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24 Abstract

25 Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills 

26 more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb 

27 infection, are complex structures that form in lungs, composed of immune cells surrounding 

28 bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically 

29 contain and immunologically restrain bacteria growth, some granulomas are unable to control 

30 Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, 

31 either resulting in additional granuloma formation (local or non-local) or spread to airways or 

32 lymph nodes. Dissemination is associated with development of active TB. It is challenging to 

33 experimentally address specific mechanisms driving dissemination from TB lung granulomas. 

34 Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb 

35 infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and 

36 bacterial populations within each lung granuloma throughout the course of infection and is 

37 calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. 

38 We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, 

39 predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells 

40 and macrophage dynamics for preventing dissemination. 

41

42 Author Summary 

43 Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb) and kills 3 

44 people per minute worldwide. Granulomas, spherical structures composed of immune cells 

45 surrounding bacteria, are the hallmark of Mtb infection and sometimes fail to contain the bacteria 

46 and disseminate, leading to further granuloma growth within the lung environment. To date, the 
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47 mechanisms that determine granuloma dissemination events have not been characterized. We 

48 present a computational multi-scale model of granuloma formation and dissemination within 

49 primate lungs. Our computational model is calibrated to multiple experimental datasets across 

50 the cellular, granuloma, and whole-lung scales of non-human primates. We match to both 

51 individual granuloma and granuloma-population datasets, predict likelihood of dissemination 

52 events, and predict a critical role for multifunctional CD8+ T cells and macrophage-bacteria 

53 interactions to prevent infection dissemination.

54

55 Introduction

56

57 Tuberculosis (TB) kills more individuals per year than any other infectious disease and treatment 

58 remains a global challenge (1). Only a small fraction (5-10%) of those infected with 

59 Mycobacterium tuberculosis (Mtb) develop active symptomatic disease (2), while the remainder 

60 control but do not eliminate the infection, which is termed latent TB (LTBI). A hallmark of Mtb 

61 infection is the presence of lung granulomas (lesions), collections of immune cells that surround 

62 Mtb in an effort to contain and control an infection. Multiple granulomas can be present in 

63 humans and non-human primates (NHPs). In NHPs, each granuloma is initiated by a single 

64 bacillus (3). Of key importance is that each granuloma within an individual has its own 

65 independent trajectory behavior. For example, the immune response in some granulomas 

66 eliminates all bacteria, resulting in sterilization. In other granulomas, immune cells only contain 

67 Mtb growth, resulting in stable granulomas that may persist for decades (4). If Mtb growth is not 

68 contained, however, granulomas can grow and/or spread, allowing for dissemination of bacteria 

69 across the lungs leading to the formation of new granulomas, spread to the airways resulting in 
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70 transmission of infection through aerosolized bacteria, and possibly death of the host if not 

71 treated. Understanding the collective behavior of granulomas within lungs leading to 

72 dissemination events is critical to the ultimate goal of controlling the global TB epidemic.

73

74 It is difficult to experimentally address specific mechanisms operating within lungs that drive 

75 different granuloma outcomes in primates, although it is known through interventional studies 

76 that certain factors, such as TNF, CD4+ T cells, and CD8+ T cells are important in controlling 

77 early and established Mtb infection (5–8). As a complementary approach, mathematical 

78 modeling can generate hypotheses that can then be tested experimentally. Several mathematical 

79 and computational models for Mtb infection have been developed to explore the contributions of 

80 the innate and adaptive immune responses to granuloma formation and function (9–20). These 

81 models are informed by studies in humans and in animal models of infection, especially NHPs, 

82 rabbits, pigs, and mice (21). In particular, GranSim, our computational model that allows 

83 simulation of the formation and function of a single granuloma using a hybrid agent-based model 

84 framework, has offered strategies for drug treatment and vaccine development (12,14,22–24). 

85 GranSim, which considers thousands of cells and bacteria as “agents” in the simulation and 

86 tracks diffusion of multiple immune mediators (e.g., cytokines), is computationally intensive, 

87 limiting our ability to simultaneously simulate multiple granulomas present in an entire lung 

88 during infection. In contrast, Prats et al. (18) utilized a bubble model to demonstrate the 

89 importance of local inflammation, dissemination, and coalescence of lesions as key factors 

90 leading to active TB, but did not specifically model events at the granuloma scale. However, 

91 following the formation of individual granulomas, the dissemination of those granulomas across 

92 the lungs over time, and, importantly, tracking events at the granuloma scale could provide an 
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93 important window into infection dynamics and could lead to new insights for prevention or 

94 treatment. 

95

96 In order to study the formation of new granulomas after initial establishment of infection, 

97 referred to as dissemination, the evolution of individual granulomas must be captured over time. 

98 Recently, research on Mtb-infected NHPs provided data on disseminating granulomas (25). Of 

99 all animal models used to study Mtb infection, NHPs are most relevant to human TB disease 

100 because they recapitulate the full spectrum of clinical outcomes and pathologies seen in humans 

101 (26). From PET CT imaging, the emergence of new granulomas was tracked and recorded. The 

102 authors genetically matched Mtb barcodes, assigned each inoculation Mtb a unique barcode ID, 

103 and associated each granuloma identified in the temporal PET CT images with the Mtb barcodes 

104 inside that granuloma (Figure 1). By identifying Mtb barcodes that were present in multiple 

105 granulomas, they were able to distinguish disseminating from non-disseminating granulomas. 

106 When identifying multiple bacterial barcodes within a single granuloma, it is surmised a merger 

107 of granulomas took place. While Martin et al. showed these distinctions, the mechanisms that 

108 lead to granuloma clustering or dissemination remain unanswered. We address these open 

109 questions using a hybrid computational-mathematical modeling framework.

110

111

112 Fig 1. Three NHP lung maps illustrating the positioning of pulmonary granulomas and 
113 thoracic lymph nodes (data previously published in Martin et al. (22)). Gray outlines denote 
114 the extent of the lungs, bronchial tubes, and trachea. Small markers superimposed on the outlines 
115 represent the positions of pulmonary granulomas, while larger markers denote lymph nodes. 
116 Colors denote unique barcode tags. Some samples had more than one barcode tag present, and 
117 often these were doublet granulomas (i.e., two granulomas too close in proximity to distinguish 
118 at necropsy) and so are marked with a pie chart showing the relative abundance of each barcode 
119 tag. The black markers represent pulmonary granulomas for which no barcode tags were found. 
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120 Filled black markers are granulomas which grew bacteria upon plating but barcodes could not be 
121 determined for technical reasons, while open markers are granulomas that did not grow bacteria 
122 upon plating (sterile).
123

124

125 Herein, we develop a novel multi-scale hybrid model, MultiGran, to track Mtb infection at the 

126 scale of the entire lung, including capturing multiple granulomas and their individual outcomes 

127 as well as the formation of new granulomas. MultiGran is an agent-based model that follows 

128 cells, cytokines, and bacterial populations across multiple lung granulomas throughout the course 

129 of infection. Each granuloma is now formulated as a single agent, and each agent contains within 

130 it a system of non-linear ordinary differential equations (ODEs) that capture individual 

131 granuloma dynamics. MultiGran follows the steps observed through the course of Mtb infection: 

132 (1) initial granuloma establishment with Mtb that have been virtually barcoded and placed 

133 within the lung environment, (2) granuloma development across time, (3) the possibility of 

134 granuloma dissemination with barcoded bacteria moving to a new location, and (4) granuloma 

135 merging by granulomas that have formed close together and whose individual boundaries are 

136 indistinguishable, or those that grow in size and thus merge into a granuloma cluster (that may 

137 have multiple barcoded bacteria IDs). We use MultiGran to address three outstanding questions 

138 about dissemination: what mechanisms are consistent with granuloma dissemination and 

139 merging patterns seen in vivo? What is the likelihood of a granuloma to disseminate? Can we 

140 predict factors that lead to dissemination?

