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Three Dimensional Root CT Segmentation using
Multi-Resolution Encoder-Decoder Networks

Mohammadreza Soltaninejad, Craig J. Sturrock, Marcus Griffiths, Tony P. Pridmore, and Michael P. Pound

Abstract—We address the complex problem of reliably segmenting root structure from soil in X-ray Computed Tomography (CT)
images. We utilise a deep learning approach, and propose a state-of-the-art multi-resolution architecture based on encoder-decoders.
While previous work in encoder-decoders implies the use of multiple resolutions simply by downsampling and upsampling images, we
make this process explicit, with branches of the network tasked separately with obtaining local high-resolution segmentation, and wider
low-resolution contextual information. The complete network is a memory efficient implementation that is still able to resolve small root
detail in large volumetric images. We evaluate our approach by comparing against a number of different encoder-decoder based
architectures from the literature, as well as a popular existing image analysis tool designed for root CT segmentation. We show
qualitatively and quantitatively that a multi-resolution approach offers substantial accuracy improvements over a both a small receptive
field size in a deep network, or a larger receptive field in a shallower network. We obtain a Dice score of 0.59 compared with 0.41 for
the closest competing method. We then further improve performance using an incremental learning approach, in which failures in the
original network are used to generate harder negative training examples. Results of this process raise the precision of the network, and
improve the Dice score to 0.66. Our proposed method requires no user interaction, is fully automatic, and identifies large and fine root
material throughout the whole volume. The 3D segmented output of our method is well-connected, allowing the recovery of structured
representations of root system architecture, and so may be successfully utilised in root phenotyping.

Index Terms—X-ray Computed Tomography, image segmentation, deep learning, root system analysis, plant phenotyping.
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1 INTRODUCTION

ROOT phenotyping is the process of characterising, objec-
tively and quantitatively, the root systems of plants [1].

It offers valuable insight into the way root systems develop,
react to environmental changes and other external stimuli,
and interact with their natural soil environment. Traditional
approaches have involved separating the soil from the root
by washing, then acquiring and analysing visible-light im-
ages [2]. This approach can offer a fairly high-throughput
solution, but during the process the root structure will likely
be altered, and some finer roots will be lost in the washing
process: it is common for naturally 3D root structures to be
flattened and imaged using flatbed scanners. Unavoidably,
these destructive approaches also prevent analysis of root
growth over time. Other approaches have involved growing
in translucent gel, or other artificial media, preserving root
structure and allowing images to be captured at multiple
time points [3]. Multi-view imaging allows the 3D structure
of these root systems to be recovered, but the growth and
development will differ to those grown in soil and the
interaction between root and soil cannot be studied where
no soil is present.

Recent developments in root-soil imaging has enabled
the direct examination of dynamic plant-soil interactions [4],
but the data generated poses significant technological chal-
lenges. X-ray Computed Tomography (CT) is one leading
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technology for obtaining non-destructive root images with-
out disturbing the root or soil structure [5]. However, a
major bottleneck in the study of root systems using CT is
the computational analysis of the large volumetric images
produced; analysing CT data is a very time-consuming task.
Automated systems have struggled to traverse complex root
structure in spatially heterogeneous soil, so much of the
analysis is still performed with manual or semi-manual
approaches. This requires a large time investment by the
user, and only becomes more difficult as the scale and
throughput of modern scanners increases.

In order to accurately measure the root system, root
material must be reliably segmented from soil and other
objects. The complex nature of root-soil CT images makes
this a particularly hard segmentation problem. CT scanners
measure density, and any objects with similar density to
root material, for example water, risk being misclassified.
Organic material in the soil may also appear similar to roots,
distracting both human and computational approaches [6].
Somewhat surprisingly, the appearance of a given root
branch may vary over its length, reflecting the age of the
root material, the scanning hardware and/or the distribu-
tion of material within the sample: some degree of local
contextual information is required for successful segmenta-
tion. Noise distributions may also vary across a given image
volume. Depending on scan resolution, roots may appear
as contiguous structures, or may appear quite sparse, with
only a few pixels of or no overlap between the root material
regions in adjacent slices through a volume. Perhaps most
challenging of all, CT volumes are typically high resolution,
with root material taking up only a small proportion of the
overall image. Such a difference in scale makes computa-
tionally efficient image processing at sufficient resolution
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difficult.

1.1 Root System Analysis
Many approaches to the root-soil segmentation problem of
CT images have been proposed, which may be broadly
classified into those that rely upon low-level image-based
approaches, and those that take a more model-oriented
machine learning approach. Image analysis-based methods
typically use mathematical or morphological operations on
the input signal, which may be 2D slices, or a 3D volume.
Simple thresholding techniques have proved popular in 2D
root image analysis [7], [8], but the intensity variations in
volumes preclude this approach alone. In [9], the authors
segment root material by identifying connected groups of
pixels (connected components) via region growing. Re-
cently, a bottom up approach to volumetric segmentation
achieved good results on root volumes. Root1 [10], im-
plemented as a plugin for the popular ImageJ tool [11],
performs histogram alignment and volume stitching to
create high resolution volumes from multiple scans. The
volume is then enlarged to perform root segmentation at a
higher-resolution than the original source. Segmentation is
achieved using a multi-stage process. Pore space is removed
by detecting air/soil boundaries using an edge detection
algorithm, a step that makes thresholding the image more
straightforward. A bilevel user-defined threshold is used to
separate out root material from the remaining background.
Morphological operations and other image filters are ap-
plied to remove as much noise as possible, before the root
system is extracted as a user-selected connected component
in the separate Volume Graphics (Volume Graphics Gmbh,
Germany) software package. Root1 can offer competitive
results on some volumes, and is resilient to changes in
species and soil. However, it is susceptible to noise, and
produces many false positives that must be removed by a
user via a separate application. The threshold is also user
defined, meaning that the pipeline of loading, analysing and
moving volumes between packages is time consuming.

