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Abstract10

Some directly transmitted human pathogens such as influenza and measles generate sustained11

exponential growth in incidence, and have a high peak incidence consistent with the rapid de-12

pletion of susceptible individuals. Many do not. While a prolonged exponential phase typically13

arises in traditional disease-dynamic models, current quantitative descriptions of non-standard14

epidemic profiles are either abstract, phenomenological or rely on highly skewed offspring dis-15

tributions in network models. Here, we create large socio-spatial networks to represent contact16

behaviour using human population density data, a previously developed fitting algorithm, and17

gravity-like mobility kernels. We define a basic reproductive number R0 for this system anal-18

ogous to that used for compartmental models. Controlling for R0, we then explore networks19

with a household-workplace structure in which between-household contacts can be formed with20

varying degrees of spatial correlation, determined by a single parameter from the gravity-like21

kernel. By varying this single parameter and simulating epidemic spread, we are able to iden-22

tify how more frequent local movement can lead to strong spatial correlation and thus induce23

sub-exponential outbreak dynamics with lower, later epidemic peaks. Also, the ratio of peak24

height to final size was much smaller when movement was highly spatially correlated. We in-25

vestigate the topological properties of our networks via a generalized clustering coefficient that26

extends beyond immediate neighbourhoods, identifying very strong correlations between 4th27

order clustering and non-standard epidemic dynamics. Our results motivate the joint observa-28

tion of incidence and socio-spatial human behaviour during epidemics that exhibit non-standard29

incidence patterns.30

Author Summary31

Epidemics are typically described using a standard set of mathematical models that do not32

capture social interactions or the way those interactions are determined by geography. Here we33

propose a model that can reflect social networks influenced strongly by the way people travel34

and we show that they lead to very different epidemic profiles. This type of model will likely35

be useful for forecasting.36
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Introduction37

Epidemics are frequently conceptualized as resulting from the transmission of a pathogen across38

a network. Directly transmitted pathogens propagate through susceptible human populations39

and create directed infection trees with an offspring-like process [15]. Each node may be a40

different type (e.g. children may be more infectious than adults [42]) and individuals with41

many contacts are more likely to cause infection than those with fewer contacts [24]. Although42

difficult to observe, infection trees describe a real biological process: these pathogens do not43

reproduce outside of a human host, so the founding pathogen population for an infectee comes44

directly from their infector. Further, we can conceptualise that infection trees occur when a45

true offspring process is constrained to pass through a social network [3, 40], with infection46

occurring according to a specified probability when an edge exists between a susceptible and47

an infectious individual.48

The properties of different contact network types can be described by distributions associated49

with their topology [40]. First order network properties are associated with first order connec-50

tions, as defined by the degree distribution. For finite random networks of reasonable size, the51

degree distribution is well-approximated by a Poisson in which variance is equal to the square of52

the mean. In contrast, for finite scale-free networks, the offspring distribution is power law-like53

with a much higher variance. Further, distributions of second order phenomena describe con-54

nections of length two. For example, the local clustering coefficient is a second order property,55

defined to be the neighbourhood density of a given node [40]. For a limited set of network types,56

we can use analytical expressions for higher moments of the degree distribution to calculate key57

properties of their potential epidemics, such as the probability of epidemic establishment and58

cumulative incidence [22, 28]. Although these higher order moments are tractable for some spe-59

cial cases, they are seldom the primary target of theoretical studies. Semi-empirical networks60

that arise from detailed simulations [11] may have complex higher moments, however their im-61

pact on epidemic dynamics is obscured by the variance of their offspring distribution e.g. [25].62

Here, we explicitly control our network generation algorithm so as to have non-trivial higher63

order structure whilst maintaining a Poisson degree distribution and a pre-specified clustering64

coefficient.65

Epidemics can also be understood in terms of compartmental models, which are more tractable66

mathematically, and are equivalent to large network models with very simple topologies [35].67

Key features of epidemic incidence curves is are often explained by dynamics associated with68

these models [1, 19]. Numerical solutions to multi-type SIR-like compartmental models are69

easier to obtain than for many topologies of network and can explain: the initial growth phase70