141

142 Methods

143 Ethics Statement

144 All experimental manipulations, protocols, and care of the animals were approved by the 
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145 University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee 

146 (IACUC). The protocol assurance number for our IACUC is A3187-01. Our specific protocol 

147 approval numbers for this project are 1280653, 12126588, 11110045, 19024273, 15066174, 

148 16017309 and 18124275. The IACUC adheres to national guidelines established in the Animal 

149 Welfare Act (7 U.S.C. Sections 2131 - 2159) and the Guide for the Care and Use of Laboratory 

150 Animals (8th Edition) as mandated by the U.S. Public Health Service Policy.

151

152 All macaques used in this study were housed at the University of Pittsburgh in rooms with 

153 autonomously controlled temperature, humidity, and lighting. Animals were singly housed in 

154 caging at least 2 square meters apart that allowed visual and tactile contact with neighboring 

155 conspecifics. The macaques were fed twice daily with biscuits formulated for NHPs, 

156 supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had 

157 access to water ad libitem. Because our macaques were singly housed due to the infectious 

158 nature of these studies, an enhanced enrichment plan was designed and overseen by our 

159 nonhuman primate enrichment specialist. This plan has three components. First, species-specific 

160 behaviors are encouraged. All animals have access to toys and other manipulata, some of which 

161 will be filled with food treats (e.g., frozen fruit, peanut butter). These are rotated on a regular 

162 basis. Puzzle feeders foraging boards, and cardboard tubes containing small food items also are 

163 placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals 

164 stimulate interaction between animals. Second, routine interaction between humans and 

165 macaques are encouraged. These interactions occur daily and consist mainly of small food 

166 objects offered as enrichment and adhere to established safety protocols. Animal caretakers are 

167 encouraged to interact with the animals (by talking or with facial expressions) while performing 
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168 tasks in the housing area. Routine procedures (e.g., feeding, cage cleaning) are done on a strict 

169 schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques are 

170 provided with a variety of visual and auditory stimulation. Housing areas contain either radios or 

171 TV/video equipment that play cartoons or other formats designed for children for at least 3 hours 

172 each day. The videos and radios are rotated between animal rooms so that the same enrichment is 

173 not played repetitively for the same group of animals.

174

175 All animals are checked at least twice daily to assess appetite, attitude, activity level, hydration 

176 status, etc. Following Mtb infection, the animals are monitored closely for evidence of disease 

177 (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams, including weights, 

178 are performed on a regular basis. Animals are sedated prior to all veterinary procedures (e.g., 

179 blood draws) using ketamine or other approved drugs. Regular PET/CT imaging is conducted on 

180 most of our macaques following infection and has proved very useful for monitoring disease 

181 progression. Our veterinary technicians monitor animals especially closely for any signs of pain 

182 or distress. If any are noted, appropriate supportive care (e.g., dietary supplementation, 

183 rehydration) and clinical treatments (analgesics) are given. Any animal considered to have 

184 advanced disease or intractable pain or distress from any cause is sedated with ketamine and then 

185 humanely euthanatized using sodium pentobarbital.

186

187 Experimental dataset

188 Experimental data specifically for this study were obtained from seven cynomolgus macaques 

189 (Macaca fascicularis), infected with low dose Mtb (Erdman strain, ~10 CFU by bronchoscopic 

190 instillation) as previously described (27–29). Infection was confirmed by PET CT imaging. PET 
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191 CT scans were performed monthly to quantify new granuloma formation or clustering, as well as 

192 disease progression. Necropsy was performed as previously described (28,29). Briefly, an 18F-

193 FDG PET-CT scan was performed on every animal 1-3 days prior to necropsy to measure 

194 disease progression and identify individual granulomas and other pathologies as described (27–

195 30); this scan was used as a map for identifying individual lesions. At necropsy, each granuloma 

196 or other pathologies from lung and mediastinal lymph nodes were obtained for histological 

197 analysis, bacterial burden, and immunological studies, including flow cytometry, as previously 

198 described (27–30). For bacterial burden, each granuloma homogenate was plated onto 7H11 

199 medium, and the CFU were enumerated 21 days later to determine the number of bacilli in each 

200 granuloma (27,29).

201

202 To calibrate the individual granuloma computational model, we excised granulomas from 

203 macaques that were infected for 3 weeks (n=2), 5 weeks (n=2), 7 weeks (n=2) and 9 weeks 

204 (n=1). In addition, an animal without Mtb infection was also included in this study as a control. 

205 To obtain accurate cell number measurements, enzymatic digestion (Tumor dissociation kit, 

206 human; Miltenyi Biotec) was performed on excised granulomas using gentleMACS octo 

207 dissociator. The single cell suspension obtained by enzymatic digestion was processed for 

208 bacterial burden and cell numbers enumeration (27). Single cell suspensions of individual 

209 granulomas were stained with cell surface antibodies to enumerate T cells (CD3) and 

210 macrophages (CD11b). The cells were further stained intracellularly with Calprotectin antibody 

211 to exclude CD11b+Calprotectin+ cells from macrophage population. Flow cytometry and data 

212 acquisition was performed using BD LSRII and analysis was performed using Flowjo Software 

213 v10 (27).
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214

215 In addition, bacterial burden data of 623 granulomas from 38 NHP that were controls in other 

216 studies (previously published (20,27,31–33) and ongoing studies) at University of Pittsburgh 

217 (Flynn Lab) were included for evaluation. The timing of infection depended on the particular 

218 study (Table of CFU values and tables of cell counts located at 

219 http://malthus.micro.med.umich.edu/labmovies/MultiGran/) Table: gran-cfu-cyno-size) and 

220 ranged from 4-17 weeks post Mtb infection.

221

222 Non-human primate lung lattice data

223 To create a virtual lung that replicates an NHP lung, we used a CT scan of an uninfected NHP to 

224 model the 3-dimensional lung space. Binary images mapping the cross section of the lungs were 

225 created for each CT slice by segmentation of CT image values below -320 Houndsfield units. 

226 The individual slices were then stacked into an array, and a polygon mesh outlining the lung 

227 volume was generated using the marching_cubes_classic function in the open source Python 

228 scikit-image package (v 0.14.1, (34)).

229

230 Identifying granuloma distributions in Non-human primate lungs

231 To allow us to test whether the distribution of granulomas in our virtual lungs matched that 

232 observed in NHP lungs, we refer to the distribution of granulomas arising from barcoded bacteria 

233 derived from our previously published data in Martin et al. (25). In that study, four cynomolgus 

234 macaques were infected with 11+/- 5 CFU barcoded Mtb Erdman. Barcoded libraries were 
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235 generated where each bacterium has a different random 7-mer along with one of three 75-mer 

236 identifier tags inserted into the bacterial chromosome. This process created roughly 50,000 

237 bacteria that are able to be uniquely identified by the random 7-mer tag with very small (< 2%) 

238 risk of duplication in an infection of <50 CFU (See Figure 1 in Martin et al. (25)). The animals 

239 were necropsied between 15 and 20 weeks post-infection. Animals were imaged at monthly 

240 intervals (or more frequently) to identify timing of granuloma establishment. Pulmonary 

241 granulomas were excised during necropsy, and their three-dimensional positions were recorded 

242 via matching to PET/CT imaging. Homogenates from excised pulmonary granulomas and 

243 infected thoracic lymph nodes were plated, scraped, and sequenced to identify the specific 

244 barcode(s) present in each granuloma. Matching the x, y, and z coordinates recorded for each 

245 granuloma with its determined barcode content led to a three-dimensional map of the locations of 

246 each barcode throughout the pulmonary space. Bacterial burden for each granuloma was 

247 determined by counting colonies on the plates.

248

249 Three of the four maps are shown in Figure 1 (the fourth was already presented in the original 

250 paper (25)). Lung outlines were calculated from terminal scans of each NHP by the process of 

251 creating a polygon mesh described above. Small markers represent pulmonary granulomas, while 

252 larger markers denote lymph nodes. Each color represents a unique barcode tag. Some samples 

253 had more than one barcode tag present, and often these were doublet granulomas (i.e., two 

254 granulomas too close in proximity to distinguish at necropsy) and so are marked with a pie chart 

255 showing the relative abundance of each barcode tag. The black markers represent pulmonary 

256 granulomas for which no barcode tags were found. Filled black markers are granulomas which 

257 grew bacteria upon plating but for which barcodes could not be determined, while open markers 
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258 are granulomas that did not grow bacteria upon plating (sterile); in this study, only CFU+ 

259 granulomas were available for barcode determination.