A tracking based segmentation method was proposed
in [6], called RooTrak, which uses level-sets [12] to track the
root as it progresses downward through the stack, providing
some contextual information. The level-set method evolves
a front that represents the boundary between root and
soil. The function evolves outward and inward, fitting to
the image data, while preserving constraints on shape and
curvature. RooTrak employs additional techniques, such
as back tracking upward through the stack, to traverse
the maximum possible extent of the root system. RooTrak
requires the selection of a single seed point by the user,
and a few parameters that define the expansion of the
front, but this is comparatively low interaction compared
with the bottom-up approaches discussed above. However,
image noise, finer root detail and the edges of the container
will often cause tracking failure, which require manual re-
initialisation by the user. In practice, the use of RooTrak may
involve substantial user intervention on challenging data.

1.2 Image Segmentation with Deep Learning
In recent years, Deep Convolutional Neural Networks
(CNNs) have established themselves as a dominant tech-

nique in Computer Vision. CNNs have also shown state-
of-the art results in semantic segmentation (pixel-level pre-
diction) [13]. The fully convolutional network (FCN) [14]
was one of the first networks introduced for pixel-wise
semantic segmentation which could be trained end-to-end.
The typical fully-connected layers that perform classification
were replaced by 1x1 window filters, allowing the network
to produce 2D output. However, at this early stage segmen-
tation accuracy was coarse, with ill-defined boundaries and
poor performance on small objects. More recent methods
have tackled this problem by attempting to preserve more
information while an image passes through the network.
Since the loss of information happens during image down-
sampling, a common component of deep networks, work
has proposed replacing these with dilated convolutions [15],
[16], [17]. Dilated convolutions help enlarge the receptive
field of the filters in a way that larger context may be
considered, without increasing network complexity. In [18],
deformable convolutions were used, in which the filters
field of view is determined by using the input features.
SegNet [19] proposed using unpooling layers followed by
convolution with learnable filters to produce denser fea-
ture maps, and a higher resolution output. DeepLab [20]
proposed using atrous convolution for dense prediction
along with increasing the input receptive field and fully
connected conditional random fields (CRF). Other works
have proposed using deconvolution modules during the
upsampling pipeline [21], [22].

Regardless of the individual layers used, in the major-
ity of cases it has become commonplace to separate the
convolution and downsampling layers of a network (the
encoder) with the upsampling or deconvolutional layers
(the decoder). Encoder-decoder networks have a symmetric
structure, in which deconvolutional or unpooling layers
have identical resolution to the corresponding convolutional
and pooling layers [23], [19], [24]. Features are passed
through the network as normal, but also skip from the
encoder to the decoder, providing low level image infor-
mation at the stage in the network where the output is
being produced. Skip layers copy the features from the
down sampling path to the corresponding resolution layer
in the upsampling path, combining them with either a sum
or concatenation operation. Some methods proposed stacks
of encoder-decoders for end-to-end segmentation [25], [13],
[26]. The stacked hourglass network [25] consists of series
of encoder-decoders with residual blocks that incorporate
residual features alongside with the spatial information
for learning [26], [27]. Residual blocks have been widely
adopted in modern CNN design, allowing deeper networks
to be trained more quickly. They have underpinned state-
of-the-art performance in large scale image recognition [28],
and semantic segmentation [29]. The stacked hourglass net-
work further improved on encoder-decoder architectures by
performing additional learning within the skip connections,
controlling what information flows from shallow layers to
deeper layers of the network. Fu et al. [13] proposed a
stacked deconvolutional network in which intra and inter
connection skip layers were used to improve the flow of
information and backpropagation with hierarchical supervi-
sion. Their method achieved high performance results with
a lower network complexity and size.
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1.3 Volumetric Segmentation

U-Net is an encoder-decoder structure that was originally
proposed for medical image segmentation [30]. Within the
field of root image analysis, Smith et al. [31] proposed using
U-Net for segmentation of roots from soil in 2D rhizotron
images, comparing their method to the Frangi vesselness
[32] filter, an image-based approach originally designed
for segmentation of (e.g. blood) vessels that have similar
structure to roots. U-Net was extended in [33] into three
dimensional convolutional and pooling layers for voxel-
wise volumetric segmentation. V-Net [34], represents similar
work using a 3D fully convolutional encoder-decoder de-
signed for volumetric semantic segmentation. In the medical
domain, volumetric networks have become commonplace
for the segmentation of MRI images [35]. These tasks are
made somewhat easier by the limited resolution typically
used in medical MRI (and CT) imaging. Root CT imaging
produces volumes sometimes orders of magnitude larger.
This is made more challenging by the fact that the root
system may span a wide area, but with individual fine
roots only spanning a few voxels. This contrast means that
common techniques to tile or downsample volumes for
efficiency are, as we shall show, ineffective in this domain.

