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The taxonomic analysis of sequencing data has become impor-
tant in many areas of life sciences. However, currently available
software tools for that purpose either consume large amounts of
RAM or yield an insufficient quality of the results.
Here we present kASA, a k-mer based software capable of iden-
tifying and profiling metagenomic sequences with high compu-
tational efficiency and a small user-definable memory footprint.
We ensure high sensitivity and precision via k-mers on amino
acid level with a dynamic length of multiple k’s. Custom algo-
rithms and data structures that are optimised for external mem-
ory storage enable for the first time a full-scale metagenomics
analysis without compromise on a standard notebook.
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Introduction
Decoding the complex composition of microbial communi-
ties is important, for example, to determine Earth’s biodiver-
sity or its role in human diseases. However, this poses a ma-
jor challenge. One of the biggest problems is the sheer num-
ber of different organisms living together in a biotope. Most
organisms thrive only in the community of other organisms
so specific cultivation of single species is usually impossi-
ble. Microbial communities therefore must be analysed as
a whole which is done by examining the totality of the ge-
netic material in the community: the metagenome (1). The
technology of Next-Generation Sequencing (NGS) offers the
possibility of creating vast amounts of DNA sequences (so
called ‘reads’) from the metagenome, usually several million
per dataset, each with a length between tens and hundreds of
nucleotides (2). The processing and taxonomic identification
of these reads requires special bioinformatics methods.
In recent years, several software tools that are capable of
comparing reads to a database containing genomic sequences
of known organisms have been published (3). Apart from the
investigation of microbial communities, most of these tools
can also be used to detect and quantify contaminations in any
sequencing data, so they can be extremely valuable for data
quality assurance in most application areas of NGS.
One of the best known programs for comparing sequences to
large databases is MegaBLAST (4), which uses a seed-and-
extend heuristic for finding local alignments between a read
and the database. While this tool has a high usability and
accuracy, it is not very well suited for quickly processing
large numbers of sequences, since the analysis of complete

NGS datasets using MegaBLAST would require high
computational effort. Other tools like Kraken (5), Kraken2
(5, 6) and Clark (7) use a more time-efficient approach
called k-mer sampling that compares short sub-sequences
of a fixed length k (k-mers) taken from the reads with a
pre-computed index derived from the database. Kraken uses
a least-common-ancestor (LCA) approach to infer taxonomic
memberships, whereas Clark needs a fixed taxonomic rank
beforehand. These methods allow very fast identification but
require huge amounts of random-access-memory (RAM),
sometimes more than 100 GB, especially for comprehensive
databases. Other solutions try to balance between time,
accuracy and memory consumption like Centrifuge (8),
mash (9), sourmash (10), MetaCache (11), Ganon (12),
Kaiju (13) and many more. However, due to the still growing
number of reference genomes in, e.g., the NCBIs nucleotide
sequence database (14), the amount of primary memory
required by almost all of these tools finally scales beyond
the scope of a conventional notebook. This means that the
user is forced to rely on special and expensive hardware to
perform metagenomic analysis.

In this paper we introduce kASA (k-mer Analysis of
Sequences based on Amino acids), a fast, accurate and de-
terministic k-mer based tool for the analysis of metagenomic
sequencing data with a very small, customisable memory
footprint. The low memory requirement is achieved by an
index that does not need to reside completely in the primary
memory (RAM) but can remain largely on secondary mem-
ory like hard disk or solid state disk (using data structures
from (15)). This feature makes kASA the first software tool
capable of analysing complete metagenomic datasets on a
standard commercially available notebook without losing
accuracy or performance. kASA is written in C++, free, open
source and available for all mainstream operating systems
(Linux, Mac, Windows) and platforms (Desktop, HPCC,
Notebook).

Unlike most other k-mer based tools, kASA constructs k-
mers on an amino acid level by converting triplets of nu-
cleotides via a given translation table that corresponds to the
genetic code. This way, storing the k-mers requires less space
(five bits instead of six), and in addition the sensitivity im-
proves as synonymous DNA mutations (i.e. those that do not
affect the encoded amino acid) no longer affect the matching
process. In addition, we convert all genomic data (and not
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only coding regions) to also allow not yet annotated sequence
contigs as reference.
Another feature of kASA is the use of an entire range of word
lengths k. Most other k-mer based methods use only a sin-
gle k and thus have to make a singular decision how to the
balance between sensitivity (small k) and precision (large k).
With kASA the user can specify a small and a large k (12
is the current maximum) and the tool will try to match all
word lengths of this closed interval. By dynamically adapting
the word length k, kASA is able to optimise both sensitivity
and precision. If a k-mer is too short for being specific for a
particular organism it may become specific with longer word
length. On the other hand, if a longer k-mer cannot be found
in the index due to a mutation, it could possibly still be found
when using a shorter word length. The index is designed in a
way that its size does not increase when using multiple word
lengths.
These capabilities allow kASA to compete with or even out-
perform other tools.

