and subpopulation-sample cell counts. All panels show observed overall
true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%;
dashed lines indicate desired FDRs (i.e., methods that control FDR at their desired level should be left
of the corresponding dashed lines). For each panel, performances were averaged across 5 simulation
replicates, each containing 10% of DS genes (of the type specified in the panel label; see Figure 1b
for further details). a. Comparison of locally and globally adjusted p-values, stratified by DS type.
Performances were calculated from subpopulation-level (locally) adjusted p-values (top row) and cross-
subpopulation (globally) adjusted p-values (bottom row), respectively. b. Performance of detecting
DS changes according to the number of cells per subpopulation-sample.
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subpopulations (E[logFC] = 2) and randomly assigned to genes across the range of expression

strength. To ensure that method performances are comparable and do not suffer from low cell

numbers, we simulated an average of 200 cells per subpopulation-sample instance, amounting

to a total of ∼ 200× (S1 +S2)×K ≈ 3,600 cells per simulation. Each simulation and method

was repeated 5 times per scenario, and performances were averaged across replicates.

In the context of DS analysis, each of the G genes is tested independently in each of

K subpopulations, resulting in a total of ∼ G × K differential tests (occasionally, a small

number of genes are filtered out due to low expression). Multiple testing correction could

thus, in principle, be performed globally, i.e., across all tests (n = G × K), or locally, i.e.,

on each of the subpopulation-level tests (n = G). We compared overall False Discovery Rate

(FDR) and True Positive Rate (TPR) estimates computed from both locally and globally

adjusted p-values. Global p-value adjustment led to a systematic reduction of both FDRs

and TPRs (Figure 2a; stratified also by the type of DS) and is therefore very conservative.

Moreover, detection performance is related to expression level, with differences in lowly

expressed genes especially difficult to detect (Supplementary Figure 3). On the basis of these

observations, for the remainder of this study, all method performances were evaluated using

locally adjusted p-values, after exclusion of genes with a simulated expression mean below

0.1.

In general, all methods performed best for genes of the DE category, followed by

DM, DP, and DB (Figure 2a). This level of difficulty by DS type is to be expected, given

that genes span the range of expression levels and imposing mixtures of expression changes

(DM, DP) dampens the overall magnitude of change compared to DE. In particular, DB,

where the means are not different in the two conditions, is particularly difficult to detect,

especially at low expression; therefore, several methods, including most of those that analyze

full distributions (Anderson-Darling, scDD), underperform in this situation. For example, the

Anderson-Darling tests on vstresiduals show good sensitivity, but also result in unacceptably

high FDRs. For DE, DM and DP, there is a set of methods that perform generally well,

including most of the pseudobulk approaches and cell-level MM models.

Comparison of simulated and estimated logFC highlighted that MM-based methods

and limma-trend applied to mean-logcounts systematically underestimate logFCs, with esti-

mates falling close to zero for a large fraction of gene-subpopulation combinations (Supple-

mentary Figure 4a). Although the differential detection performance does not seem to be

compromised, applying the logarithm transformation (with an offset to avoid zero) to the

rather low counts of cell-level data attenuates the scale and thus the magnitude of the esti-

mated logFCs. For the remainder of methods, simulated and estimated logFC showed high

correspondence across all gene categories.

To investigate the effect of subpopulation size on DS detection, we ran methods using
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Figure 3: Between-method concordance. Upset plot obtained from intersecting the top-
n ranked gene-subpopulation combinations (lowest p-value) across methods and simulation repli-
cates. Here, n = min(n1,n2), where n1 = number of genes simulated to be differential, and n2 =
number of genes called differential at FDR < 0.05. Shown are the 40 most frequent interactions; col-
oring corresponds to (true) simulated gene categories. Bottom right annotation indicates method
types (PB = pseudobulk (aggregation-based) methods, MM = mixed models, AD = Anderson-Darling
tests).

subsets of 50 to 400 cells per subpopulation-sample (Figure 2b). For aggregation-based meth-

ods, ∼ 100 cells were sufficient to reach decent performance; in particular, there is a sizable

gain in performance in going from 50 to 100 cells (per subpopulation per sample), but only a

moderate gain in deeper sampling of subpopulations (e.g., 200 or 400 cells per subpopulation

per sample). Unbalanced subpopulation sizes had no effect on method performance (Supple-

mentary Figure 5) and increasing the number of replicates per group reveals the expected,

although modest, increase in detection performance (Supplementary Figure 6).