1.4 Contribution

In this paper we propose a segmentation method for vol-
umetric segmentation of root systems from soil in CT. We
use a volumetric deep network with an encoder-decoder
architecture, but with significant architectural changes to
directly address the shortcomings of deep learning on large
volumes. Rather than a compromise between a sufficiently
large receptive field and a high-resolution input, we propose
a two branch network, one that examines a high resolution
volume with a small receptive field, another that examines
a lower resolution volume but with increased input size.
The branches are then combined into an output that draws
from the higher resolution and wider context these branches
provide. We train the network with multiple auxiliary loss
functions to incorporate both semantic and local features in
each branch. The network is trained using a dataset of very
large CT images captured with a Phoenix v|tome|x m micro
CT scanner. The images were manually segmented by an
expert and used as ground truth for training and evaluation
of the network. We perform extensive quantitative analy-
sis of segmentation accuracy, showing that our proposed
approach offers higher accuracy over both existing root seg-
mentation tools, and other network architectures commonly
used for semantic segmentation. We also demonstrate that
incremental learning using hard negative examples is able
to further increase performance. Our approach requires no
user interaction or parameter selection in order to segment
unseen volumes, offering a crucial step towards full automa-
tion of root CT. The major contributions of this paper are:

• We develop and train a new network architecture
comprising a multi-resolution parallel pipeline of
encoder-decoders for the volumetric segmentation of
root systems. The network is trained end-to-end, and
incorporates a high-resolution small receptive field,
with a lower-resolution large receptive field. This

compromise improves the resolution of the network
on fine root detail in very large image volumes.
To our knowledge this is the first application of
volumetric CNNs to the problem of plant root seg-
mentation in CT images.

• We utilise a multi-loss training approach that dis-
tributes the learning process to each pipeline individ-
ually, forcing each parallel branch to learn different
tasks to contribute to the overall segmentation ac-
curacy. We evaluate this multi-loss against the same
network with a single loss.

• We evaluate our proposed network architecture
against state-of-the-art networks in semantic seg-
mentation, all adapted for volumetric segmentation.
We show improved performance on all metrics.

The rest of this paper may be summarised as follows:
Section 2 outlines in more detail the core concepts of
encoder-decoder networks, and our parallel network design
for volumetric segmentation. We then describe the dataset
used for training and testing, and the training procedure.
Section 3 describes the metrics we use for quantitative com-
parison, and provides experimental results against existing
root segmentation techniques and state-of-the-art network
architectures in segmentation. Section 4 discusses the ad-
vantages and limitations of the proposed method and its ap-
plication to root system analysis. Finally, section 5 presents
a conclusion and possible directions for future work.

2 METHODS

This section describes our proposed approach to root seg-
mentation in volumetric images. We first outline two ap-
proaches to tackling the problem of high-resolution CT
segmentation by either downsampling the volume for ef-
ficiency, or considering only very small tiles of the original
data. We then outline the multi-resolution network and loss
functions for joint prediction.

2.1 Native Resolution Encoder-decoders

Encoder-decoder networks have become a popular ap-
proach to semantic segmentation. Popular examples include
FCN [14], Segnet [19], U-Net [30], and Stacked hourglass
[25]. The base of our network uses an architecture similar
to a stacked hourglass, with modifications to handle volu-
metric data. The architecture of this network is presented in
Figure 1.

Unlike a stacked hourglass network, we modify the
architecture from a 2D spatial network into a 3D volumetric
network through the replacement of layers as appropriate.
We limit the input size to 163 pixels, and use a feature size of
128 throughout the network in order to improve efficiency
when processing volumes. The output of the network is
generated by two 1x1x1 convolutional layers, which draw
on features generated within the network to produce a
volumetric segmentation output. During evaluation of this
network in isolation we use a stack of two encoder-decoders
end-to-end. When used as a component in a larger network,
we use only a single encoder-decoder.
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Figure 1: The architecture of a native resolution encoder-decoder. The network performs segmentation by using filtering and
downsampling operations to encode an input into a feature space, before upsampling this back to the original resolution.

2.2 Larger Fields of View
Volumetric networks such as that in section 2.1 are memory
intensive, having essentially an extra dimension above tra-
ditional CNNs. The network above will only accept small
volume inputs of approximately 163 before memory con-
sumption becomes prohibitive, and further reductions in
depth or feature size would be necessary. While individ-
ual roots may be smaller than this input size, the limited
field of view makes it challenging to discern what is root
material, and what is other soil matter. We develop a second
network that incorporates additional downsampling prior
to the encoder-decoder, shown in Figure 2. This architecture
severely constrains the resolution for the majority of the
network, allowing a larger input FOV of 1283 pixels.