[30], the timing and amplitude of the peak [43], epidemic duration [21] and the total number71

of cases [17]. These models can efficiently describe many different types of complexity, such72

as age-specific susceptibility and transmissibility [16], behavioural risk groups [4] and, with73

increasing frequency, geographical location [34].74

The basic reproductive number has been defined for both compartmental models and for net-75

work models. For compartmental models, the reproduction number is conditional on the system76

having a well defined period of exponential growth [18] and is defined as the average number77

of new infections generated by a typically infectious individual in an otherwise infectious pop-78

ulation [18]. The word "typically" is somewhat overloaded in this definition: during the expo-79

nential phase, a system with heterogeneous population will reach a steady-state distribution of80

infectives, corresponding to the eigenstate of the renewal process.81

For network models, the basic reproduction number is most frequently defined as the expected82
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ratio of cases between the first (seed) and second generations of infection. In homogeneous83

networks, this is equal to the product of the average degree and the probability of transmission84

per link per generation. However, many studies of epidemics on networks involve high vari-85

ance degree distributions [26, 25], and so this quantity must be modified to account for excess86

degree [26, 27]. Here, we use R∗ to denote the expected first generation ratio if a network is87

homogeneous, defined to be the expected number of cases in the second generation divided by88

the number in the first generation. Our R∗ is therefore consistent with ρ0 as defined in [26],89

although we choose not to adjust for over-dispersion, because we condition our network con-90

struction on this distribution having low variance.91

The reproduction number for networks has also been defined to be more consistent with its92

definition for compartmental models. In [37] R∗ was defined as an asymptotic property of93

epidemics that were guaranteed to have an exponential phase when they occurred on infinitely94

large networks. We define our R0 to be a finite-network approximation to this R∗ in [37]. This95

R0 is well-defined during periods of exponential growth.96

Both compartmental and network models can be embedded in space [34]. Each node can have a97

location in space while each compartment can refer to a single unit of space. Node density can98

be assigned according to known population densities and compartments can be assigned equal99

spatial areas but different numbers of hosts. In general, the risk of infection passing between two100

people decreases as the distance between their home location increases. The propensity of nodes101

to form links across space or for infection to spread between compartments can be quantified102

using mobility models borrowed from geography [12], such as the gravity and radiation models.103

Here, we are specifically interested in how the overall topology of a spatially-embedded network104

model can be driven by different movement assumptions and thus drive the gross features of the105

epidemics that occur on the network.106

Results107

We used an existing variant of the Metropolis-Hastings algorithm [35] to create a spatially-108

embedded bipartite network of homes and workplaces consistent with the population density of109

Monrovia, Liberia, and with three illustrative movement scenarios (SI Appendix, Fig S1). An110

individual’s propensity to choose a given workplace was determined by the distance between111

their home and workplace and parameters of a gravity-like kernel. The kernel was inversely112

proportional to distance raised to the power α, with movement scenarios generated solely by113

changing the value of α: a control value α = 0 that removed the embedding and produced a non-114

spatial model; a wide kernel with α = 3 typical of developed populations [35, 38]; and a highly115

local kernel with α = 6 representing less developed populations (SI Appendix, Fig S1 part116

C compared with rural Huangshan in Ref [14]). The resulting distributions of distances from117

home to work were driven strongly by our choice of α, with 95% of journeys: less than 24.12km118

for α = 0; less than 12.91km for α = 3; and less than 6.68km for α = 6. Workplace links119

were dissolved into links between individuals in different households resulting in a network of120

cliques (households) that were linked according to α.121

The choice of movement kernel used to create the household-workplace networks affected gross122

features of simulated epidemics, even when controlling for other aspects of the network topol-123

ogy (Fig 1). Unipartite contact networks between households were obtained from the bipartite124

network of households and workplaces and were dependent on three parameters: mean house-125

hold size h, mean number of workplace links v, and probability of forming a link in the work-126

place pw. The mean workplace size w and mean degree of the network were determined by127

these parameters: w = v/pw +1, 〈k〉 = h− 1+ v. Across a broad range of plausible values for128
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h, v and pw, very local movement (α = 6) produced later epidemics than did typical developed-129

population movement (α = 3) or spatially random mixing (α = 0, Fig 1A). Similarly, time130

to extinction was later for very local movement (α = 6) compared with more frequent longer-131

distance movement (α = 3) or the absence of spatial embedding (α = 0). We calculate the132

coefficient of variation of the degree distribution C2
V = 〈k2〉/〈k〉 − 1 ∼ 0.1 for each network,133

independently of α [26].134

Each simulation is assigned a value ofR∗, the average number of cases in the first generation per135

seed infection. For moderate-to-high values of the first generation ratio R∗, there was very little136

difference in the final size of the outbreak for the different movement assumptions. However,137

for low values of R∗ < 1.8, the average final size of the outbreak was substantially smaller138

for more local kernels. This was driven by a higher probability of extinction when more local139

movement was assumed. The difference in final size driven by α was no longer present when140

we controlled for extinction (SI Appendix, Fig S2).141

The choice of movement scenario had a substantial impact on peak incidence, even when R∗
142

was high and there was little difference in the final sizes (Fig 1B, Fig 2 rows 1 and 2). For143

example, for parameters with first generation ratios in the range [1.8, 2.2], average peak daily144

incidence as a fraction of the total population was 6.5 × 10−3 for random spatial movement,145