To investigate overall method concordance, we intersected the top ranked DS detections

(FDR < 0.05) returned by each method across 5 simulation replicates per DS category (Figure

3). We observed overall high concordance between methods, with the majority of common hits

being truly differential. In contrast, most isolated intersections, i.e., hits unique to a certain

method, were genes that had been simulated to be EE and thus false discoveries. Methods

with vstresiduals as input yielded a noticeably high proportion of false discoveries.

Using a different anchor dataset as input to our simulation framework yielded highly

consistent results (Supplementary Figures 1b, 2b, 4b, 5b, 7, and 8 and Supplementary File 2).

Method runtimes varied across several orders of magnitude (Supplementary Figure 9). Mixed

models were by far the slowest, followed by AD tests, MAST , and then scDD . Aggregation-

based DS methods were the fastest. MAST , scDD , and mixed models provide arguments
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for parallelization, and all methods could be implemented to parallelize computations across

subpopulations. For comparability, all methods were run here on a single core.

Differential state analysis of mouse cortex exposed to LPS treatment. One of

the motivating examples for the DS methodological work was a scRNA-seq dataset collected

to understand how peripheral lipopolysaccharide (LPS) induces its effects on brain cortex.

LPS given peripherally is capable of inducing a neuroinflammatory response. Even if the

mechanisms at the base of this response are still not clear, it is known that LPS can pene-

trate the blood-brain barrier (BBB) or alternatively, can act outside the BBB by stimulating

afferent nerves, acting at circumventricular organs, and altering BBB permeabilities and func-

tions[45,46,47,48].

We sought to investigate the effects of peripheral LPS administration on all major cell

types in mouse frontal cortex using single-nuclei RNA-seq (snRNA-seq). The goal was to

identify genes and pathways affected by LPS in neuronal and non-neuronal cells.

We applied our DS analysis framework to snRNA-seq data of 4 control (vehicle) and

4 LPS-treated mice using pseudobulk (sum of counts) and edgeR. We obtained 12,440 ve-

hicle and 13,117 treated cells that passed filtering. Using graph-based clustering (Louvain

algorithm[49]), we identified 20 cell clusters and annotated them into 8 subpopulations (using

both canonical and computationally-identified marker genes): astrocytes, endothelial cells,

microglia, oligodendrocyte progenitor cells (OPC), choroid plexus ependymal (CPE) cells,

oligodendrocytes, excitatory neurons, and inhibitory neurons (see Methods and Supplemen-

tary File 3). Low dimensional projections of cells and pseudobulks (by subtype and condition)

are shown in Figure 4b and c, respectively; sample sizes and relative subpopulation abundances

are shown in Supplementary Figure 10.

We identified 1,334 genes with differential states (FDR < 0.05, |logFC| > 1) in at least

one subpopulation, 967 of which were detected in only a single subpopulation (Supplemen-

tary Figure 11). Since relying on thresholds alone is prone to bias, we next clustered the

(per-subpopulation) fold-changes across the union of all differentially expressed genes (Figure

4d). We observed a distinct set of genes (consensus clustering ID 3) that were up-regulated

across all subpopulations, and enriched for genes associated with response to (external) biotic

stimulus, defense and immune response (Supplementary File 4). Endothelial cells appeared to

be most strongly affected, followed by glial cells (astrocytes, microglia and oligodendrocytes).

While the responses for consensus cluster 3 were largely consistent across all subpopulations,

some genes’ responses departed from the trend (e.g., are specific to a single subpopulation or

subset of subpopulations (Supplementary Figure 12).

We next sought to estimate how homogeneous the effects observed at the pseudobulk-

level are across cells. To this end, we calculated effect coefficients summarizing the extent to
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which each cell reflects the population-level fold-changes (Figure 4d, bottom). For endothelial

and glial cells, the effect coefficient distributions were well separated between vehicle and LPS

samples, indicating that the majority of cells are affected. In contrast, the large overlap of

the distributions in neurons suggests that only a minority of cells react.