We incorporate residual blocks during the initial down-
sampling process, increasing the feature size progressively
up to 128 features before these are passed into the encoder-
decoder. Following the encoder-decoder, we upsample the
features back into native resolution, before 1×1×1 convolu-
tional layers are used to provide segmentation output. This
architecture provides a much larger FOV than the smaller
network, at the cost that the additional downsampling
provides a lower working resolution for segmentation. For
either of these networks, successful segmentation will be
a compromise between an acceptable resolution, and an
adequate field of view.

2.3 Multi-resolution Encoder-decoder Architecture
In order to utilise both local pixel information and the
wider contextual information from the surrounding FOV,
we propose a parallel architecture that operates at multiple
resolutions. This network utilises two parallel pipelines,
each considering a different input volume size. The out-
puts of these paths are combined, with final segmentation
utilising features from both. The structure of the proposed
network is presented in Figure 2.

The upper path consists of a downsampled encoder-
decoder network, which takes a larger 1283 volume as input
and extracts features of the root system at a coarse reso-
lution. The lower path is a conventional encoder-decoder,
taking the centre of the volume at native resolution and
producing finer segmentation detail for that patch. We refer
to these paths as the downsampled and native paths respec-
tively. Since both paths represent different fields of view,

the features of the downsampled path are cropped after
upsampling to align properly with the native path, before
a final prediction is made using both sets of concatenated
features. Two 1 × 1 × 1 convolutional layers provide the
final prediction from this feature space.

The network is trained using stochastic gradient descent
with a Binary Cross Entropy loss function. We first train
the network end-to-end using a single loss function Lend.
We refer to this network as the single loss multi-resolution
(SLMR) network. While using the final heatmap alone as
a mask from which to calculate the loss is convenient, it
may produce a bias towards the weights learned in the
native path of the network. Since the outer FOV is cropped
prior to applying the loss, the outermost feature activations
are not used during back propagation. While they may
have some effect within the convolutional layers, this is
not made explicit. We apply two additional losses, L1 and
L2 to each path in order to learn optimal segmentation
within both branches. The total loss function criterion is
then calculated using joint prediction of all three losses,
in what we call the multi-loss multi-resolution (MLMR)
network. It should be noted that the same smaller ground
truth is applied at both L1 and Lend, whilst the larger FOV
ground truth is applied at L2. All three losses ensure that
the network utilises both local pixel information and wider
FOV in performing segmentation, a property we have found
to improve segmentation accuracy.

3 RESULTS

We evaluate our method on volumetric CT images of intact
wheat roots grown in soil captured at the University of Not-
tingham’s Hounsfield Facility. Each volume was annotated
by an expert using a manual, region growing segmentation
approach within the Volume Graphics software package.
This provides ground truth. We provide a comparison
against an existing bottom-up tool in this domain (Root1)
along with a number of state-of-the-art network architec-
tures in order to investigate the performance of our multi-
resolution network. This section first describes the data and
ground truth production, the network setup and training
configuration, and comparative experimental results.
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Figure 2: The architecture of an encoder-decoder that uses additional downsampling to operate at lower resolution. This
allows it to accept larger input volumes, and so wider fields of view.
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Figure 3: The architecture of our proposed multi-resolution approach. The network uses two paths, a native resolution
path accepting smaller volumetric input, and a downsampled path accepting a wider field of view. The paths are spatially
aligned and concatenated prior to segmentation. The network is trained end-to-end, and utilises auxilliary loss funtions on
each path.

3.1 Data
We use a dataset of 47 volumetric images of intact wheat
roots in soil captured using a Phoenix v|tome|x m micro CT
scanner. 10-day-old wheat plants were grown in a sandy
loam sand mixture and CT scanned at a resolution 54µm
per voxel in each axis. The voxel resolution of the images
varies from 1626 to 1720, and 1633 to 1706 pixels in the
X and Y dimensions respectively, with the average of 1670
and 1667 pixels. The number of slices (Z-depth) ranges from
2187 to 2850 pixels with the average of 2541 pixels and
slice thickness of 100 nm. This dataset includes roots of six
different lines of wheat. The images were saved as stack
using 8 bits per pixel precision, and randomly split into
training, validation and testing sets of 32, 8 and 7 volumes
respectively.

3.2 Training Process
The network is implemented using Torch7 [36], and trained
on an Nvidia Titan X with 12 GB RAM. The number of

features at each layer for the internal encoder-decoders is set
to 128, except where noted otherwise in Sections 2.2 and 2.3.
During training, mini-batches of 5 × 1283 crops were ob-
tained from volumes at random. While the volumetric im-
ages are very large, only a small proportion of voxels contain
root material. This means that the majority of random vol-
ume positions containing no root material, so do not always
provide helpful training data. This imbalance between the
foreground and background leads to challenges when train-
ing these networks on random mini-batches, where high
accuracy may be achieved simply by predicting no root
material at all. Our approach is to produce crops nearby
known root locations from the ground truth a proportion of
the time, ensuring that a percentage of each batch contains
root material. Prior to training, a random sampling of co-
ordinates containing root material are drawn from each
volume. During training, whenever a volume is used, a
position nearby one of these pre-sampled points is chosen
30% of the time, with the remaining patches cropped en-
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tirely at random, ensuring only that the crop remains within
the bounds of the image. We applied the same sampling
regimen during validation to ensure that challenging crops
were chosen.