Results and discussion

Pre-Processing
The comparison of NGS data with a database can be signifi-
cantly accelerated by pre-processing the database into an in-
dex data structure. The index building step in kASA is de-
picted in Figure 1.

fasta
file

(k-Mer, tax ID)
.
.
.

Already
created
index

Merged
index

convert, sort,

deduplicate

save

repeat

union

Fig. 1. Flowchart for creating the index. In the first step, as much DNA from a fasta
file as possible is transformed into a container of k -mers which is then stored onto
the hard drive as a pre-processed version of the index. If there is any DNA left in
the file, this step is repeated and the resulting container is merged with the existing
one on the drive. The process iterates until there is no data left in the file.

The DNA sequences from the database are scanned in all
three reading frames and converted via a given table to amino
acid sequences, including coding and non-coding regions.
From the translated sequences all overlapping 12-mers (i.e.
k= 12 amino acids, the maximum k supported by kASA) are
extracted and saved into a file stored in secondary memory,
together with the taxonomic ID of their source. After sorting
and merging redundant entries (those, who share the same

12-mers and taxonomic ID), the index is ready to be used
for identifying or profiling NGS data. Note, that this implies
having multiple taxa for the same k-mer is allowed. In order
to avoid having to rebuild the index every time the database
is changed, kASA supports the addition of new reference se-
quences to the existing index without rebuilding.
In short the processing of sequencing reads works as follows:
First the reads and their reverse complements are converted
in the same manner as the database sequences. Then a set-
intersection-like algorithm is used to find matches between k-
mers from reads and the index, starting with the smallest k. If
a hit is found, k is increased until the k-mers stop matching or
the maximum k is reached. Any match is marked and scored.
A more detailed description of these algorithms can be found
in the Methods section.

Taxonomic identification of simulated reads
To evaluate the robustness of our tool against sequencing er-
rors, we simulated sequencing data by sampling reads from
2500 randomly chosen bacterial genomes of known taxa with
ART (16) (1026811 reads) and mason (17) (80211 reads).
Since these genomes also serve as a reference, this test can
be considered a sanity check. We also generated a negative
control with reads of two species that were not part of the
database used (Arabidopsis thaliana and Phaeodactylum tri-
cornutum). To also see how other methods behave, we in-
cluded some of the above mentioned tools. Since no general-
isation should be made from this experiment, we recommend
looking into a more comprehensive benchmark (18).
Detailed descriptions of our evaluation methods, the tools
used and their settings, thresholds and formulas can be found
in the Materials section and in supplementary files A and B.
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Fig. 2. Accuracy measurement of simulated data on species level. The shown
measures range from 0.75 to 1 to stress differences and were averaged from the
results of both tests. Specificity can be seen in the supplementary file A. Tools are
sorted by F1 score.

Figures 2 and 3 show all tested tools which are suffi-
ciently able to recognise slightly changed contents of their
database. kASA has on average the highest F1-Score on the
species level and genus levels followed by Centrifuge and
MegaBLAST. The increase in sensitivity and precision on
genus level for all tools except Clark is due to the simulated
mutations and sequencing errors sometimes making closely
related species a better match. This also explains why ex-
act matching algorithms operating on DNA with a fixed k
are significantly worse than algorithms that support sequence
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Fig. 3. Accuracy measurement of simulated data on genus level. For consistency,
the same order, value range and colour as in Figure 2 is used. All tools except Clark
increase their sensitivity and precision.

alignments with gaps like Centrifuge or MegaBLAST. The
significant increase in sensitivity and precision of Kraken2
stems from its method of abstracting to genus level if it can-
not pick a certain species.
Our tool achieves superior accuracy even without explicitly
modelling gaps since it is a k-mer based approach with dy-
namically adjusted word lengths. This ensures, that for a
small enough k the non-mutated part matches. On top of that,
we abstract to the amino acid level which makes at least one
frame not likely to be affected by a single mutation due to
robustness against synonymous mutations.