260

261 Model Overview

262 MultiGran is a novel multi-scale, hybrid agent-based model that describes the formation, 

263 function, and dissemination of lung granulomas containing Mtb (Figure 2). It uses sampling of 

264 nonhomogeneous Poisson processes; rule-based agent placement; parameter randomization; 

265 solving systems of non-linear ODEs; and post-process agent groupings to perform in silico 

266 experiments that track the progress of infection in an individual host. Each granuloma (agent) is 

267 placed stochastically within the boundary of the lung environment based on a set of rules. Within 

268 each agent, a system of ODEs is linked internally and solved simultaneously to update 

269 concentrations of cells, cytokines, and bacterial burdens within each granuloma at every time 

270 step. Additionally, within every time step, each granuloma is given the opportunity to 

271 disseminate locally and non-locally. Local dissemination involves a new granuloma being 

272 initialized nearby, while non-local dissemination allows initialization anywhere within the lung 

273 environment. At the lung scale, the model tracks the development, location, and quantity of 

274 granulomas, and determines whether each granuloma is either alone or a member of a larger 

275 granuloma cluster. At the granuloma scale, dissemination-event decisions, rules for granuloma 

276 formation, and concentrations of all granuloma components are tracked and defined. As is 

277 occasionally done when a flexible agent size is needed (35), our agents (granulomas) are placed 

278 on a continuous grid. Agents are spherical with dynamically-changing sizes, and granuloma 

279 clustering depends on the geometry and position of each of the agents. 

280
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281

282

283 Figure 2: Process of Mtb infection and rules for granuloma dissemination and placement 
284 within MultiGran.
285 (A) A nonhuman primate is inoculated with Mtb, here tracked using different “barcodes” or IDs. 
286 These Mtb are taken up by resident macrophages, initiating an innate immune response. This 
287 response includes the secretion of various cytokines and chemokines that help prime and/or 
288 recruit other immune cells to the site of the infection, resulting in the formation of lung 
289 granulomas. Occasionally, as a granuloma develops, it may disseminate--either locally or non-
290 locally. In local dissemination, an Mtb-infected macrophage moves to another nearby location 
291 within the same lung lobe. In non-local dissemination, a free extracellular Mtb reaches the 
292 airways or is carried to a draining lymph node and then deposited at a site not necessarily near 
293 the original location; i.e., in a different lung lobe. Granuloma clusters can form when granulomas 
294 develop near each other and may grow into each other, or when one granuloma forms 
295 immediately adjacent to the original granuloma via local dissemination (3). Granuloma clusters 
296 may contain more than one Mtb ID. (B) The rules of granuloma establishment and dissemination 
297 within MultiGran. Case 1 – inoculation. Inoculation deposits bacteria in a specific lung region at 
298 position (xTrial, yTrail, zTrial). The black box designates inoculation region (row 1), wherein 
299 the specific within-lung region destined for inoculation is highlighted in green (row 2). The third 
300 row demonstrates successful inoculation of a single bacterium – the black box was sampled 
301 randomly until the sampled coordinates lie within the green region. Cases 2 and 3 define 
302 granuloma placement following dissemination. Case2 – non-local dissemination. When non-
303 local dissemination occurs, a bacterium escapes a single granuloma (row 1) and can be placed in 
304 any region (shown in black in row 2) that encompasses the entire lung. The green highlighted 
305 region is the area in which the bacterial placement will be accepted. Row 3 shows three trial 
306 placements: two realizations of accepted bacterial placement (black arrows) and one unaccepted 
307 placement (red arrow) at (xTrial, yTrial, zTrial). Case 3– local dissemination. Local 
308 dissemination is the only form of granuloma placement which does not utilize random placement 
309 within a region of lung space. Rather, an infected macrophage from the parent granuloma is 
310 placed in a random direction away from the parent granuloma. Row 2 shows several options for 
311 granuloma infected macrophage placement. Note that the arrows are of different length to 
312 represent our assumption that local dissemination likely follows a normal distribution with 
313 respect to parent granuloma location. Here, the green and black arrows show valid directions for 
314 the new placement for the infected macrophage, while red arrows show invalid directions. A new 
315 granuloma will begin to develop in the chosen (green) valid location (Row 3). Note that in both 
316 (A) and (B) bacteria, granulomas, and infected macrophages are not to scale. Lung image from 
317 Servier Medical Art.
318

319

320 Each in silico experiment using MultiGran is designed to replicate an in vivo experiment. To 

321 replicate the studies by Martin et al. (25), our simulated NHP is infected with roughly 19 
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322 uniquely-identified (barcoded) Mtb that are randomly placed in a localized region of the lungs, 

323 similar to the typical inoculation process in the NHP experiments. Each Mtb is assumed to be 

324 immediately taken up by a resident lung macrophage, forming a single, unique new granuloma 

325 (25). Each granuloma evolves independently. Whenever a granuloma is formed, it is initialized 

326 with parameter values that represent several characteristics that ultimately influence its future 

327 behavior, as well as the emergent outcomes of the system as a whole. 

328

329 Simulation Environment

330 Code is written in MATLAB, with Bash script for submission to run on computer clusters. ODEs 

331 are solved using MATLAB’s ode15s with the NonNegative option for all terms, and we define 

332 the start and end time interval to be the size of the agent time step. To avoid complications with 

333 the random number generator seed being reset with the initialization of each MATLAB instance, 

334 the Bash script executes code that generates a randomized seed list for the simulation to use. The 

335 website http://malthus.micro.med.umich.edu/labmovies/MultiGran/ has pseudocode and 

336 implementation descriptions, as well as simulation videos.

337

338 Granuloma Establishment 

339 A granuloma is initialized when Mtb is deposited into the lung environment. Based on our 

340 previous publications (3,25), we assume that each Mtb creates one granuloma (3,36). The 

341 granulomas established during inoculation (Figure 2B – Case 1) are referred to as “founder” 

342 granulomas and are considered first-generation granulomas; all other granulomas that may 

343 emerge throughout the simulation originate from these founders.

344
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345 Granulomas are agents, so at initialization we assign parameter values to each granuloma and its 

346 infecting Mtb, as well as counts and concentrations of all cell types and cytokines. Every 

347 granuloma is assigned unique identification markers. These include being given a unique 

348 individual granuloma ID IndivGranID(i), which is assigned in chronological order of 

349 initialization i=1,2,…N (where N is the total number of granulomas), as well as the individual 

350 granuloma ID of its parent, so the lineage of each of the founder Mtb can be tracked throughout 

351 the course of infection. Each granuloma is also given a position on a continuous grid.

352

353 Granuloma Development

354 The development of each individual granuloma “agent” is captured by a set of ODEs with 16 

355 equations for 16 state variables capturing bacterial, T cell, macrophage and cytokine dynamics 

356 (see Appendix 1 for equations and complete term-by-term description of the model). ODE model 

357 formulations build on our previous work (37–39) describing cells and levels of cytokines in a 

358 whole lung. The equations have been re-calibrated to NHP granuloma data (see section on 

359 Experimental dataset) to represent an individual granuloma (see section Model Parameters, 

360 Calibration, and Sensitivity Analysis), and have been updated in several ways. First, we 

361 increased the role of IL-10, including it as a factor for downregulating macrophage activation 

362 and TNF- production by activated macrophages, as well as allowing infected macrophages to 

363 produce IL-10, based on NHP data (40–42). The other set of changes relates to intra- and extra-

364 cellular Mtb to be consistent with recent findings on Mtb growth within macrophages (43–45). 

365 Rather than releasing the entire carrying capacity of bacteria at the occurrence of each death of 

366 an infected macrophage, the amount of intracellular Mtb within an average infected macrophage 

367 is released (with the exception of a bursting infected macrophage, in which case the maximum 
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368 amount of Mtb is released). Furthermore, only a fraction of intracellular Mtb released during the 

369 natural death of an infected macrophage survives to become an extracellular Mtb. The expression 

370 for intracellular Mtb replication was also changed along with the addition of an expression for 

371 the natural slow death of intracellular Mtb for model stability. We record granuloma sterilization 

372 when the count of Mtb drops below 0.5.

373

374 Granuloma Dissemination

375 While the mechanisms behind dissemination are not yet well-understood (25), we have created 

376 rules such that the emergent outcomes are consistent with experiments (Figure 2B). We define a 

377 probability function for likelihood of a dissemination event, which we make dependent on the 

378 bacterial load (CFU) of the granuloma. We selected CFU because the data presented by Lin et al. 