Taken together, these analyses clearly demonstrate the ability of our DS analysis frame-

work to identify and characterize subpopulation-specific as well as global state transitions

across experimental conditions.

Figure 4: DS analysis of cortex tissue from vehicle- and LPS-treated mice. a. Shared color
and shape legend of subpopulation and group IDs. b. UMAP visualization colored by subpopulation
ID (left) and group ID (right). c. Pseudobulk-level Multidimensional Scaling (MDS) plot. Each point
represents one subpopulation-sample instance; points are colored by subpopulation ID and shaped by
group ID. d. Heatmap of pseudobulk-level log-expression values normalized to the mean of vehicle
samples; rows correspond to genes, columns to subpopulation-sample combinations. Included is the
union of DS detections (FDR < 0.05, |logFC| > 1) across all subpopulations. Data is split horizontally
by subpopulation ID (of cells) and vertically by consensus clustering ID (of genes); top and bottom
1% logFC quantiles were truncated for visualization. Bottom-row violin plots represent cell-level effect
coefficients computed across all differential genes, and scaled to a maximum absolute value of 1 (each
violin is a sample; coloring corresponds to group ID); effect coefficients summarize the extent to which
each cell reflects the population-level fold-changes (see Methods).

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/713412doi: bioRxiv preprint 

https://doi.org/10.1101/713412
http://creativecommons.org/licenses/by/4.0/


Discussion

We have compared what can be considered as in silico sorting approaches for multi-subpopulation

multi-sample multi-condition scRNA-seq datasets, where the interest is to follow each cell sub-

population along the axis of samples and conditions; we refer to these generally as differential

state analyses and have largely leveraged existing tools for running such analyses. A summary

of the tested DS methods across several criteria (e.g., sensitivity and runtimes) is given in Fig-

ure 5; methods were scored subjectively following visual inspection of the simulation results.

Furthermore, we have applied DS analysis to a new dataset to uncover subpopulation-specific

changes in brain tissue from mice exposed to peripheral LPS treatment.

Aggregating data from a subpopulation to a single observation (per sample) is a natural

approach to the DS problem[20,21], but it still remained to be demonstrated how effective it

is. Based on our simulation results, the tested aggregation-based DS methods were extremely

fast and showed overall a stable high performance, although depending on the scale of the

data analyzed, logFCs were attenuated for some combinations. While mixed model methods

performed similarly well, their computational cost may not be worth the flexibility they

provide (Figure 5; Supplementary Figure 9). Methods developed specifically for scRNA-

seq differential analysis were outperformed by aggregation and mixed models, but it should

be mentioned that these methods focus on comparing sets of cells and were not specifically

designed for the multi-group multi-sample problem. Furthermore, methods that compared full

distributions did not perform well overall (Figure 5). This latter class of methods was used

here as a reference point, but could also be improved to be more targeted to the DS inference

problem. For example, Anderson-Darling tests were run in two ways, group-wise or sample-

wise, where under the null hypothesis, all distributions are equal. In the sample-wise case,

departures from the null could happen between replicates of the same experimental condition

and in the group-wise case, it is perhaps not ideal to mix distributions from different samples.

Thus, while our results suggest that aggregation methods are fast and perform amongst

the best, there may still be value in considering full distributions, if bespoke methods were

developed. Furthermore, methods that integrate both changes in the mean and changes in

variability may be worth exploring.