5.4 × 10−3 for movement assumptions typical of developed populations and 3.0 × 10−3 when146

highly local movement was assumed. The relationship between peak height and first generation147

ratio appeared to be strongly linear, with correlation coefficients 0.9778, 0.9826 and 0.9806 for148

α = 0, 3 and 6 respectively.149

The relationship between peak incidence and final size for the three movement scenarios illus-150

trates further how the topology of an embedded network could directly affect gross features of151

an epidemic. Peak incidence is observed prior to final size during an epidemic. For the same152

peak height, local movement gave substantially larger final sizes. For peak daily incidences153

in the range [3 × 10−3, 6.5 × 10−3] the final size of the outbreak was 68% when random spa-154

tial movement was assumed, 74% when movement was assumed to be typical of developed155

populations and 84% when highly-local movement was assumed.156

For all movement scenarios, the basic reproductive number R0 was smaller than the first gener-157

ation ratio R∗ and different from the expected number of secondary cases generated by a single158

seed in an otherwise susceptible population. The duration of the exponential phase can be seen159

when incidence is plotted on a log scale: a constant gradient of log incidence is evidence of160

exponential growth (Figure 2, third row). However, in a network model with clearly defined161

generations, the generation ratio can also be used to define exponential growth: if the ratio of162

incidence between generation n + 1 and n is the same as the ratio between generations n and163

n − 1, then we can claim to have identified a period of exponential growth (Methods, Fig 2).164

The value of that constant observed ratio is the basic reproductive number R0 [18].165

Incidence grew exponentially for a much shorter time for highly-local movement than it did for166

a wider movement kernel, or for non-spatial networks, even when we controlled for R0 to be167

within a narrow range (e.g. (2, 2.2], Fig 2). Despite this being a relatively large population,168

there was no obvious period of exponential growth when we assumed highly local movement.169

Therefore, given that the basic reproductive number is defined for a genuine renewal process –170

and its implied exponential growth [18] – it could be argued that R0 does not exist for some of171

these networks for our model parameters. However, we did assign a value of R0 for all simu-172

lations based on the most similar subset of consecutive early generations (see Methods). The173

amplitude of the difference was not driven in any obvious way by the underlying assumptions174

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 31, 2020. ; https://doi.org/10.1101/714006doi: bioRxiv preprint 

https://doi.org/10.1101/714006


used to create the networks. These patterns were not specific to the range of values for R0 (SI175

Appendix, Figs. S3, S4, S5).176

Analysis of the higher-order structure of the networks suggests that movement scenarios were177

driving the observed characteristics of epidemics such as peak timing and attack rate via in-178

creased fourth order clustering. We use the term first order clustering for the quantity typically179

described as the local clustering coefficient [40]: the link density of the immediate neighbour-180

hood of a given node. By extension, we defined order-m clustering coefficient to be the expected181

proportion of neighbours withinm steps on the network who were also neighbours of each other182

withinm steps (Fig 3). We found no relationship between our assumed pattern of movement (α)183

and first or second order clustering coefficients. There was a weak relationship between α and184

third order clustering and then a very strong relationship between α and forth order clustering.185

Patterns between epidemic properties and fourth order clustering for individuals were similar186

to those between epidemic properties and second order clustering of households, as would be187

expected, given the bipartite algorithm used to create individual-level networks.188

Final size increased with spatial correlation, despite peak size displaying the opposite trend for189

controlled R∗ or R0. There was a strong linear relationship between order-m clustering and190

peak size/final size, that could be explained by α, the strength of spatial embedding, when we191

control for R0 (Fig 4B). The gradient of the relationship decreased with order of clustering.192

Second order household clustering showed the same relationship with peak size as did fourth193

order individual clustering (Fig 4C). These strong linear relationships only existed when we194

effectively control for R0, rather than R∗, and became less noisy when we reduced the interval195

used to define R0.196

We conducted a number of sensitivity analyses for these network simulation results. Analytic197

approximations for degree distribution P (K = k) and expected first order clustering 〈CC1〉198

in our networks are given in Protocol S1, and are independent of α. We confirmed these re-199

lationships in SI Appendix Figure S6 by computing these quantities on a set of networks that200

differ in α. SI Appendix Figure S7 shows the relationship between α and clustering order 1201

to 4 on networks generated using a uniform population density. SI Appendix Figure S8 shows202

the relationship between order-m clustering CCm and peak size for different values of R0. SI203