379 (3) indicates that granuloma carrying capacity has a limit (approximately 10^5). Because NHP 

380 granulomas rarely exceed this limit (3,28), there is likely a link between granuloma CFU and 

381 dissemination. Because Mtb is by itself non-motile, we consider two routes of dissemination: 1) 

382 Mtb conveyance within an infected macrophage and 2) a single Mtb flowing through lung 

383 airways or deposited via a draining lymph node (LN). From these, we incorporated two types of 

384 dissemination events: local and non-local, the probabilities of each event being independent, and 

385 in the unlikely event that multiple dissemination events occur in the same time step, the order of 

386 events is randomized.

387

388 When a granuloma disseminates locally (Figure 2B – Case 3), an infected macrophage carrying 

389 intracellular Mtb is assumed to move from the parent granuloma position to a new position 

390 nearby. We assume the distance between the parent granuloma and a new position likely follows 
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391 a normal distribution with respect to parent location and we calibrated the mean and variance of 

392 this location using the data presented in Martin et al. (25). In Martin et al., the authors compute 

393 distances of each granuloma and granuloma clusters that they could identify via PET/CT, rather 

394 than every individual granuloma regardless of size and cluster affiliation. We also assume that a 

395 pre-determined quantity of T cells moves with an infected macrophage. After this dissemination 

396 event, the parent and daughter granulomas evolve independently from each other. When a 

397 granuloma disseminates non-locally (Figure 2B – Case 2), an extracellular Mtb is simulated as if 

398 entering airways (or via a LN) and deposited with equal likelihood anywhere within the lungs, 

399 where it is immediately taken up by a macrophage. Figure 2B-Case 2 represents 3 realizations of 

400 trial coordinates wherein the trial coordinates represented by the red arrow do not satisfy our 

401 criteria, but the two black arrows would be acceptable placements for a bacterium in non-local 

402 dissemination.

403

404 We created two dissemination event probabilities describing local and non-local dissemination. 

405 In both,  is the maximum probability of dissemination and is scaled by a Michaelis-Menten 

406 fraction, using a value of CFU at which the probability is half of the maximum value. 

407

408 Equation 1 (a) 𝑃𝑟𝑜𝑏𝐿𝑜𝑐𝑎𝑙(𝑡) = 𝜆𝐿𝑜𝑐𝑎𝑙
𝐶𝐹𝑈(𝑡)

𝐶𝐹𝑈(𝑡) + 𝐶𝐹𝑈𝐿𝑜𝑐𝑎𝑙
ℎ𝑎𝑙𝑓

409 Equation 1 (b) 𝑃𝑟𝑜𝑏𝑁𝑜𝑛𝑙𝑜𝑐𝑎𝑙(𝑡) = 𝜆𝑁𝑜𝑛𝑙𝑜𝑐𝑎𝑙
𝐶𝐹𝑈(𝑡)

𝐶𝐹𝑈(𝑡) + 𝐶𝐹𝑈𝑁𝑜𝑛𝑙𝑜𝑐𝑎𝑙
ℎ𝑎𝑙𝑓

410

411 Granuloma Merging

412 Experiments demonstrate that a subset of granulomas contain a more than one Mtb barcode (25). 

413 Following inoculation or dissemination events, individual granulomas may merge, or are 
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414 sufficiently close to each other, to form clusters. We identify granuloma clusters and their 

415 members when needed for plotting and computing statistics but allow them to evolve 

416 independently. Briefly, our algorithm evaluates all intersections of granulomas, and combines 

417 groups of granulomas that intersect in 3D space. These grouped granulomas are the granuloma 

418 clusters. A granuloma cluster may contain only descendants of a single founder Mtb ID, or may 

419 contain descendants of multiple founder Mtb IDs.

420

421 Model Parameters, Calibration, and Sensitivity Analysis

422 We sought to define the parameter space for MultiGran across multiple scales. First, we 

423 identified the parameter space of the individual granuloma ODE model that best represents the 

424 individual granuloma datasets (CFU and cell counts). To determine an initial, wide range of 

425 parameter values to test, we examined experimental values from literature, the previous models 

426 (37–39), and values from GranSim, our single granuloma model that has been calibrated based 

427 largely on NHP data (6-17,19-21). We then used a Latin Hypercube Sampling (LHS) algorithm 

428 (46) to sample this multi-dimensional parameter space 500 times. This initial wide range of 

429 simulations did not match the NHP data. We narrowed the initial ranges and resampled the space 

430 in an iterative process until, out of the 500 simulations, ninety percent of the runs fell within the 

431 bounds of our experimental data on CFU, T cell counts, and macrophages within individual NHP 

432 granulomas. The parameter ranges for these runs are in Table A1. 

433

434 Next, we identified the dissemination parameter space of MultiGran that matched the NHP 

435 whole lung outcome datasets (previously published (20,25,27,31–33) and ongoing studies). We 
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436 again utilized LHS to sample this space and identify baseline parameter ranges that match the 

437 data (Table A3). 

438

439 Following MultiGran calibration, we sampled the calibrated parameter space to create a 

440 biorepository of in silico lungs that could be used to make predictions and compare to additional 

441 NHP data sets. We then used Partial Rank Correlation Coefficient (PRCC), a global sensitivity 

442 analysis technique (46), to identify significant correlations between single granuloma ODE 

443 model parameter changes and variation in whole lung outputs. We excluded the dissemination 

444 parameters from our multi-scale PRCC analysis because they are phenomenological in nature 

445 and we are interested in identifying the mechanistic events that occur at the granuloma scale and 

446 lead to dissemination, a whole lung outcome.

447

448 Linking Cellular Scale and Tissue Time Scales

449 We link the cell and cytokine scale events in the ODE model (single granuloma) with the tissue 

450 scale ABM (multiple granulomas) to form the multi-scale MultiGran model (Figure 2). Linking 

451 of timescales is important for proper model design (47). We use an ABM time-step of 1 day. At 

452 each ABM time-step, dissemination events can occur. After each ABM time step, the system of 

453 ODEs is solved for each granuloma to update the states of all host cells, cytokines and Mtb 

454 populations over the next 24 hours. We run the ODEs using adaptive time steps for 1 agent 

455 iteration, for each granuloma, before proceeding to the next agent time step, as dissemination 

456 events at the agent time step depend on the dynamically-changing state of ODEs. Additionally, 

457 the ODE state variable concentrations can be affected by the occurrence of a dissemination 

458 event.
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459

460 Results

461 We present a whole lung model, MultiGran, that captures the behavior of Mtb infection leading 

462 to the development of multiple granulomas via initial infection and then dissemination of 

463 bacteria from existing granulomas. We calibrate and validate the model with unique datasets 

464 derived from NHPs, the animal model that most closely mimics the features of human infection. 

465 We then use the model to identify dissemination rates and to predict mechanisms leading to 

466 dissemination.

467

468 Simulated individual granulomas recapitulate in vivo primate granuloma dynamics 

469 We calibrated our single granuloma model, comprised of a system of non-linear ODEs, to data 

470 derived from NHP studies. We compared bacterial load (CFU), T cell counts, and macrophage 

471 counts over time per granuloma. Our CFU dataset consists of 623 granulomas from 38 NHPs 

472 (previously published (20,27,31–33) and ongoing studies). T cell and macrophage counts, as well 

473 as additional CFU, were derived from a separate, new dataset of 26 granulomas from 7 Mtb-

474 infected NHPs and baseline data from one uninfected macaque (see Methods). The data from 

475 these 7 NHPs capture the timing of the immune system during early events in infection 

476 (granulomas from all NHPs were collected between 3-9 weeks post infection) and were 

477 imperative for proper calibration of the model.

478

479 We identify a range of parameter values (Table A1) that replicate CFU peaks at approximately 

480 35 days and subsequent control of CFU after day 100 post-infection (Figure 3A), macrophage 

481 dynamics (Figure 3B), and T-cell dynamics (Figure 3C). These dynamics reflect the initial 
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482 inability of the innate immune system to control Mtb replication, the eventual control provided 

483 by T cells that arrive from the lymph node around day 28, and the stabilization of Mtb counts 

484 around day 100. When isolating a suitable parameter range, we identified ranges that matched 

485 these overall trends and recapitulated the spread of granuloma outcomes outlined by the NHP 

486 datasets. Likely, our spread captures a fuller range of individual granuloma dynamics than a 

487 sample from a limited number of NHP can achieve. 