Each network was trained using rsmprop [37] with a
learning rate 2.5× 10−4. The batch size and/or parameters
of each network were adjusted as appropriate to maximise
their utilisation of the available GPU memory, to ensure
a fair test. Each network was trained for a maximum of
100 epochs, and the epoch with the highest validation
performance was kept. The final predications are obtained
by thresholding the output of the final layer, with every
location segmented during testing. Figure 4 plots the train-
ing and validation performance for the different network
architectures. The loss value of the training set is calculated
at each epoch, with the validation loss calculated every 5
epochs.

We found that the both variants of the multi-resolution
network converged faster than the other architectures, and
the multi-loss multi-resolution network provided the most
stable validation performance.

3.3 Evaluation Metrics
During training we evaluate the training performance of the
segmentation by recording successes (true positives and true
negatives) and errors (false positives and false negatives) on
a per-voxel basis. We calculate these metrics across all mini-
batches for an epoch, which based on our training sampling
regime includes the sampling bias towards selecting regions
containing root material over those chosen at random. Dur-
ing validation, we use two passes and combine the results
to ensure that a sufficient sampling is obtained from each
volume. Once training is complete, each network is finally
evaluated by processing the entire stack at every location,
producing an output segmentation that may be compared
to the ground truth.

We evaluate our network using a number of commonly
used metrics. Since root voxels are greatly outnumbered by
background, we do not consider measures dependent on
true negative success (such as overall percentage accuracy),
as these values are often close to 1, and less helpful. We
first calculate precision and recall, useful for identifying gen-
eral segmentation accuracy, but also distinguishing between
under- and over-segmentation. These are calculated as:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
. (2)

Dice =
2|G ∩ S|
|G|+|S|

. (3)

It is also common to calculate Dice from precision and recall,
where it is referred to as F1 score, as follows:

F1 =
2× (Precision×Recall)
Precision+Recall

. (4)

We present only Dice here, as these measures are equivalent.
Dice scores range from 0 to 1, with values closer to 1

indicating better segmentation and closer adherence to the
ground truth.

We also calculate Jaccard index, or Intersection over
Union (IoU). This measures the overlap between the pre-
diction and ground truth, and is calculated as:

IoU =
|G ∩ S|
|G ∪ S|

. (5)

Similar to Dice, IoU scores closer to 1 indicate better seg-
mentation performance.

3.4 Quantitative Evaluation

Figure 5 provides an overview of the networks discussed in
section 2, including the multi-resolution network we present
as the contribution of this work. We compare the accuracy
of native and downsampled encoder-decoders, and two
variants of our multi-resolution network, one with auxiliary
loss functions applied to each branch.

In order to provide a reliable comparison with existing
techniques, we also evaluate a volumetric U-Net [33] as
a baseline architecture, and an image processing pipeline
driven by the Root1 software package. Root1 performs seg-
mentation using edge detection, filtering and thresholding,
and forms part of a pipeline incorporating dilation and con-
nected components typically completed within the separate
Volume Graphics application. Volumes were first segmented
using Root1, stacks were saved and then loaded into Volume
Graphics. Optional dilation of varying levels was applied in
order to connect roots that may be separated by small areas
of background, before user-selected seed location(s) and the
3D region growing tool were used to select the root system
as a contiguous connected component. It is worth noting
that this semi-automatic noise removal pipeline could also
be applied to the output of any of the deep networks consid-
ered here, however we wanted focus on full automation of
these machine learning techniques. Nevertheless, we utilise
the entire process for Root1 and present these results in
order to provide a comparison between our approach and
a leading existing pipeline in full. As noted below, we
also remove any segmented soil container from the U-Net
and native networks specifically, however we perform no
noise removal or post processing on our multi-resolution
networks. Table 1 presents a comparison of results across all
validated approaches.

The results in Table 1 show that deep learning ap-
proaches often offer improved performance over traditional
imaging pipelines, despite human intervention in the latter.
Root1 without dilation but including manual noise removal
outperformed the common deep network architectures on
combined metrics. Our multi-resolution approach outper-
forms all other deep learning techniques by a margin of
0.246 IoU. The results also show that, depending on the
approach, there is often a trade-off between high precision,
and high recall.

We used three alternate pipelines for Root1 software, all
derived from the outline in the original work. We segmented
each root volume in the test set, and then applied varied
levels of dilation to the output. Finally, a user selected
one or more seed locations to extract connected compo-
nents. The pipeline without dilation showed a competitive
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Figure 4: The loss calculated for training and validation per epoch for different architectures of the learning based methods.

Table 1: Segmentation accuracy metrics for the MLMR net-
work when trained both using our original data augmen-
tation approach, and following incremental learning using
hard negative examples.