Appendix Figure S 9 shows clustering order 1 to 4 on networks with different h, w and pw, and204

SI Appendix Figure S10 provides an illustration of the relationship between higher-order clus-205

tering and rewiring probability on a commonly used network model with spatial embedding:206

the Watts-Strogatz Small World Network [40].207

Finally, we map our network model onto a deterministic metapopulation framework so as to208

relate our simulations of incidence to prior analytic approximations of travelling spatial waves209

(Protocol S1 for analytic construction). Figure 5 shows the results of simulating on a grid of210

evenly spaced households of size h = 4, where a single continuous variable describes preva-211

lence in each household, and spatial coupling between households used in the force of infection212

is exactly the kernel used in the construction of our spatially embedded networks. We simulate213

with randomly spaced seeds (as above), and with a central seed (the center most 4 households),214

tracking global incidence and local time of peak incidence. The former case yields global in-215

cidence curves similar to those generated in our network model (which was seeded similarly).216

The latter case allows us to identify 4 distinct stages in the propagation of spatial waves that217

contribute to observed sub-exponential outbreak dynamics in more complex, network-based218

systems. SI Appendix Figure S 11 shows local peak timing in each case, and SI Appendix219

Figure S12 shows simulation results in 1 spatial dimension with α = 6 and α = 12, along-220
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side statistical properties of prevalence, which further clarify these growth phases (c.f. figure221

captions for details and SI Appendix Protocol S1 for mathematical analysis).222

Discussion223

We have shown that non-standard epidemic dynamics can arise from strongly spatially embed-224

ded social networks. Using a flexible algorithm of assigning individuals to households and225

then creating a social networks with widely varying topologies, we can explain the absence of226

exponential growth and increased attack rate for a given peak height in terms of higher order227

social structure, while maintaining a standard low-variance offspring distribution. We observe228

consistent patterns when we control for the basic reproductive number, as measured as directly229

as possible from a constant ratio of incidence between generations.230

The algorithm we used [35] captures the key social contexts of home and workplace while231

using few parameters, which has allowed us to isolate specific relationships within the epidemic232

dynamics, across a broad range of network topologies. However, its simplicity is a potential233

limitation. Specifically, an individual only belongs to a single workplace (which may represent234

a school or social club). In reality, people will gather non-household contacts from a variety of235

sources. Also, our networks are not dynamic, which may limit the generalisability of the results236

to short generation time pathogens.237

Accurate empirical data about higher order social contacts would allow us to address some of238

these issues. There are a number of different approaches to gathering social contact data, in-239

cluding contact diaries, mobile phone apps and tag-based location tracking [31]. Diary methods240

and current analytical approaches can provide accurate estimates of 1st order moments (degree241

distribution [32]) and valuable insights into second order moments (clustering [44]). However,242

these data and current analytical approaches are limited for the estimation of higher order mo-243

ments. It seems likely that either high resolution mobile phone location data [7] or very high244

coverage tag-based studies will be needed to reveal these patterns [6]. In addition, further work245

is needed on the use of algorithms similar to that used here to explicitly fit fully enumerated246

social networks to egocentric sample data from a subset of the population (or low coverage247

non-egocentric data) [23].248

Our results can be compared with other disease-dynamic models that produce non-standard in-249

cidence profiles. Different functional forms have been suggested for the force-of-infection term250

in compartmental models that give polynomial growth in the early stages of an epidemic [8, 18].251

However, the key features of these model structures may be captured by a more straightforward252

underlying process [20]. Faster than exponential growth can be achieved with very high vari-253

ance offspring distributions, which have been inferred by diary studies of social contacts [25].254

There is also an extensive literature of much more abstract grid-based models of infectious255

disease that produce non-standard epidemic dynamic because of very local spatial processes256

(cellular automata [41]). We note that short periods of super-exponential growth were observed257

in our results for the simplified 2 dimensional metapopulation example (Fig 5B), arising from258

from accelerating spatial waves of incidence, not driven by the variance of the offspring distri-259

bution.260

Prospective forecasting of infectious disease incidence during outbreaks [29] and seasonal epi-261

demics [2] is an active area of public health research. Although non-mechanistic [13] and262

simple compartmental models [33, 39] have proven most reliable up to now, modern computing263

capacity enables studies to explore the possibility that incidence forecasts can be improved by264

the incorporation of realistic social network topology [36, 9]. For example, incidence of Ebola265
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in west Africa in 2013-2016 and currently in central Africa exhibits strong spatial clustering and266

highly non-standard incidence dynamic, with short periods of exponential growth followed by267

low sustained peaks in incidence [10]. Future forecasting studies should explore the possibility268

that that sparse population density and short distances between contacts result in higher-order269

clustering in the social networks and the resulting non-standard incidence profiles.270