Kraken Clark kASA kASA
Genus Genus Genus Species

HiSeq
Sensitivity 0.82 0.81 0.98 0.98
Precision 0.97 0.98 0.99 0.99
F1 Score 0.89 0.89 0.98 0.98
MiSeq
Sensitivity 0.80 0.80 0.99 0.94
Precision 0.91 0.91 0.99 0.94
F1 Score 0.85 0.85 0.99 0.94
simBA5
Sensitivity 0.94 0.94 0.99 0.98
Precision 0.98 0.99 0.99 0.98
F1 Score 0.96 0.96 0.99 0.98

Table 1. Results for the mock community datasets (7). Results from Kraken and
Clark with word length k = 23 are displayed here.

This advantage becomes especially visible when we apply
kASA to the reference datasets used in (5, 7). The data sets
"HiSeq" and "MiSeq" are described there as metagenomes
containing sequences from ten genomes with the same abun-
dance and the data set "simBA5" as consisting of bacterial
and archaeal sequences sampled from replicons of 607 gen-
era with mason.
A comparison between Table 1 and the results presented in
the publication of Clark (7) shows that kASA has often both
better sensitivity and precision than Kraken and Clark even
if it operates on a lower taxonomic level (species rather than
genus).

Because kASA was designed with minimal memory require-

Identification

Fig. 4. Memory and space, which is used to build the index or identify the test data,
and sizes of indices. The amount of RAM used by every tool as well as the amount
of disk space in GB used to store the index is shown in logarithmic scale. Colours
and order are equivalent to the ones in Figure 2 and Figure 3. Memory and space
requirements of Kraken2 are directly correlated. kASA is shown with its minimum
requirement of 5 GB. Without RAM restrictions, kASA uses 51 GB for identification
and profiling, and as much as is available for index building which was 99 GB in our
case.

ments in mind, we examined the memory consumption of
each tool during index building and identification, as well as
its index size. Results show (see Figure 4), that with standard
settings only kASA and MegaBLAST would be able to build
up an index on a standard notebook with 8GB RAM. Based
on the tools considered, no other tool than kASA would be
able to identify any data on this platform even if pre-built
indices were used.

1s

1m

1h

Fig. 5. Wall clock time for the accuracy tests of kASA and other tools. Times were
averaged for both tests and sorted in the same manner as in Figure 2 and 3. The
plot has a logarithmic y-Axis marking seconds, minutes, and hours. kASAs index
was copied into RAM beforehand, which took about 83s. Omitting read identifi-
cation and creating only a profile speeds kASA up by a factor of ∼1.3. Detailed
measurements e.g. for performance on a Notebook can be found in supplementary
file C.

Regarding computational speed, Figure 5 shows that Kraken2
is on average the fastest tool and MegaBLAST the slow-
est. kASA ranks midfield in the speed comparison; it ran
on the same platform as the other tools and took less than
six minutes on average. Reducing the memory limit to 5GB
increases the run time by factor ∼1.6 in most scenarios. Re-
gardless, the run times remain feasible.
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Taxonomic profiling of simulated data

A taxonomic profile is a list of all organisms that have been
identified in a dataset together with their respective abun-
dance. This abundance is estimated by normalising the rela-
tive frequency against genome length and ploidy.
Consistent with other studies (e.g. (19)), we use the follow-
ing method to calculate the relative frequency of each taxon:
Given an identification of the reads, we determine the most
significant taxon for each read and count the number of reads
per taxon. We then divide these read counts by the total num-
ber of reads in the sample. This relative frequency is suffi-
cient to compare the accuracy between tools, so we do not
normalise against the genome lengths and ploidy.
Apart from this method, kASA also offers a direct procedure
for creating profiles by counting k-mers that are specific for
each taxon and dividing the k-mer counts by the total num-
ber of uniquely matched k-mers in the sample. If a k-mer is
not specific, each mapped taxon gets an equal proportion to
their count which is then divided by the total number of non-
uniquely mapped k-mers in the sample. Depending on the
ambiguity of the index, either of the relative frequencies may
be relevant.
If taxonomic profiling is the main goal of a study, it is
possible with kASA to completely dispense of the identi-
fication of the reads since this speeds up processing by a
factor of ∼1.3. Furthermore, we advise to shrink the index
by discarding a fixed proportion of k-mers from all taxa in
equal proportions. This further speeds up the data processing
without making significant sacrifices in terms of accuracy.
For example, a reduction of the index by 50% decreases
the F1-Score in our experiments to only 0.98 but increases
performance by a factor of ∼1.4. A detailed investigation
of the effect of different index sizes on the profiles can be
found in supplementary file F.