The starting point of a DS analysis is a count table across genes and cells, where each

cell has an appropriate subpopulation and sample label and metadata (e.g., patient, experi-

mental condition information) accompanies the list of samples. This starting point, organiza-

tion of cells into subpopulations (“types”), is itself an active and debated area of research[2,3]

and one that already applies a computational analysis on a given dataset, whether that be

clustering or manual or computational assignment; in fact, combining computational and

manual assignment was recently listed as best practice[44]. Another aspect of subpopulation-
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level analyses is that there are clear connections to existing tools and practices in the analysis

of gene expression. For example, one can visualize data at the aggregate level (e.g., MDS

plot for each subpopulation; Figure 4c) and apply standard tools (e.g., geneset analysis, gene

network analysis) for discovery and interpretation on each subpopulation, thus leveraging

existing methods.

speed

complex_design

logFC_est

TPR

error_control

type

edgeR.sum(counts)
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Figure 5: Summary of DS method performance across a set of evaluation criteria. Methods are
ranked from left to right by their average score across criteria, with the numerical encoding good =
2, intermediate = 1, and poor/NA = 0. Evaluation criteria (y-axis) comprise: uniformity of p-value
distributions under the null (error control), DS detection sensitivity (TPR), concordance between
simulated and estimated logFCs (logFC est), ability to accomodate complex experimental designs
(complex design), and runtimes (speed). Top annotation indicates method types (PB = pseudobulk
(aggregation-based) methods, MM = mixed models, AD = Anderson-Darling tests).

By default, we have focused on subpopulation-specific DS analysis; in particular, the

methods fit a separate model (i.e., separate dispersion) for each subpopulation, which explic-

itly allows them to have different levels of variability. However, some of the models could be

reshaped, e.g., to fit a single model over all subpopulations and test parameters within this

model. This strategy may allow better separation of features that respond globally versus

specific to a given subpopulation, which may be important to separate in the downstream

interpretation analyses.

In the process of this study, we created a flexible simulation framework to facilitate

method comparisons as well as data handling tools and pipelines for such experiments, im-

plemented in the muscat R package. By using sample-specific estimates, inter-sample vari-

ability present in the reference dataset will be represented in the simulated data. The current

simulation framework could be extended to induce known batch effects via, for example, in-

corporating sample-specific logFCs in the computation of simulation means. For this, more

research needs to be done to understand how and at what magnitude batch effects manifest.

Furthermore, our simulation framework could be extended: i) to accommodate an arbitrary

number of groups for which the magnitude of differential signal, the percentage of differential
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genes, as well as the set of affected subpopulations could be varied; or, ii) implementing type

genes such that they are not specific to a single subpopulation, perhaps even in a hierarchical

structure to represent markers of both broad and specific cell types. Taken together, we ex-

pect our simulation framework to be useful to investigate various scRNA-seq data analyses,

such as batch correction frameworks, clustering, reference-based cell-type inference methods,

marker gene selection methods as well as further developments in DS analysis.

Although we set out with the goal of discovering subpopulation-specific responses across

experimental conditions, one needs to be careful in how strongly these claims are made.

Absence of evidence is not evidence of absence. In particular, there is a potentially strong

bias in statistical power to detect changes in larger cell populations, with decreased power for

rarer populations. Statistical power to detect changes in cell states also relates to the depth

of sequencing per cell; for example, it has been speculated that cell states are a secondary

regulatory module[3] and it is unclear at this stage whether we are sequencing deeply enough

to access all of the interesting transcriptional programs that relate to cell state. However,

despite the potential loss of single-cell resolution, aggregation approaches should be helpful

in this regard, accessing more genes at the subpopulation level.
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Methods

Preprocessing of simulation reference data. As simulation anchors, we used scRNA-seq

datasets obtained from i) PBMCs by Kang et al.[20] (8 control vs. 8 IFN-β treated samples);

and, ii) mouse brain cortex cells (4 vehicle vs. 4 LPS-treated samples; see below). In order to

introduce known changes in expression, we only used samples from the reference (control and

vehicle, respectively) condition as input to our simulation framework. These were minimally

filtered to remove cells with less than 200 detected genes, and genes detected in less than

100 cells. Available metadata was used to filter for singlet cells as well as cells that have

been assigned to a cell population. Finally, for more accurate parameter estimation, only

subpopulation-sample instances with at least 100 cells were retained, leaving 4 samples per

reference dataset, 4 subpopulations for the Kang et al., and 3 subpopulations for the LPS

dataset.

Simulation framework. The simulation framework (Figure 1a) comprises: i) estimation of

NB parameters from a reference multi-subpopulation, multi-sample dataset; ii) sampling of

gene and cell parameters to use for simulation; and, iii) simulation of gene expression data as

negative binomial (NB) distributions or mixtures thereof.