488

489

490 Figure 3: Bacteria, macrophage and T cell dynamics within an individual granuloma.
491 Individual NHP granuloma bacteria (A), macrophages (B), and CD3+ T cells (C) shown as 
492 orange points across time. Each individual point represents data from a single NHP granuloma. 
493 Purple lines indicate simulation outputs from 500 simulations that match NHP data. Light purple 
494 shading shows the minimum and maximum of simulation runs, darker purple shading represents 
495 the 5th to 95th percentiles of the simulations, and dark purple lines represent the 5th, 50th, and 95th 
496 percentiles of simulations. Parameter ranges are listed in Table A1.
497

498

499

500 MultiGran simulates the appearance of granulomas throughout the lung, as seen in vivo 

501 By employing the calibrated single granuloma model (Figure 3) within our MultiGran 

502 framework, we can now simulate the spread of infection within the lung. We inoculate with 16 to 

503 21 individual bacteria, mimicking the protocol of Martin et al. (25), placing them within an 

504 inoculation region within one of the lower lung lobes, as is done in the NHP inoculations via 

505 bronchoscope (see Methods). Each initial granuloma in an NHP arises from a single bacterium in 

506 an inoculation event (25). Therefore, we initially establish 16-21 granulomas. A sample 

507 simulation at the time-point of 250 days post-infection is shown in Figure 4. The blue lung mesh 

508 represents the dataset derived from NHPs for (x,y,z) coordinates of a lung. Placed on this mesh 
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509 are simulation results – individual granulomas (“agents” in the model) and their location, size, 

510 and bacterial origin (barcode). Note that, as in the NHP images of Figure 1, infection is primarily 

511 within the inoculation region – but that 7 granulomas disseminated non-locally to the opposite 

512 lung. In this simulation, one granuloma cluster was found that contained more than one Mtb 

513 barcode, as is shown in the pie chart. Movies of disease progression using this 3D visualization 

514 are available on the website http://malthus.micro.med.umich.edu/labmovies/MultiGran/.

515

516
517 Figure 4: MultiGran in silico infection in a non-human primate lung.
518 A single in silico simulation at 250 days post infection from three angles (A-anterior view, 
519 B&C-opposite posterior-lateral views), plotted over a data grid taken from PET/CT images of a 
520 single NHP. Granulomas are located within the lung in 3D space. Each circle of a single color 
521 represents a granuloma or granuloma cluster with a single Mtb barcode ID. The circle shown as a 
522 pie chart represents a granuloma cluster with two unique Mtb barcode IDs; each color represents 
523 the relative proportion of CFU of each ID compared to the total CFU of the granuloma cluster, 
524 while the overall size of the circle is proportional to the size of the cluster. Inoculation was in the 
525 lower right lung (bottom left in each image). Granulomas found in the upper right lung and the 
526 left lung result from non-local dissemination within the simulation. 
527

528

529

530 Simulations are consistent with in vivo infection and predict dissemination likelihood rates

531 MultiGran allows both local and non-local dissemination of bacteria to initiate new granulomas, 

532 tracks the origin (Mtb ID) of each granuloma, and allows for merging of nearby granulomas to 

533 form a cluster. Each granuloma has a unique parameter set chosen from the ranges in Table A1 

534 according to an LHS design. To determine what leads to different dissemination patterns in vivo, 

535 we use our dataset consisting of four NHPs in that were inoculated with uniquely identifiable 

536 Mtb (Figure 1; Martin et al. (25)). Outcome measures from these experiments include: (1) the 

537 number of Mtb at time of inoculation (16-21 Mtb), (2) the number of granuloma (or granuloma 
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538 clusters) at necropsy (17-28 granulomas), (3) the percentage of Mtb barcodes found in multiple 

539 granulomas (12.5 - 68.4%), and (4) the percentage of granulomas containing multiple Mtb 

540 barcodes (~10-20%). We calibrated MultiGran dissemination dynamics to this dataset by varying 

541 the seven dissemination parameters (Table A3). Our whole lung simulations and the NHP dataset 

542 are shown in Figure 5. Notice that the simulations capture the full heterogeneity of the in vivo 

543 results across each NHP. Additionally, the experimental data are from only four NHPs, while our 

544 simulations represent a larger, more diverse set of possible outcomes.

545

546

547 Figure 5: MultiGran recapitulates non-human primate dissemination outcomes.
548 Martin et al. (22) infected 4 NHP with 16-21 different Mtb barcodes (A), and after 120 days the 
549 NHP immune system formed 16-28 non-sterilized granuloma clusters (B). We replicated these 
550 experiments by simulating 200 NHP, which started with 16-21 different Mtb. Of the 16-21 Mtb 
551 in NHP, 10%-70% were found in multiple granuloma clusters, meaning at least 10%-70% of Mtb 
552 were disseminating. Similar to the NHP data, our simulations have 0%-90% of Mtb barcodes 
553 disseminated to multiple granuloma clusters (C). Within the NHP experiments, of the 16-28 non-
554 sterilized granuloma clusters, 10%-25% had multiple Mtb IDs within them, meaning at least 
555 10%-25% of observed granulomas are clusters involving multiple sources of Mtb infection. Our 
556 200 MultiGran simulations demonstrate a similar range of granuloma clusters with multiple Mtb 
557 barcodes (D). Simulations are shown in gray whereas NHP experiment outcomes are shown in 
558 blue. Each point represents a single NHP or in silico simulated granuloma.
559

560

561 To more directly test for non-local dissemination events, we validate our simulations against a 

562 second dataset of 38 NHPs (Figure 6). Within this NHP dataset, we identified the lung that 

563 contained the most granulomas for each NHP, and termed this lung the more-populated lung. 

564 Next, we calculated the percentage of granulomas that resided in the more-populated lung out of 

565 the total number of granulomas across both lungs. We found that the 38 NHPs exhibited a range 

566 of 52%-100% of granulomas in the lung that was more-populated. Results from the same 
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567 simulations used to create Figure 5 give a range ~54%-100%, providing additional support for 

568 the model in its ability to capture the range of data offered by NHP experiments.

569

570

571 Figure 6: MultiGran recapitulates spread of infection data. 
572 At necropsy of 38 NHP experiments, we identified the lung that contained the most granulomas 
573 for each NHP. Next, we calculated the percentage of granulomas that resided in the more-
574 populated lung out of the total number of granulomas. We found that 52-100% of granulomas 
575 formed resided within the more-populated lung. Blue dots represent each NHP experiment. We 
576 ran 200 in silico simulations that capture a similar range to the NHP spread of infection from 
577 lung to lung, ranging from 54.3% to 100%. Gray dots represent each simulated lung.
578

579

580

581 When examining in vivo data, the total number of dissemination events may be undercounted 

582 due to sterilization and granuloma clustering. In contrast, our model is able to count every 

583 dissemination event, and thereby provides a predicted frequency of local and non-local 

584 dissemination. We found that, on average, the rate of dissemination is about 1/24 dissemination 

585 events per granuloma per month for simulations run out to 250 days. Most dissemination occurs 

586 earlier in the infection, as noted in Martin, et al. (25). Further, MultiGran predicts that local 

587 dissemination events occur about twice as frequently as non-local dissemination events.

588

589 MultiGran simulations match individual NHP infections

590 From our repository of 200 MultiGran simulated lungs, we isolated the five simulations that 

591 yielded the closest match to the median values of Mtb inoculation (20), the median number of 

592 granulomas at necropsy (20.5), the median percentage of Mtb barcodes that were found in 
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593 multiple granulomas (14.3%), and the median percentage of granulomas that contained multiple 

594 Mtb barcodes (17.5%) across the four NHP from Martin et al. (25).

595

596 These five simulations represent the best matches to the NHP used in Martin et al. (25). We 

597 compare two of these simulations to the CFU/granuloma at necropsy from NHP:179-14 (Figure 

598 7A & 7C). Both lung simulations display satisfactory matches to the NHP CFU data; both 

599 simulations cover the spread of the experimental data while lying within the bounds of the 

600 dataset. However, while both simulations match the CFU data at 17 weeks, we are able to predict 

601 what could have happened beyond the necropsy date by running the simulation for a longer time 

602 period. Shown are two distinct possible outcomes with the same parameter set: note they diverge 

603 when predicting later dissemination events. Figure 7B shows one simulation predicts bacterial 

604 control across all the granulomas within that simulation. Figure 7D shows another outcome. 