Regarding the quality of taxonomic profiles, we evaluated
kASA with the same data, methods and quality measures as
used in a metastudy by Lindgreen et. al. (19). Although
we did not run any of the tools studied in the paper except
Clark again, we recalculated all measurements to ensure con-
sistency (for more details, see supplementary file D).
Figure 6 and 7 show that kASA is the best tool regarding
log-odd scores and only slightly differs in value for the
Pearson correlation coefficient. Relative frequencies for
this comparison were gathered per read for consistency, as
mentioned above, but profiles generated by a direct use of
k-mer frequencies deviate only slightly (see supplementary
file D sheet 2).

The CAMI-Challenge (20) proposes another comparison
principle. It measures accuracy not only by difference from
a gold standard but also by correctly identified taxa at every
level. Combined with OPAL (21) it creates a framework for
profile testing which offers the opportunity to compare kASA
with even more tools. OPAL treats additional entries in the
taxonomic profile as false positives even if their percentages
are very low. To address this, we set a threshold of 0.001%

Fig. 6. Profile quality measured by the mean of log-odd scores. The log-odds of
absolute differences between relative frequency and gold standard were summed
per dataset and averaged regarding all six datasets. Tools are sorted by this score
meaning lower is better. Data from the corresponding publication (19) was also used
in the publication of Centrifuge (8) where the authors wrote, that their accuracy was
similar to that of Kraken. The newest version of Clark was used to verify its own
results as can be seen in supplementary file D.

Fig. 7. Profile quality measured by the mean of Pearson Correlation Coefficients.
The Pearson Correlation Coefficients of vectors of relative frequencies in relation
to the respective truth for every dataset were averaged and shown here. Tools are
sorted by that value. Results for the best four tools differ only slightly.

in the profile on the species level.

Tool Sum of scores
Quikr 36
kASA 39

MetaPhyler 48
FOCUS 60

MetaPhlan 2.0 62
TIPP 62

CLARK 64
mOTU 77

Table 2. Sum of scores given by OPAL for the CAMI dataset.

As shown in Table 2 and supplemental file E, kASA ranks
second according to OPAL when using default settings.
This indicates, that kASA would perform well enough for a
CAMI-Challenge given the opportunity to discard low scor-
ing entries.
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Analysis of real data
To test kASA’s ability to identify known organisms in real
data, we used data from the Human Microbiome Project (22)
to create taxonomic profiles and compare the results with
those created by Kraken2 (5, 6) equipped with the same
database. We chose Kraken2 because it was one of the few
tools from our selection which passed our sanity check, was
able to build an index that large (105 GB) on our system and
finish in a reasonable time.

Scientific Name kASA u. kASA n.-u. Kraken2
Prevotella 43.5 27.9 30.7

Streptococcus 9.9 16.5 13.5
Neisseria 4.8 15.2 11.5

Veillonella 7.8 7.7 7.7
Porphyromonas 9.2 6.6 6.8
Haemophilus 3.9 5.1 4.5

Campylobacter 2.8 1.6 1.4

Table 3. Selection of genera with the highest relative frequency (in %) found in data
sampled from human saliva (SRS147126). Results for kASA are shown with unique
and non-unique values for k=12.

Table 3 shows that both tools agree in the most abundant
genera although in different proportions depending on
unique or non-unique counting. All detected genera are
known to occur in the human oral flora which verifies our
results. On phylum level both tools predict very similar
proportions as shown in supplemental material G.

kASA can process reads of arbitrary length, so we
were able to also analyse data from third generation se-
quencing technologies, namely from the Nanopore-Whole-
Genome-Sequencing-Consortium (23) who used the Oxford
Nanopore MinION technology (24) to sequence data from
the GM12878 human cell line. Three samples were down-
loaded and analysed. kASA detected, as expected, the hu-
man genome as well as the Epstein-Barr virus. This leads
to the conclusion that no contaminants were sampled which
could have influenced an assembly. The taxonomic profiles
are given in the supplemental material I. Note that all other
taxa appearing in the profiles only have very low unique k-
mer counts and are therefore likely artefacts due to sequenc-
ing errors or short similarities.