Let Y = (ygc) ∈ NG×C
0 denote the count matrix of a multi-sample multi-subpopulation

reference dataset with genes G = {g1, . . . , gG} and sets of cells Csk = {csk1 , ..., cskCsk
} for each

sample s and subpopulation k (Csk is the number of cells for sample s, subpopulation k).

For each gene g, we fit a model to estimate sample-specific means βsg , for each sample s, and

dispersion parameters φg using edgeR’s estimateDisp function with default parameters. Thus,

we model the reference count data as NB distributed:

Ygc ∼ NB(µgc, φg)

for gene g and cell c, where the mean µgc = exp(β
s(c)
g )·λc. Here, β

s(c)
g is the relative abundance

of gene g in sample s(c), λc is the library size (total number of counts), and φg is the dispersion.

For each subpopulation k ∈ {1,...,K}, we sample a set of genes G∗k ⊂ G used for

simulation, such that most genes are common to all subpopulations (G∗1 ∩ G∗2 ∩ ... ∩ G∗K ≈
(1 − p) · G), while a small set (p · 100 percent) of type-specific genes are sampled separately

for each subpopulation (Gk′ ∩ Gk = Ø ∀ k 6= k′), giving rise to distinct subpopulations.

Secondly, for each sample s and subpopulation k, we draw a set of cells C∗sk ⊂ Csk (and their

corresponding λc, β
s(c)
g and φg) to simulate (negative binomial random variables) from.

Lastly, differential expression of a variety of types is added for a subset of genes. For

each subpopulation, we randomly assign each gene to a given differential distribution category
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according to a probability vector (pEE , pEP , pDE , pDP , pDM , pDB) (see Figure 1b). For each

gene and subpopulation, we draw a vector of fold changes from a Gamma distribution with

shape 4 and rate 4/µlogFC, where µlogFC is the desired average logFC across all genes and

subpopulations. The direction of differential expression is randomized for each gene, with

equal probability of up- and down-regulation. We split the cells in a given subpopulation-

sample combination into two sets (representing treatment groups), TA and TB, which are in

turn split again into two sets each (representing subpopulations within the given treatment

group), TA1/TA2 and TB1/TB2 .

For EE genes, counts for TA and TB are drawn using identical means. For EP genes,

we multiply the effective means for identical fractions of cells per group by the sampled FCs,

i.e., cells are split such that dim TA1 = dim TB1 and dim TA2 = dim TB2 . For DE genes, the

means of one group, A or B, are multiplied with the sampled FCs. DP genes are simulated

analogously to EP genes with dim TA1 = a · dim TA and dim TB1 = b · dim TB, where a+ b = 1

and a 6= b (default a = 0.3, b = 0.7). For DM genes, 50% of cells from one group are simulated

at µ · logFC. For DB genes, all cells from one group are simulated at µ · logFC/2, and the

second group is split into equal proportions of cells simulated at µ and µ · logFC, respectively.

Aggregation-based methods. We summarize the input measurement values for a given

gene over all cells in each subpopulation and by sample. The resulting pseudobulk data

matrix has dimensions G × S, where S denotes the number of samples, with one matrix

obtained per subpopulation. Depending on the specific method, which includes both a type

of data to operate on (e.g., counts, logcounts) and summary function (e.g., mean, sum), the

varying number of cells between samples and subpopulations is accounted for prior to or

following aggregation. For logcounts methods, we apply a library size normalization to the

input raw counts. vstresiduals are computed using R package sctransform’s vst function[38].