Method Precision Recall Dice IoU

Image based approaches

Root1 - no dilation + cc 0.764 0.477 0.579 0.414
Root1 - dilation x2 + cc 0.319 0.786 0.445 0.291
Root1 - dilation x3 + cc 0.209 0.865 0.325 0.199

Deep learning based approaches

Volumetric U-net 0.453 0.589 0.508 0.342
Native stacked 0.330 0.775 0.461 0.301
Downsampling 0.646 0.323 0.428 0.274
Single-loss multi-resolution 0.673 0.767 0.717 0.559
Multi-loss multi-resolution 0.733 0.750 0.740 0.588

precision score. Manually selecting connected components
means that much of the noise is removed, but also any
roots not connected to the main root structure. This is borne
out in the precision score of 0.764 and yet a low recall of
0.477, indicating half the root system is missed on average.
Introducing dilation substantially increases recall, as roots
that are only slightly separated may join the main root mass
and be included in the final segmentation. The drawback of
this approach is that the root system is now oversegmented,
for example a precision of 0.209 indicating only 20% of the
marked root pixels are true positives. We found it hard to
find an adequate balance between precision and recall using
this technique, and correction of segmentation error placed
a heavy burden on the user to find root material.

The conventional stacked encoder-decoder network
achieved the best recall score of 0.775, but its precision
of 0.330 is lower than the average, and represents a very
high rate of false positives. It obtains among the lowest
segmentation overlap, i.e. Dice score of 0.301 and UoI of
0.461. In essence, the network is prone to over-segmentation;
it avoids missing roots, but provides too much noise and
misclassified background. The volumetric U-Net shows in-

creased precision of 0.453, indicating fewer false positives
when compared to the native network. The U-Net con-
sumers fewer resources, meaning input volumes of 643

are possible, compared with 163 for the while for native
network. This represents a wider field of view for the
network, incorporating more root material, and increasing
a networks ability to distinguish between true root material
and clutter. Despite this, the recall for the network drops
to 0.589, suggesting that a shallower network that does
not incorporate residual blocks is less able to discern root
material from background. It should also be noted that in
some volumes the volumetric U-Net and native resolution
networks incorrectly segment the container holding the soil
as root material. For these two methods, this region was
manually eliminated from the output segmentation mask
to establish a fair comparison in the soil region with other
methods. No post-processing was performed on the output
of either multi-resolution method.

Nevertheless, the wider field of view utilised by the U-
Net appears to benefit precision, and the downsampling
network introduced in 2.2 was designed to increase further
the receptive field size of the native network to 1283. Indeed,
results show that the increased field of view improves
the precision to 0.646, representing a lower false positive
rate. However, the recall has been reduced significantly to
0.323, indicating that many areas of root material have been
omitted. This is unsurprising, a lower resolution network
discards much spatial information in favour of a wider field
of view, lateral roots in particular are small structures, and
many are under-segmented by this network. The higher
precision metric does not indicate a better performance
overall, with the downsampling network achieving a Dice
score of 0.428, and UoI 0.274.

We hypothesised that a network incorporating both a
wider field of view, and a native resolution path, would
out-perform methods that selected only one of these ap-
proaches; in Section 2.3 we proposed such a multi-resolution
architecture. The single loss strategy combines the two
parallel networks achieved precision and recall values of
0.673 and 0.767 respectively. On combined metrics, Dice
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(a) Native Stacked

(b) Downsampled

(c) Single Loss Multi-Resolution (SLMR)

(d) Multi Loss Multi-Resolution (MLMR)

Figure 5: Different volumetric hourglass based network
structures and the corresponding details for architectures
that can be implemented on a 12GB GPU.

and UoI increase to 0.717 and 0.559, outperforming the pre-
viously discussed methods. The precision of this network
remains similar to that of the downsampling approach,
but with substantially increased recall over that network,
a fact we attribute to the included native resolution path.
Adding auxiliary loss functions allows us to train each
path independently, enforcing the role of each path, and
further increasing performance. The MLMR network shows
increased precision of 0.733 and recall of 0.750. It is worth
noting that while the native network and Root1 + no dilation
score slightly higher in individual metrics, they achieve this
with a substantial loss in recall and precision respectively.
The MLRL network avoids this trade-off, achieving a Dice
score of 0.740 and UoI of 0.588 across the test set.

Figures 6 and 7 show sample outputs from each of the
tested approaches and provide a qualitative overview of the
relative performance and modes of failure. Figure 6 presents
results on sample slices of a volume, ranging from the entire
soil column through to highly zoomed sections containing

one root. The results confirm our quantitative analysis,
showing that networks operating at native resolution offer
improved recall — they find more roots — and those ap-
plying downsampling offer improved precision — they do
not oversegment. However, in all but the multi-resolution
networks, high performance in either of these comes at the
cost of low performance in the other.