Conclusions
Our tests show that kASA performs taxonomic analyses at
different taxonomic levels with excellent sensitivity and pre-
cision. The use of a dynamic k instead of a fixed word length
proves to be a valid method for improving sensitivity without
sacrificing precision. The abstraction to amino acids further
increases the robustness of kASA to mutations without the
need for sequence alignment with gaps. This shows that our
approach can compete with or even exceed commonly used
approaches.
In addition, kASA is, to our knowledge, the only available
tool providing a RAM consumption so highly adjustable that
it also works on cheaper computers at reasonable speed and

without loss of accuracy. It therefore allows scientists who do
not have access to expensive hardware to run their analysis
without much effort or help from other sources.

Methods

Index creation
As mentioned before, pre-processing a database to create an
index ensures that only necessary calculations are performed
while identifying or profiling NGS data. This step (named
‘build’ in kASA) converts a nucleotide database in fasta-
format to a binary file containing k-mers and saves it to sec-
ondary memory, e.g. the hard drive. Accessing this file dur-
ing a comparison would create a lot of slow I/O operations,
even when using an SSD. To keep the number of these op-
erations minimal, we build a prefix trie (25) from the index
containing the first six coded letters of each k-mer. Each leaf
of this trie contains two integers representing the upper and
lower boundaries of the range containing k-mers that share
the same prefix. If this prefix is matched, only a fraction of
the index must be searched for the remaining suffix. This sig-
nificantly reduces the search space and since the trie is small
enough to fit into primary memory, prefix matches are per-
formed very quickly.
Another important step in the construction of the index is the
linking of DNA and its taxonomic ID. In order to recognise
the origin of the DNA forming the nucleotide database, we
use accession numbers from the fasta files and the NCBI tax-
onomy database. If there are no accession numbers or taxo-
nomic IDs available, a dummy ID is given and the user re-
ceives a notification. The resulting so called "content file" is
human readable and can be manually modified if necessary.

Identification and Profiling
After building the index, a comparison with NGS data can be
performed. The algorithm is as follows:
First, the DNA and its reverse complement, or already con-
verted amino acid sequences, from a fastq or fasta file are
(translated and) converted into k-mers in a similar way as in
‘build‘. The differences here, are that each k-mer receives a
read ID instead of a taxonomic ID and that duplicates are kept
because they might hint at important motifs. For this reason,
we advise the user and reader to de-duplicate reads before-
hand to not distort abundances. The pairs are then sorted and
passed to Algorithm 1 to see which taxa match to which read.
An overview of this algorithm can be seen in Figure 8.
Note, that paired-end information will not be considered and
all files will be treated as single-end. If kASA is given a RAM
limit then some input files may be too large to be processed
at once so the files are read in chunks.
The scores in algorithm 1 are calculated as follows: Every
read which shares at least one k-mer with the index will be
noted to create a relation from read ID to taxonomic ID.
Since matches of smaller lengths are less significant than
longer ones, this relation is represented with a weighted sum.
Weights wk are gained by a normalised quadratic function
to stress a non-linear increase of significance and to strike
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input : Sorted container I with converted k-mers, the
prefix trie and the index

output: Scores and counts

for Every k-mer x in I do
Get prefix from x;
Get range in index from trie with prefix;
Set k to smallest value;
Perform binary search in range with
substring(x,k);

if Match inside range then
for Every entry b from index in range do

for k← smallest value to highest value do
if substring(x,k) ==
substring(b,k) then

Get all matching taxonomic IDs := T
and read IDs := R;

if |T|== 1 then
Count unique match;

else
Count non-unique match;

end
Calculate scores for T and R;

else
Break;

end
end

end
end

end
return Scores and counts

Algorithm 1: Customised set intersection algorithm used
for a comparison of NGS data with the index. It computes
both the profile and the identification file per read. If the
user is only interested in a taxonomic profile, a modified
version of the depicted algorithm is used. It runs faster
because it needs no bookkeeping of read IDs and thus
allows for a better use of the available memory.

fasta/fastq
file

convert & sort

(k-mer, read ID)
.
.
.

[lower, upper]

(k-mer, tax ID)
...

look up
in trie

read ID mapped to tax ID

=

> <

fetch range
from index

=
?

get next
k-Mer

Fig. 8. Flowchart of the identification algorithm. The DNA and its reverse com-
plement are converted into pairs of k -mer and read ID. After sorting, the prefix of
the first k -mer determines the suffix range over the precalculated index. From this
range, the first k -mer is compared with the one from the input. If they match, the
read ID and the taxonomic ID are scored accordingly. If not, either the next k -mer
from the input or the next index’ k -mer is used. This loop continues until all k -mers
from the input have been processed.

a balance between rewarding long matches but not devaluing
short matches too much. This means, that the values of k2 are
normalised to (0,1] for k = 1, ...,12. The sum using those k-
dependent weights is called: k-mer Score of the taxon t ∈ T
and read r ∈R

k-mer Scoret,r :=
∑
x∈I

klarge∑
k=ksmall

wk ·
|matches with xk(t,r)|

1+ ln(|T |)

where |matches with xk(t,r)| is the number of k-mers that t
and r share and T and R are defined as in Algorithm 1.