For scalecpm, we calculate the total library size of each subpopulation k and sample s as

Λsk =

G∑
g=1

Csk∑
c=1

ygc

where G represents the number of genes, Csk is the total number of cells in sample s that

have been assigned to subpopulation k, and ygc denotes the counts observed for gene g in cell

c. We then multiply the CPM of a given sample and subpopulation with the respective total

library size in millions to scale the CPM values back to the count scale:

CPM∗sk = CPMsk · Λsk · 1e−6
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Mixed models. Mixed model methods were implemented using three main approaches:

i) fitting linear mixed models (LMMs) on log-normalized data with observational weights,

ii) fitting LMMs on variance-stabilized data, iii) fitting generalized linear mixed models

(GLMMs) directly on counts. Subpopulations with less than 10 cells in any sample and

genes detected in fewer than 20 cells were excluded from differential testing. In each case,

a ∼ 1 + group id + (1|sample id) model was fit for each gene, optimizing the log-likelihood

(i.e. REML = FALSE ), and p-values were calculated using Satterthwaite estimates of degrees

of freedom (the Kenward-Roger approach being longer to compute and having a negligible

impact on the final results). Fitting, testing and moderation were applied subpopulation-wise.

For the first approach (mm-dream), we relied on the variancePartition [50] package’s

implementation for repeated measurement bulk RNA-seq, using voom’s[25] precision weights

as described, with two minor modifications: i) we performed empirical Bayes moderation

(using limma’s eBayes function) with the parameter robust = TRUE , which increased the

accuracy of the method in our simulations (data not shown); and, ii) we did not use the

duplicateCorrelation step, as this was computationally intensive and had a negligible impact

on the significance (as also observed previously for batch effects[21]).

For the second approach, we first applied the variance-stabilizing transformation glob-

ally before splitting cells into subpopulations, and then fitted the model using the lme4

package[51] directly on transformed data (and without observational weights). We then ap-

plied eBayes moderation as in the first approach. We tested both the variance-stabilizing

transformation from the DESeq2 package[23], and that from the sctransform package[38], the

latter of which was specifically designed for Unique Molecular Identifier (UMI) based scRNA-

seq; since the latter outperformed the former (data not shown), it was retained for the main

results shown here.

For GLMM-based approaches, we supplemented the model with an offset equal to the

library size factors, and fitted it directly on counts using both Poisson and negative binomial

distributions (with log-link). The Poisson-distributed model was fit using the bglmer function

of the blme package, while the negative binomial model was fit with the glmmTMB framework

(family = nbinom1 ). As eBayes moderation did not improve performance on these results, it

was not applied in the final implementation.

All these methods and variations thereof are available through the mmDS function of

the muscat package.

Other methods. For Anderson-Darling tests, we used the ad .test function from the kSamples

R package[52], which applies a permutation test that uses the Anderson-Darling criterion[32]

to test the hypothesis that a set of independent samples arose from a common, unspecified

distribution. Method AD-sid uses sample labels as grouping variables, thus testing whether
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any sample from any group arose from a different distribution than the remaining samples.

For method AD-gid, we used group labels as grouping variable, thus testing against the null

hypothesis that both groups share a common underlying distribution; with disregard of sam-

ple labels.

scDD [33] was run using default prior parameters and min.nonzero = 20 , thus requiring a gene

to be detected in at least 20 cells per group to be considered for differential testing in a given

subpopulation.

For MAST [34], we fit a subpopulation-level zero-inflated regression model for each gene (func-

tion zlm) and applied a likelihood-ratio test (function lrTest) to test for between-group dif-

ferences in each subpopulation. Both steps were run using default parameters.

Anderson-Darling methods and scDD were run on both logcounts and vstresiduals; MAST

was run on logcounts only.

Animal studies - LPS dataset. Ethical approval for this study was provided by the Federal

Food Safety and Veterinary Office of Switzerland. All animal experiments were conducted

in strict adherence to the Swiss federal ordinance on animal protection and welfare as well

as according to the rules of the Association for Assessment and Accreditation of Laboratory

Animal Care International (AAALAC).

CD1 male mice (Charles River Laboratories, Germany) age 11 weeks were divided into two

groups with 4 animals each: a vehicle and a lipopolysaccharide (LPS) treatment group. The

LPS-treated group was given a single intraperitoneal injection of LPS from Escherichia coli

O111:B4 (Sigma Aldrich, L2630) at a dose of 5mg/kg, dissolved in 0.9% NaCl. Vehicle mice

were injected with a solution of DMSO/Tween80/NaCl (10%/10%/80%). The mice were

sacrificed 6 hours later by anesthetizing the animals with isoflurane followed by decapitation.