The volumetric U-Net was able to localise and segment
much of the root material, however it also over-segments,
producing a large number of false positives throughout
the volume. The native stacked encoder decoder is able to
discern finer detail, producing more accurate segmentation
of individual roots, but as with the U-Net it produced a
great many false positives. These typically occur on par-
ticles soil components that appear similar in density to
root material, and where a small field of view is unable
to discount them based on shape. By extending the input
FOV and taking structural features of the roots into account,
the downsampling network produced many fewer false
positives. However, many finer roots such as laterals were
not segmented, as can be seen in Figure 6 (Down-sampled
row) and Figure 7f. The fidelity of the root boundaries is also
reduced by the drop in resolution. Our major contribution in
this paper is two approaches to a multi-resolution network,
utilising different loss function strategies. Both the multi-
resolution single-loss SLMR and multi-loss MLMR archi-
tectures successfully produce finer segmentation detail that
is quantitatively close to the ground truth. The single-loss
architecture produces a higher number of false positives,
more clearly shown in Figure 7h. This is due to the loss
function only being applied to smaller 163 patches, and not
calculating a loss over the wider FOV in the downsampling
branch. A multi-loss approach considers this important
contextual information in the surrounding root structure,
successfully segmenting fine root boundaries while also
suppressing many of the false positives. Some false positives
remain, we address these in 3.5 using an extended training
approach.

Root1 was able to segment much of the major root
system, but omitted some finer root detail. Due to the use of
a connected component approach to noise removal, Root1
does not produce false positives where they are discon-
nected from the root system. However, this also causes roots
to be omitted from the output if they have even minor
disconnections, causing many roots to be lost (Figure 7,b).
This is also not an automatic process, with this root system
requiring multiple user-located seed positions for the con-
nected component process. We found a single seed location
in Figure 7,b did not produce satisfactory results, and this
figure was generated using three seed locations. Adding
dilation to the post-processing of Root1 allows the recovery
of smaller roots, at the cost that the root boundary no-longer
aligns with the ground truth, making measures such as root
diameter and volume unreliable. Some finer root detail was
still lost after dilation, such as the vertical root near the top
of the volume in Figure 7.

3.5 Incremental Learning using Hard Negative Exam-
ples
While the MLMR network produced fewer false positives
than other networks that incorporate native resolution data,
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Figure 6: The segmentation results in a CT slice: original CT image, manual segmentation (ground truth), Root1 and
connected component, Root1 and dilation and connected component, volumetric U-Net, conventional stacked hourglass,
downsampling hourglass, single-loss multi-resolution hourglass, multi-loss multi-resolution hourglass. a-f) different
resolution from different slices.
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Figure 7: Volume rendered from the segmentation masks: (a) manual segmentation (ground truth), (b) Root1 and connected
components, (c) Root1 + dilation x2 and connected components, (d) Root1 + dilation x3 and connected components,
(e) volumetric U-Net, (f) native stacked encoder-decoder. (g) downsampling network, (h) single-loss multi-resolution
hourglass, Ii) multi-loss multi-resolution hourglass
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some false positives remain, for example those shown in
Fig. 7.f. One solution to this problem would be to eliminate
small isolated groups of voxels using a connected compo-
nent algorithm, similar to that used in the Root1 pipeline.
Mathematical morphology is also commonly used in seg-
mented root images to improve connectivity and reduce
noise. This approach is not robust; the amount of dilation
or erosion depends on the dataset and may even change de-
pending on the individual image. Successful segmentation
will often require a human-in-the-loop approach to post-
processing. Our approach remains fully automatic: we wish
to remove noise at a network level.

We use the false positives identified in the training set
as additional hard negative examples when incrementally
training the network. A snapshot of the MLMR network
that poor precision was used to completely segment the
training dataset, predictions were compared to the ground
truth and the false positive regions were extracted and
combined with the list of available training patches used in
section 3.2. In this new training regime, the 30% of mini-
batch samples specifically targeted at root material were
still used, along with an additional 20% from the hard
negative, i.e. false positive, locations. The remaining 50%
of points were still chosen at random from any location in
a volume. This approach ensures that there is a balance be-
tween sampling the seldom seen but important positive and
negative examples, along with samples of random image
regions. The network was then trained for an additional
100 epochs as per our original training process, and the
best validation performance was selected. Table 2 shows
a quantitative comparison of the segmentation results for
the best performing MLMR network, and the refined model
trained with additional hard negative examples.

Table 2: Segmentation accuracy metrics for the MLMR net-
work when trained both using our original data augmen-
tation approach, and following incremental learning using
hard negative examples.

MLMR Network Precision Recall Dice UoI

Incremental learning 0.733 0.750 0.740 0.588
No incremental learning 0.852 0.741 0.792 0.657

As hypothesised, the introduction of hard negative train-
ing examples substantially increased the precision of the
network, from a value of 0.7327, to 0.8524. Recall dropped
very slightly, likely due to proportionally less training time
devoted to root locations. Despite this, Dice and UoI scores
increased, with a UoI score of 0.6570 representing an overlap
with the ground truth 0.2464 higher than the closest compet-
ing approach.

Figure 8 illustrates the reduction in noise attributed to
hard negative training, with 3D rendered views as well as
sample segmented slices. Red circles highlight areas of noise
that are no longer segmented by the network following
retraining.