Methods271

The Model272

We simulate 10 independent epidemics for each of 200 parameter sets (h, v, pw, R∗) drawn from273

a Latin hypercube, each seeded in 10 randomly selected individuals, and for each α = 0, 3, 6.274

The ranges of values used in the Latin hypercube are given in SI Appendix, Table S1, and275

complete parameter sets for all networks are given in SI Appendix, Table S1. Our simulations276

allowed us to track disease incidence and disease generation of each infection.277

We simulate an epidemic on the network to reflect the natural history of Ebola, with a latent pe-278

riod of 9.7 days and a serial interval of 15.3 days. The generation time was calibrated by varying279

the relative infectiousness of a short period before the onset of symptoms. Global transmissi-280

bility β is tuned to the value of R∗ drawn from the Latin hyper-cube. For each timestep, the281

probability of infection is calculated for each edge in the network. The algorithm progresses in282

real time with small timesteps so it can be compared with results from compartmental models.283

Details of the network simulation algorithm are given in [35] and all results can be repro-284

duced in the Ebola scenario in the id_spatial_sim repository [5], using scripts ebola_build.sh285

and ebola_run.sh.286

Assigning R0 to each simulation287

For each simulation output, we calculate the mean reproductive ratio for each generation. For288

generations 1 to 9 and for each possible consecutive string of 3, 4 or 5 values, we perform a289

linear regression fit. We define R0 as mean reproductive ratio over the set of values for which290

the gradient of this fit is closest to 0 (and all values the remain larger than 1). This allows us to291

assign a value R0 to every simulation output.292

Higher order clustering293

We compute our higher-order clustering coefficients on a subset of 1000 nodes in each network,294

chosen at random. The algorithm involves storing the network structure as lists of neighbours295

for each node, and performing an effective contact-tracing procedure. Though it is possible to296

compute these metrics for all nodes via successive multiplication of adjacency matrices, this297

procedure becomes computationally expensive in higher orders at networks become large.298
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A

B

C

Figure 1: For each set of parameters drawn from the Latin hypercube, and for α = 0, 3, 6,
we show relationships between R∗, R0 time of peak incidence, and epidemic final size: (A)
R∗/peak time, (B) R∗/peak size, (C) R∗/extinction time, (D) R∗/final size, (E) peak size/final
size, (F) R∗/R0 (with the line R0 = R∗ shown in black).
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Figure 2: Columns correspond to network structures with α = 0, 3 and 6 and simulations
with R0 ∈ (2, 2.2]. Exponential growth in real time is indicated by straight lines (second row)
and horizontal lines (third row); horizontal lines in bottom row indicate exponential growth by
generation. Figures S3 to S5 show results for a wider range of R0 values for α = 0, 3, 6.

Order 3: exampleOrder 1 Order 3

d ≤ 3

d ≤ 3

d ≤ 3

Figure 3: A schematic showing the generalization of clustering coefficient C1 to higher orders
CCm: CCm

i measures the density of paths of length d ≤ m between the up-to-m neighbours of
node i (where node i is shown in gray).
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A

B

C

Figure 4: (A) 25−, 50− and 75-percentiles of order-m clusteringCCm on networks constructed
with different values of α and h = 5, w = 50, pw = 0.14, 〈k〉 = 10 and R0 ∈ [2, 2.2). Plot
shows mean values over 3 different networks for each parameter set; (B) Using peak size as
a crude metric for sub-exponential growth (given a fixed range for R0), we see linear trends
emerging with higher orders of clustering. Plot shows one point per network, with 3 networks
generated for each parameter set, and the mean peak size over 10 independently simulated
epidemics, All points are numbered with the corresponding value of α; (C) Similarly for the
household-only networks. Solid lines show linear fits to data, and dotted lines show 95% con-
fidence intervals. Values of linear correlation coefficient and gradient of fits are given in SI
Appendix, Table S2.
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A

B

Figure 5: Mean-field approximation with R0 = 2.2, 〈k〉 = 10, h = 4, using a 100 × 100 grid
of uniformly spaced households: (A) seeding in 10 randomly selected households (the same
households are used in each simulation), and (B) seeding in the centre only. Incidence is given
as a proportion of the total population for α ranging from 2 to 6. Supplementary Figure S10
shows time of peak incidence in the case α = 6 seeded as above.
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