Brains were quickly frozen and stored at -80◦C.

Nuclei isolation, mRNA-seq library preparation and sequencing - LPS dataset.

Nuclei were prepared using the NUC201 isolation kit from Sigma Aldrich. Briefly, 8× 50µm

sagittal sections of cortex from each animal were prepared using a microtome and placed in

200µl of cold Nuclei Pure Lysis Buffer (Nuclei Pure Prep Nuclei isolation kit - Sigma Aldrich)

with 1M dithiothreitol (DTT) and 0.2U/µl SUPERase inhibitor (Invitrogen) freshly added

before use. Nuclei were extracted using a glass dounce homogenizer with Teflon pestle using

10-12 up and down strokes in lysis buffer. 360µl of cold 1.8M Sucrose Cushion solution was

added to lysate which was then filtered through a 30µm strainer. 560µl of filtered solution was

carefully overlayed on 200µl of Sucrose solution and nuclei were purified by centrifugation for

45min at 16,000g. The nuclei pellet was re-suspended in 50µl cold Nuclei Pure Storage Buffer

(Nuclei Pure Prep Nuclei isolation kit Sigma Aldrich) with 0.2U/µl SUPERase inhibitor and

centrifuged for 5min at 500g. The supernatant was removed, the pellet washed again with
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Nuclei Pure Storage Buffer with 0.2U/µl SUPERase inhibitor, and centrifuged for 5min at

500g. Finally, the pellet was re-suspended in 50µl cold Nuclei Pure Storage Buffer with

0.2U/µl SUPERase inhibitor. Nuclei were counted using trypan blue staining on Countess II

(Life technology). A total of 12,000 estimated nuclei from each sample was loaded on the 10x

Single Cell B Chip.

cDNA libraries from each sample were prepared using the Chromium Single Cell 3’ Library and

Gel Bead kit v3 (10x Genomics) according to the manufacturers instructions. cDNA libraries

were sequenced using Illumina Hiseq 4000 using the HiSeq 3000/4000 SBS kit (Illumina) and

HiSeq 3000/4000 PE cluster kit to get a sequencing depth of 30K reads/nuclei.

Single nuclei RNA-seq data processing and quality control. Paired end sequencing

reads from the eight samples were preprocessed using 10X Genomics Cell Ranger 3.0 software

for sample demultiplexing, barcode processing and single-nucleus 3’ gene counting (single

nuclei mode; counting performed on unspliced Ensembl transcripts, as described in the 10x

Genomics documentation). Mouse reference genome assembly GRC38m38/mm10 was used

for alignment of sequencing reads. The gene by cell count matrices generated by Cell Ranger

pipeline were used for downstream quality control and analyses.

LPS dataset analysis. Filtering for doublet cells was performed on each sample separately

using the hybrid method of the scds package[53], removing the expected 1% per thousand

cells captured with the highest doublet score. Quality control and filtering were performed

using the scater [54] R package. Upon removal of genes that were undetected across all cells,

we removed cells whose feature counts, number of expressed features, and percentage of mito-

chondrial genes fell beyond 2.5 Median Absolute Deviations (MADs) of the median. Finally,

features with a count > 1 in at least 20 cells were retained for downstream analysis.

Next, we used Seurat [43,9] v3.0 for integration, clustering, and dimension reduction. Integra-

tion and clustering were performed using the 2000 most highly variable genes (HVGs) identi-

fied via Seurat ’s FindVariableFeatures function with default parameters; integration was run

using the first 30 dimensions of the Canonical Correlation Analysis (CCA) cell embeddings.

Clusterings as well as dimension reductions (t-SNE[55] and UMAP[56]) were computed using

the first 20 principal components. For clustering, we considered a range of resolution param-

eters (0.1 − 2); downstream analyses were performed on cluster assignments obtained from

resolution 0.5 (24 subpopulations).

Cluster merging and cell-type annotation were performed manually on the basis of a set

of known marker genes in conjunction with marker genes identified programmatically with

scran’s findMarkers function[57], and additional exploration with iSEE [58]. We identified

8 subpopulations that included all major cell types, namely, astrocytes, endothelial cells,

microglia, oligodendrocyte progenitor cells (OPC), choroid plexus ependymal (CPE) cells,
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oligodendrocytes, excitatory neurons, and inhibitory neurons.