605 Here, a single granuloma within the lung exhibits uncontrolled bacterial growth leading to 

606 dissemination and there is also formation of new granulomas via both local and non-local 

607 dissemination (at days 145, 166, and 193). These simulations suggest that NHP:179-14 was 

608 either containing the bacteria (i.e., LTBI) (our prediction in Figure 7B) or could have had a 

609 subclinical infection that was on the edge of leading to multiple dissemination events (our 

610 prediction in Figure 7D). Simulations that match the other NHP are not shown, but show similar 

611 trends and predictions.

612

613

614 Figure 7: MultiGran matches individual NHP granuloma dynamics and predicts CFU 
615 burden across time.
616 We compared the CFU/granuloma at necropsy for NHP:179-14 (A&C) to two separate 
617 simulations that matched these outcomes. Blue dots represent single granuloma values taken 
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618 from NHP:179-14; gray dots represent simulation values at comparable timepoints. Simulation 
619 predictions diverged after 17 weeks. One simulation predicted stability – i.e., granuloma 
620 containment of bacteria (B). The other simulation (D) predicted uncontrolled growth of bacteria 
621 within one granuloma, leading to dissemination and the formation of other granulomas across 
622 time. Each line in (B&D) represents one granuloma realization within MultiGran across time. 
623 Blue dots represent NHP:179 granuloma CFU values. Simulation behavior to the right of the 
624 blue dots should be considered a prediction.
625

626

627 Sensitivity analysis reveals important mechanisms responsible for dissemination

628 To predict the mechanisms that lead to dissemination events within lungs, we perform global 

629 sensitivity analysis on four whole lung outcomes of interest: the number of dissemination events, 

630 the total number of granuloma clusters at the end of the simulation, the percentage of granuloma 

631 clusters that contain multiple barcodes, and the percentage of granulomas that occupy the 

632 initially-inoculated lung at the end of the simulation. We quantify the contributions of each 

633 model parameter to the outcomes of interest by calculating partial rank correlation coefficients 

634 (PRCC) at the end of the simulation (250 days). Our analysis reveals one parameter as the main 

635 driver of these four whole lung outcomes (Table 1). Parameter CD8MultiFunc describes the 

636 multi-functional nature of CD8+T cells, i.e., the amount of overlap of cytotoxic function and 

637 cytokine expression in CD8+ T cells, and is significantly correlated with each of the four 

638 outcomes. If CD8MultiFunc is increased so that a greater proportion of CD8+ T cells exhibits 

639 multi-functionality, then a larger percentage of granulomas will reside within a single lung (less 

640 non-local dissemination) and there will be fewer dissemination events and fewer granulomas 

641 overall. CD8+ T cells are a key host cell in a functional immune response to Mtb infection, and if 

642 the subpopulation that can perform multiple roles within the complex microenvironment of a 

643 granuloma increased, it would certainly benefit the host.

644
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Parameter
Name

Parameter
Description

Number of 
Dissemination 

Events

Granulomas 
at End of 

Simulation

Granulomas 
with 

Multiple 
Barcodes

Granulomas 
in Dominant 

Lung

CD8MultiFunc
overlap of cytotoxic function and 
cytokine expression in CD8+ T 

cells
-0.39 -0.38 -0.14 0.32

645

646 Table 1: CD8+ T cell functionality plays an important role in dissemination outcomes. 
647 PRCCs are shown for parameter CD8MultiFunc, the overlap of cytotoxic function and cytokine 
648 expression in CD8+ T cells is significantly correlated with each of the four whole lung outcomes 
649 at the end of the simulation (200 days). Parameter CD8MultiFunc is negatively correlated with 
650 the total number of dissemination events across the simulation, the number of granulomas 
651 present at the end of the simulation, and the percentage of granulomas that contain multiple 
652 barcodes. It is positively correlated with the percentage of granulomas that reside in the more-
653 populated lung. 
654

655

656

657 If we exclude parameter CD8MultiFun from the analysis, we reveal secondary contributions of 

658 other parameters to the whole lung outcomes (Table 2). Notably, the role of macrophage-bacteria 

659 interactions is found to be important. k18 represents the base rate of killing of extracellular 

660 bacteria by macrophages. If this rate is high, there are fewer dissemination events and fewer 

661 granulomas across the simulation. Additionally, k17 represents the maximum bursting rate of 

662 infected macrophages. This parameter is positively correlated with the number of dissemination 

663 events and the number of granulomas across a simulation. If bursting occurs at a high rate within 

664 a granuloma, our model predicts that a granuloma is more likely to disseminate both locally and 

665 non-locally. Taken together, these two parameters identify an important role for macrophage 

666 dynamics within the granuloma: if macrophages cannot adequately respond to Mtb, the 

667 likelihood of dissemination increases. Altogether, the results of this analysis represent a multi-

668 scale impact: events governing cell function at the cellular scale impact local and non-local 
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669 dissemination outcomes across the lungs and predict the difference between dissemination and 

670 control across the lung environment.

671

Parameter 
Name Parameter Description

Number of 
Dissemination 

Events

Number of 
Granulomas 
and Clusters

Percentage of 
Granulomas 
with Multiple 

Barcodes

Percentage of 
Granulomas in 

More-
Populated 

Lung

k18 Extracellular bacteria killed by 
macrophages -0.11 -0.11 -0.041 0.11

nuI10 decay rate of IL-10 cytokine -0.088 -0.087 -0.068 0.089

Sr1b TNF based recruitment of 
primed CD4+ T cells -0.075 -0.074 -0.044 0.06

k6 rate of differentiation from 
primed to Th1 CD4+ T cells -0.084 -0.073 -0.047 0.071

s12 cell production of IL-12 -0.058 -0.056 -0.025 0.056

w
contribution of intracellular 

bacteria to resting macrophage 
activation

-0.037 -0.04 -0.021 0.04

s2 half-saturation of IL-4 -0.024 -0.021 -0.025 0.02

Sr3b TNF based recruitment of Th2 
CD4+ T cells -0.036 -0.033 -0.021 0.025

alpha30 TNF production by infected 
macrophages 0.032 0.028 0.022 -0.037

nuTg IFNg induced apoptosis of Th1 
CD4+ T cells 0.057 0.055 0.037 -0.04

s4b
half-saturation of TNF on local 

resting macrophage 
recruitment

0.042 0.043 0.04 -0.043

k17 max rate of infected 
macrophages bursting 0.14 0.14 0.076 -0.12

672

673 Table 2: Sensitivity Analysis reveals global drivers of dissemination outcomes.
674 Excluding parameter CD8MultiFunc, 12 parameters were identified as having a significant 
675 impact on each of 4 MultiGran whole lung simulation outcomes at the end of the simulation. All 
676 PRCCs shown are significant to p < .05.
677

678

679 Discussion 
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680 Tuberculosis is a complex and heterogeneous disease with a spectrum of outcomes, and the 

681 myriad of mechanisms that influence outcomes of initial infection are poorly defined. Our data in 

682 NHP models, and bolstered by data in humans, support the notion that each individual granuloma 

683 in a host is independent and dynamic, in terms of immunologic composition and function, ability 

684 to kill or restrain Mtb bacilli, and risk for dissemination or reactivation (48,49). However, it can 

685 be challenging in NHP models to determine the full range of host mechanisms that play a role in 

686 initial containment and prevention of dissemination, both of which are essential to limiting 

687 development of active TB. In the pursuit of a better understanding of the collective behavior of 

688 lung granulomas in individuals infected with Mtb, we performed a systems biology approach 

689 pairing NHP experiments and computational/mathematical modeling. Specifically, we explored 

690 events that lead to dissemination and new granuloma formation, and several studies have 

691 recently explored this biological phenomenon (25,36,50,51). In particular, the barcoding 

692 technique introduced by Martin et al. showed that dissemination varies widely among macaques 

693 despite initial infection conditions being similar, and that in individual macaques, each 

694 granuloma had a different dissemination risk, from no dissemination by most granulomas, even 

695 though these granulomas were CFU+, to multiple dissemination events from a single granuloma. 