Additionally, a second score called ‘Relative Score’ is de-
rived from the k-mer Score in relation to the total number of
k-mers of a taxon t present in the index (also called frequency
of t) and the length of the read r:

Relative Scoret,r := k-mer Scoret,r
1+ log2 (length(r) · frequency(t))

This formula is inspired by the calculation of the E-value
in BLAST although in this case, a higher score indicates a
better hit. The Relative Score can be used to determine the
significance of a matched taxon. From our experience, for a
read of length 100 everything with a Relative Score smaller
than 0.5 can be seen as insignificant and for example sorted
out during decontamination. For the output, the resulting
scores are sorted in decreasing order by this relative score so
that a read can have multiple identified taxa but the leftmost
one has the highest value.

The taxonomic profile that kASA computes consists of the
names, taxonomic IDs and relative frequencies as well as the
number of matched k-mers of all taxa found in a dataset. The
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number and relative frequencies are printed for each k and
for unique and non-unique matches. This is necessary since
the database used to form the index can be redundant for
several reasons: For example an entry is named differently
although it is identical to an existing one, or a subspecies
is identical to another one on the amino acid level. kASA
also offers a value describing the degree of redundancy or
ambiguity present in the index which helps deciding which
frequency to use. Note however, that for comprehensive
databases this value may be overshadowed by large genomes.

Unique relative frequencies are calculated by dividing the
number of uniquely matched k-mers for a taxon t by the total
number of uniquely matched k-mers:

hU (Taxon t)k := unique count(t)
|uniquely matched k-mers|

Note, that "unique" is a local characteristic here since the
input data may be processed in chunks. Global (as in for
the whole data set) uniqueness can only be assumed if
all converted k-mers fit entirely into the primary memory.
However, judging from our experiments, this did not seem to
influence the profiling quality significantly (e.g. Spearman’s
correlation coefficient for dataset A1 from (19) is ρ= 0.96).

If a k-mer x matched multiple taxa, the hit count (how often
that k-mer matched) is divided by the number of matched
taxa. The sum of these floating point numbers is divided by
the total amount of matched k-mers at the end. The formula
is as follows:

h(Taxon t)k :=
∑
x∈I

hit count(t)
|T |

|matched k-mers|

If for example x was found five times in three different taxa,
each of these three would receive 5

3 to its dividend.

In conclusion, the identification file offers an answer to the
question which organisms were found for each read, creating
a basis for further studies. The taxonomic profile provides a
broad overview of which organisms are present in the NGS
dataset and how much DNA was contributed by them.

Materials
The database used for the experiments in (19) contained
species which were no longer inside our version of the NCBI
taxonomy and nt database. We manually fetched these entries
via the E-utilities from the NCBI (26) and created a custom
‘content file‘ containing the respective links to the taxonomic
IDs. It can be found together with the results in supplemen-
tary file D. This procedure was used for experiments in table
1 as well.
Genomes used as database came from the NCBI nt database
as of 2018-06-29 and contained all entries marked as bacteria,
virus or archaea. Genomic data from the hg38 build (27) was
added as well to include a large eukaryote. Since some tools
could not build an index from a database that large, 2500 of

25687 taxa were selected randomly for our simulation. We
ensured that all sampled species had a genus level so no mis-
classification could occur. Synthetic data was created from
this smaller database with ART (16) and mason (17) and tests
were conducted on an HPCC for a comparative basis. The
full database (441 GB in size) and index (1.2 TB in size for
kASA) were used for profiling real data, analysing files for
Table 1 and 2, and creating Figure 6 and 7. To ensure max-
imum performance of kASA, the indices were shrunken via
the lossless method described in the README file which can
be found in our GitHub repository.

Abbreviations
RAM - Random Access Memory, LCA - least-common-
ancestor, SSD - Solid State Drive, I/O - In- and Output, BWT
- Burrows-Wheeler transform, NGS - Next Generation Se-
quencing, HPCC - High Performance Computing Cluster
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