DS analysis was run using edgeR[22] on pseudobulk (sum of counts), requiring at least 10

cells in at least 2 samples per group for a subpopulation to be considered for differential test-

ing. Genes with FDR < 0.05 and |logFC| > 1 were retained from the output. To distinguish

subpopulation-specific and shared signatures, we assembled a matrix of logFCs (calculated for

each cell subpopulation) of the union of all differential genes (FDR < 0.05 and |logFC| > 1),

and performed consensus clustering of the genes using the M3C package[59] (penalty term

method), choosing the number of clusters with the highest stability.

To estimate per-cell effect coefficients, we calculated dot products of each cell’s normalized log-

expression and the group-level logFCs using only the DS genes detected for the corresponding

subpopulation.

Software specifications and code availability. All analyses were run in R v3.6[60],

with Bioconductor v3.9[61]. Performance measures were calculated using iCOBRA[62], and

results were visualized with ggplot2 [63], ComplexHeatmap[64], and UpSetR[65]. All pack-

age versions used throughout this study are captured in Supplementary File 5. Data pre-

processing, simulation and analysis code are accessible at https://github.com/HelenaLC/

muscat-comparison, including a browseable workflowr [66] website for the LPS dataset anal-

ysis (Supplementary File 3). All aggregation and DS analysis methods are provided in the

muscat R package at https://github.com/HelenaLC/muscat, which will be made available

through the open-source Bioconductor project with the next release.

Data availability. The original droplet scRNA-seq data from Kang et al.[20] is deposited

under the Gene Expression Omnibus accession GSE96583, and is available in R through the

muscData Bioconductor ExperimentHub package. The raw LPS dataset is available from

ArrayExpress (accession: E-MTAB-8192) and the Cell Ranger-processed files and metadata

are available from DOI:10.6084/m9.figshare.8976473.v1. Supplementary Files 1-5 are available

from DOI:10.6084/m9.figshare.8986193.v1

Acknowledgments

The authors thank members of the Robinson Lab at the University of Zurich for valuable

feedback on methodology, benchmarking and exposition.

Author contributions

HLC, CS and MDR developed aggregation-based methods; PLG developed MM-based meth-

ods. HLC implemented methods, the simulation framework, and the method comparison; CS

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/713412doi: bioRxiv preprint 

https://doi.org/10.6084/m9.figshare.8986193.v1
https://github.com/HelenaLC/muscat-comparison
https://github.com/HelenaLC/muscat-comparison
https://doi.org/10.6084/m9.figshare.8986193.v1
https://github.com/HelenaLC/muscat
https://doi.org/10.6084/m9.figshare.8976473.v1
https://doi.org/10.6084/m9.figshare.8986193.v1
https://doi.org/10.1101/713412
http://creativecommons.org/licenses/by/4.0/


assisted in several technical and conceptual aspects. DC, LC, CR and DM designed mouse

LPS experiments; LC and CR provided mouse cortex tissue sections for snRNA-seq. PLG

and HLC performed data processing, analysis, and interpretation; MDR and DM assisted in

designing analyses and DM contributed to interpretation. HLC, MDR, and PLG drafted the

manuscript, with contributions from all authors. All authors read and approved the final

manuscript.

Funding information

This work was supported by the Swiss National Science Foundation (grant numbers

310030 175841, CRSII5 177208) and the Chan Zuckerberg Initiative DAF, an advised fund

of Silicon Valley Community Foundation (grant number 2018-182828). MDR acknowledges

support from the University Research Priority Program Evolution in Action at the University

of Zurich.

References

1. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell
transcriptomics. Nature Reviews Genetics 16, 133–145 (2015).

2. Morris, S. A. The evolving concept of cell identity in the single cell era. Development 146 (2019).

3. Xia, B. & Yanai, I. A periodic table of cell types. Development 146 (2019).

4. Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with
single-cell RNA-Seq. eLife 8, e43803 (2019).
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