696 The barcoding analysis provided critical new information about bacterial spread within the lung. 

697 However, identifying mechanisms that leading to granuloma dissemination, which is linked to 

698 development of active TB (36), is important in designing more effective vaccines and 

699 therapeutics against TB. Systems biology approaches can address these mechanisms and more 

700 generally contribute to our still limited understanding of Mtb infection dynamics. 

701

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/713701doi: bioRxiv preprint 

https://doi.org/10.1101/713701
http://creativecommons.org/licenses/by/4.0/


30

702 In this work, we combine experimental data from NHPs with a novel multi-scale, hybrid agent-

703 based model of granuloma formation, function and dissemination within the lung, called 

704 MultiGran. We calibrate and validate MultiGran against multiple NHP datasets that span 

705 cellular, bacterial, granuloma, and whole-lung scales. This calibration and validation allowed us 

706 to make predictions about dissemination within Mtb infected lungs. We report that the likelihood 

707 of local dissemination is approximately two times greater than non-local dissemination, which 

708 supports the in vivo data reported in Martin, et al. (25), and we used sensitivity analysis 

709 techniques to identify that dissemination is intertwined with the role of CD8+ T cells in 

710 granulomas. Specifically, we predict that the functionality of CD8+ T cells is critically 

711 important: if a greater percentage of CD8+ T cells can perform dual functions of cytokine 

712 expression (IFN, TNF, and IL-10) and cytotoxicity, then the likelihood of dissemination 

713 significantly decreases. 

714

715 The role of CD8+ T cell multi-functionality within the granuloma is controversial (for reviews of 

716 CD8+ T cells in TB, see (52,53), (20)). While the majority of T cells within a granuloma are 

717 single cytokine producers (27), multifunctional CD8+ T cells have been demonstrated in the 

718 blood of Mtb-infected humans and the proliferation and response rate of these cells differed 

719 between active and latent infection (54,55). Together, these studies and our current work suggest 

720 a need for increased focus on this specific cell type to evaluate the potential that CD8+ 

721 multifunctional T cells may offer. 

722

723 The NHP datasets generated within this study are unique and critical to the predictions of 

724 MultiGran. In addition, these data also present new insights into early events occurring during 
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725 Mtb infection. In particular, the ability to capture data on Mtb infection during early time points 

726 for CFU, T cell counts, and macrophage numbers is instrumental in elaborating timing of early 

727 immune response events. These early events in primates have been understudied, and knowledge 

728 of the role that timing plays in granuloma establishment, formation, and development is critical 

729 to early intervention strategies.

730

731 Using MultiGran, we were able to match to granuloma population data coming from multiple 

732 monkeys (Figure 5 & 6) and granulomas (Figure 3). we were also able to match experimental 

733 data from a single NHP (Figure 7). In the era of precision medicine (56), the ability of MultiGran 

734 to fit to individual data could help predict, in real time, whether the granulomas within that 

735 individual are likely to disseminate. This could happen when paired with PET/CT images of 

736 individually lung granulomas. However, more realistically, this provides an impetus for 

737 identifying biomarkers that are associated with granulomas at risk of dissemination, which could 

738 be more widely used to identify persons at risk of developing active TB following infection.

739

740 There are a few limitations of our study and model. First, the driving dissemination probability 

741 rules are somewhat phenomenological. Our goal in this first study was to rely on as few 

742 assumptions as possible; the only granuloma characteristic that is explicitly used in the 

743 dissemination rules is the total bacterial burden. As a consequence, the model allows for even a 

744 stable, mature granuloma to disseminate (with small probability). We addressed this by allowing 

745 T cells to leave the parent granuloma to travel to a daughter granuloma in a local dissemination 

746 event, expecting this to sterilize new granulomas. Surprisingly, this was largely ineffective. 

747 Instead, it is more likely that the lung parenchyma in infected individuals has increased numbers 
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748 of Mtb specific T cells and possibly activated macrophages, so that new granulomas form in a 

749 completely different immune environment, compared to the initial granulomas that form in an 

750 immunologically naïve environment. This notion is supported by our data in NHP models 

751 demonstrating that primary ongoing infection protects against reinfection (32). MultiGran could 

752 be refined to test this in future iterations. Second, we restrict dissemination to be within the 

753 boundary of the lungs, but the actual environment within the lungs is very complicated and also 

754 could include airways and blood. Third, while we acknowledge thoracic lymph nodes as a source 

755 of non-local dissemination, and include adaptive immune cell recruitment in our ODE model, we 

756 currently do not explicitly model lymph node compartments. In future work, we plan to address 

757 the role of lymph nodes in Mtb infection and dissemination. Finally, while MultiGran was 

758 developed based on extensive NHP and human data, it does not contain all the various cell types 

759 and mechanisms in the complex environment of the granuloma, primarily because the functions 

760 and importance of certain cell types and factors remain obscure. As data become available, 

761 MultiGran can evolve to include additional factors for mechanistic test.

762

763 In summary, we utilized a systems biology approach that combined computational modeling and 

764 NHP datasets to better understand mechanisms of granuloma dissemination. We present 

765 MultiGran, the first multi-scale model of granuloma dissemination and formation, that was 

766 calibrated and validated to NHP data and we make predictions about the rate of dissemination 

767 and the role of specific immune cells in granuloma dissemination. In particular, we discovered 

768 roles for multifunctional CD8+ T cells and macrophage dynamics in preventing local and non-

769 local dissemination within the lungs. Altogether, we argue that MultiGran, together with NHP 
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770 experimental approaches, offers great potential to understand and predict dissemination events 

771 within Mtb infected lungs.

772
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Parameter 
name

Min Max Units Ref Description

Srm 0 0 1/day fit MR recruitment rate
alpha4a 0.57 0.83 1/day (38), (39), fit Macrophage recruitment of MR
w 0.29 0.33 -- (37), (39), fit Contribution of BI to MR activation
w3 0.23 0.37 -- (38), (39), fit Max contribution of Th1 to MI apoptosis
w2 1 1 -- (37), (39), fit Contribution of MI to MR recruitment
Sr4b 650 750 1/day (38), (39), fit Falpha-dependent recruitment of MR
f8 0.002 0.002 -- fit Ratio adjustment IL-10/Falpha on MR 

recruitment
f9 0.6 0.6 -- fit Ratio adjustment Falpha/IL-10
s4b 3210 4860 pg/ml (57), (39), fit Half saturation of Falpha on MR recruitment
s4b1 6780 9410 pg/ml (38), (39), fit Half saturation of Falpha dependent Th1 

recruitment
s4b2 5340 9420 pg/ml (57), (39), fit Half saturation of Falpha-dependent T0 

recruitment
k4 0.074 0.17 1/day (37), (39), fit MA deactivation by IL-10

s8 200 940 pg/ml (37), (39), fit Half saturation of IL-10 on MA deactivation
k2 0.43 2.2 1/day (37), (39), fit MR infection rate
c9 1190 7450 count (37), (39), fit Half saturation of BE on MR infection
k3 0.04 0.04 1/day (37), (39), fit MR activation rate
f1 150 150 -- (37), (39), fit Adjustment IL-4/IFNg
s1 54 450 pg/ml (37), (39), fit Half saturation of IFNg-dependent MR 

activation
Beta 1.00E+07 1.00E+07 1/pg (38), (39), fit Scaling factor of Falpha for MR activation
c8 175370 363170 count fit Half saturation of BE and BI on MR activation
nuMR 0.005 0.005 1/day (37), (39), fit MR death rate
k17 0.1 0.3 1/day (37), (39), fit Max rate of MI bursting
N 20 25 count (37), (39), 

(40), fit
Carrying capacity of MI

k14a 0.06 0.34 1/day (38), (39), fit T cell induced apoptosis of MI
c4 400 880 -- (37), (39), fit Half saturation of Th1/MI ratio on MI 

apoptosis
k14b 0.63 0.86 1/day (38), (39), fit Falpha induced apoptosis of MI
k52 0.6 0.7 1/day (38), (39) Cytotoxic killing of MI
w1 0.2 0.7 -- (38), (39), fit Max contribution of Th1 to cytotoxic killing
c52 103290 246770 -- fit Half saturation of TC on MI killing
cT1 35 35 -- fit Half saturation of Th1 on cytotoxic killing
nuMI 0.0033 0.0033 1/day (37), (39), 