4 DISCUSSION

The proposed MLMR network offers accuracy improve-
ments over traditional bottom-up image analysis, as well

as newer deep learning architectures. Beyond the accuracy
improvements, there are a number of other key benefits
in segmenting volumes using a patch-based volumetric
approach. Commonly used tools such as RooTrak and Root1
make assumptions about the connectivity of root systems
that patch-based deep learning does not. RooTrak uses level
sets to track the movement and growth of roots moving
downward through the stack. This raises complexity where
roots travel sideways, or upwards, and requires the tool
to spawn additional processes to handle these events. In
addition, as the positions of roots in slice t are dependent
on successful segmentation at slice t-1, failures cannot be
recovered, while the level set’s curvature term that en-
forces smoothness of root edges it also disproportionately
penalises fine roots with small diameter. We have also found
that RooTrak often misclassifies roots travelling along the
edge of the container as background, requiring manual
restart. This is a failure mode that we have not observed
in the MLMR architecture.

Root1 makes different assumptions about the root sys-
tem, requiring additional post-processing to achieve the
best results. Pixels are segmented individually based on
local image information, but due to the background noise
produced, a connected component algorithm is used to
extract the main root system. This technique assumes that
the segmentation has fully connected all roots, something
that cannot be guaranteed in practice. Mathematical dilation
is often used to fill small gaps, but this is a human-controlled
and subjective process, and larger gaps will remain.

MLMR makes no assumptions about root system con-
nectivity, beyond any shape constraints enforced by the
learned filters. Each volumetric patch of image is considered
in isolation, meaning that any failures are not propagated
to nearby regions. This means that issues such as contrast
changes throughout the volume are ignored, as roots are
considered only against the background in the patch in
which they reside. This patch-based approach has the addi-
tional advantage of making the system parallelisable, which
is helpful given the computational demands of 3D imaging
pipelines. Indeed, a single thread, single GPU implementa-
tion of any of the deep networks run over a large volume
may take up to 10 hours to complete, a multi-threaded
implementation will require a fraction of this time.

The advantage of the RooTrak and Root1 approaches
is that noise — errors in which background is incorrectly
segmented as root material — are explicitly removed as
part of the process. RooTrak does not explore image regions
far from the level set, and Root1 only preserves pixels con-
nected to the main system. We perform no post processing,
and thus do not suppress any noise should it be output
in the segmentation. False positives typically occur where
organic particles appear with similar size and shape to small
roots. Other false positives are related to unconnected roots,
perhaps remaining in the soil from another source, that are
picked up using our approach. We decided to avoid any case
specific post-processing in this work, and we have focused
on minimising noise through careful network design and
training. Nevertheless, additional techniques for identifying
and removing false positives are an avenue for future work.
In its current form, we found that it was possible to extract
the primary root system for quantification using an existing
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Figure 8: Axial view (top and middle rows) and volume rendered (bottom row) from the segmentation masks: a) original
CT image, b) manual segmentation, c) MRML without incremental learning, d) MRML with incremental learning. Red
circles indicate false positive segmentations. e) rendered volume of the ground truth for the plant in the top row., f)
rendered volume of MRML without incremental learning , g) rendered volume of MRML with incremental learning.

tool [38]. This tool traverses the primary root system from
detected tip locations to the seed, and fits smooth polyno-
mial splines to major roots. The tool extracts the architecture
and outputs in the widely adopted RSML format [39].

5 CONCLUSION

In this paper a novel multi-resolution encoder-decoder was
proposed for volumetric segmentation of roots from soil in
CT images. The method used volumetric images that had
been previously annotated by an expert user.

The proposed network, MLMR, comprises two encod-
ing and decoding paths, separately responsible for dealing

with different image resolutions. The native path handles
small patches of image at high resolution, whereas the
downsampling path considers a coarse but wider field of
view. Features from the wider field of view are cropped
appropriately to spatially align with the native path, are
concatenated, and used for segmentation by the final layers
of the network. Multiple loss functions were used to train
the system, ensuring that each path learned useful features
that contributed to overall network performance. We also
demonstrate that incremental learning through hard nega-
tive images improves the precision of the network, a process
that did not add substantial time to the overall training
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process.
We compared our approach to an existing and popular

root phenotyping tool, as well as a number of commonly
used encoder-decoder networks, such as a stacked hourglass
[25] and a volumetric U-Net [33]. Our results demonstrate
that deep learned approaches often outperform traditional
imaging techniques, but also that single resolution deep
architectures often sacrifice either recall or precision, based
on their configuration. Native resolution offers better seg-
mentation of root boundaries and fine roots but increases
noise. Wider fields of view reduce noise, but also under seg-
ment root material. MLMR was able to successfully segment
with both high recall and high precision, resulting in overall
scores on Dice and IoU above any competing technique.

All code, data and trained models will be released pub-
licly. Future work in this area will continue to improve
network architectures to provide finer segmentation detail,
and to utilise transfer learning to explore the use of these
networks in different imaging or scanner settings and for
different species. We will also explore the use of a wider
variety of soil types, with a view to establishing a richer
training dataset and improving the robustness of these deep
learning techniques to changes in the input. Overall, we
have demonstrated that a multi-resolution encoder-decoder
approach can automatically segment plant roots from CT
soil images. Adoption of this tool will greatly reduce human
involvement in segmentation of CT images; MLMR is there-
fore integral for enhancing throughput and consequently
advancing knowledge of root-soil interactions and plant
selection in breeding programs.
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