(40)
MI death rate

nuMA 0.17 0.17 1/day (37), (39), fit MA death rate
alpha1a 0.03 0.55 1/day (58), (39), fit Macrophage recruitment of T0
Sr1b 2E+04 5E+4 1/day (58), (39), fit Falpha dependent T0 recruitment
alpha2 0.12 0.36 1/day (37), (39), fit Max growth rate of T0
c15 2.75E+06 4.09E+06 -- (37), (39), fit Half saturation of MA on IFNg production by 

Th1

k6 0.1 0.2 ml/(pg day) (37), (39), fit Max T0 to Th1 rate
f7 7 30 -- (38), (39), fit Effect of IL-10 on IFNg induced differentiation 

of T0 to Th1
k7 0.25 0.64 ml/(pg day) (37), (39), fit Max T0 to Th2 rate
f2 0.2 0.4 -- fit Adjustment IFNg/IL-4
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s2 400 900 pg/day fit Half saturation IL-4
nuT0 0.22 0.22 1/day (37), (39), fit T0 death rate
CD8MultiFunc 0.7 0.9 -- (38), (39), fit overlap between TC and T8 function
alpha3a 0.4 0.8 1/day fit Macrophage recruitment of Th1
Sr3b 15 80 1/day Fit Falpha dependent recruitment of Th2
alpha3a2 0.22 0.75 1/day fit Macrophage recruitment of Th2

Sr3b2 50 90 1/day fit Falpha dependent recruitment of Th2
nuTg 0.24 0.75 1/day fit IFNg induced apoptosis of Th1
c 270 690 pg/ml fit Half saturation IFNg on Th1 apoptosis
nuT1 0.33 0.33 1/day (37), (39) Th1 death rate
nuT2 0.33 0.33 1/day (37), (39) Th2 death rate
alpha3ac 0.25 0.77 1/day fit Macrophage recruitment of TC and T8
Sr3bc 14 26 1/day fit Falpha dependent recruitment of TC and T8
nuTCg 0.45 0.83 1/day fit IFNg induced apoptosis of TC and T8
cc 350 590 pg/ml (59), (39), fit Half saturation of IL on TC and T8 apoptosis
nuTC 0.3 0.3 1/day (38) TC death rate
sg 2375 7340 pg/(ml day) fit IFNg production by cells
c10 5.50E+05 6.35E+06 count (37), (39), fit Half saturation of Mtb on IFNg production by 

cells
s7 590 820 pg/ml fit Half saturation of IL-12 on IFNg production by 

cells
alpha5a 0.6 0.8 pg/day (38), (39), fit IFNg production by Th1
c5a

315 630
1/ml fit Half saturation of MA on IFNg production by 

Th1
alpha5b 0.15 0.58 pg/day (38), (39), fit IFNg production by T8
alpha5c 0.08 0.35 pg/ml (38), (39), fit IFNg production by MI
c5b

160 795
count fit Half saturation of MA on IFNg production by 

T8
alpha7 0.012 0.16 pg/ml (37), (39), fit IFNg production by T0

f4 1.5 1.5 -- (37), (39), fit Adjustment of IL-10/IL-12 on IFNg
s4 270 890 pg/ml (37), (39), fit Half saturation of IL-12 on IFNg
nuIG 6 9 1/day (37), (39), fit IFNg decay rate
alpha23 0.004 0.004 pg/ml (38), (39), fit IL-12 production by MR
c23

140 525
1/ml (38), (39), fit Half saturation of Mtb on IL-12 production by 

MR
alpha8 0.38 0.80 pg/day (37), (39), fit IL-12 Production by MA
s12 2330 3650 pg/(ml day) (38), (39), fit Cell production of IL-12
c230

390 710
count Fit Half saturation of Mtb on IL-12 production by 

DC’s
nuIL-12 1.1 1.1 1/day (37) IL-12 death rate
s 170 650 pg/ml fit IL-10 effect on IL-12 production by MA
s6 680 770 pg/ml Fit Half saturation of IL-10 self-inhibition in MA
f6 0.35 0.35 -- (37) Adjustment IFNg on IL-10
delta7 0.40 0.8 pg/ml fit IL-10 production by MA
alpha16 0.33 0.8 pg/day Fit, (40) IL-10 production by Th1
alpha17 0.3 0.5 pg/day Fit, (40) IL-10 production by Th2
alpha18 0.5 0.7 pg/day Fit, (40) IL-10 production by TC and T8
nuIL-10 1.81 4.1 1/day (37), fit IL-10 decay rate
alpha11 0.0033 0.073 pg/day (37), fit IL-4 production by T0
alpha12 0.02 0.06 pg/day (37), fit IL-4 production by Th2
nuIL-4 2.7 2.7 1/day (37) IL-4 decay rate
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alpha30 0.05 0.09 pg/(ml day) (38), fit Falpha production by MI
alpha31 0.15 0.78 pg/(ml day) (38), fit Falpha production by MA
beta2

12000 12000
1/pg (38), fit Scaling factor of Mtb for Falpha production by 

MA
s10

100 300
pg/ml (38), fit Half saturation of IFNg on Falpha production 

by MA
alpha32 0.2 0.3 pg/(ml day) fit Falpha production by Th1
alpha33 0.2 0.3 pg/(ml day) Fit Falpha production by T8
nuTNF 1.1 1.1 1/day (60) Falpha decay rate
alpha19 0.87 1.27 1/day (37), fit BI replication rate
alpha20 0.3 0.4 1/day (37), fit BE replication rate
Nfracc 0.06 0.06 -- (37) Fraction BI released by T cell apoptosis of MI
Nfraca 0.06 0.06 -- (37) Fraction BI released by TNF apoptosis of MI
k15 0.0002 0.001 1/day (37), fit BE killing by MA
k18 0.0001 0.0007 1/day (37), fit BE killing by MR
nI 6.3E-05 8.3E-05 1/day (38), fit BI death rate
nE 4.4E-09 6.65E-09 1/day (38), fit BE death rate
Nfracd 0.001 0.001 -- fit Fraction of BI released by natural death of MI

954

955 Table A1: ODE model parameters that govern individual granuloma formation and 

956 growth across time.

957 *For each disseminating granuloma, we allow for the option to sample each parameter from a 

958 subrange smaller than its parent’s ranges. We do this by using a fraction between 0 and 1 

959 (inclusive) to determine the limits of the range. The fraction represents the percent of values 

960 between the parent’s value and either extrema (minimum and maximum) to include in the range. 

961 0 means the range includes only the parent’s value; 1 means that the original range is used.

962

Parameter name Value Units Ref Description
diamMacs 20 microns (40) Diameter of Macrophage
diamTCells 5 microns (40) Diameter of T cell
dt 1 day ~ Agent time step

963 Table A2: Other parameters for size of granulomas and runtime execution.

Parameter name Min Max Units Reference Description
DissemDistMean 100 101 um Fit, Based 

on data (25)
Mean distance of local dissemination

Lambda_Local 10 ‒ 3 10 ‒ 1 CFU/sec Fit, Based 
on data (25)

Max probability of local dissemination

CFU_Half_Local 103 104 CFU Fit, Based 
on data (25)

Value for half of max rate of local 
dissemination
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Lambda_NonLocal 10 ‒ 3.5 10 ‒ 1.5 CFU/sec Fit, Based 
on data (25)

Max probability of non-local dissemination

CFU_Half_NonLocal 103.5 104.5 CFU Fit, Based 
on data (25)

Value for half of max rate of non-local 
dissemination

TcellFracDonateMu 1/100 1/10 -- estimated Mean fraction of all of the parent granuloma’s 
T cells that move to the daughter granuloma 
during a local dissemination event

TcellFracDonateSig 10 ‒ 3 10 ‒ 2 -- estimated Standard deviation from the mean fraction of 
all of the parent granuloma’s Tcells that move 
to the daughter granuloma during a local 
dissemination event

964 Table A3: Dissemination Parameters. These seven parameters dictate dissemination dynamics 

965 in MultiGran. Parameters were fit to barcode data or varied using Uncertainty Analysis to find an 

966 estimation.
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