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Abstract

Many aspects of the brain’s design can be understood as the result of evolutionary

drive towards efficient use of metabolic energy. In addition to the energetic costs of neural

computation and transmission, experimental evidence indicates that synaptic plasticity is

metabolically demanding as well. As synaptic plasticity is crucial for learning, we examine

how these metabolic costs enter in learning. We find that when synaptic plasticity rules are

naively implemented, training neural networks requires extremely large amounts of energy

when storing many patterns. We propose that this is avoided by precisely balancing labile

forms of synaptic plasticity with more stable forms. This algorithm, termed synaptic caching,

boosts energy efficiency manifold. Our results yield a novel interpretation of the multiple

forms of neural synaptic plasticity observed experimentally, including synaptic tagging and

capture phenomena. Furthermore our results are relevant for energy efficient neuromorphic

designs.

The human brain only weighs 2% of the total body mass, but is responsible for 20% of resting1

metabolism [1, 2]. The brain’s energy need is believed to have shaped many aspects of its design,2

such as its sparse coding strategy [3, 4], the biophysics of the mammalian action potential [5, 6],3

and synaptic failure [7, 2]. As the connections in the brain are adaptive, one can design synaptic4

plasticity rules that further reduce the energy required for information transmission, for instance5

by sparsifying connectivity [8]. But in addition to the costs associated to neural information6

processing, experimental evidence suggests that memory formation, presumably corresponding7

to synaptic plasticity, is itself an energetically expensive process as well [9, 10, 11, 12].8

To estimate the amount of energy required for plasticity, Mery and Kawecki [9] subjected fruit9

flies to associative conditioning spaced out in time, resulting in long-term memory formation.10

After training, the fly’s food supply was cut off. Flies exposed to the conditioning died some11

20% quicker than control flies. Similarly, fruit flies doubled their sucrose consumption during12

the formation of aversive long-term memory [12], while forcing starving fruit flies to form such13

memories reduced lifespan by 30% [10]. Notably, less permanent forms of learning that don’t14

require protein synthesis have been observed to be energetically less costly [9, 10].15
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Figure 1: Energy efficiency of perceptron learning (a) A perceptron cycles through the
patterns and updates its synaptic weights until all patterns produce their correct target output.
(b) During learning the synaptic weights follow approximately a random walk until they find
the solution (yellow region). The energy consumed by the learning corresponds to the total
length of the path (under the L1 norm). (c) The energy required to train the perceptron diverges
when storing many patterns (red curve). The minimal energy required to reach the correct
weight configuration is shown for comparison (green curve). (d) The inefficiency, defined as the
ratio between actual and minimal energy plotted in panel c, diverges as well (black curve). The
overlapping blue curve corresponds to Eq. 3 in the text.

Motivated by these experimental results, we analyze the metabolic energy required to form16

associative memories in neuronal networks. We demonstrate that traditional learning algorithms17

are metabolically highly inefficient. Therefore we introduce a synaptic caching algorithm that18

is consistent with synaptic consolidation experiments, and distributes learning over transient19

and persistent synaptic changes. This algorithm increases efficiency manifold. Synaptic caching20

yields a novel interpretation to various aspects of synaptic physiology, and suggests more energy21

efficient neuromorphic designs.22

Results23

To examine the metabolic energy cost associated to synaptic plasticity, we first study the24

perceptron. A perceptron is a single artificial neuron that attempts to binary classify input25

patterns. It forms the core of many artificial networks and has been used to model plasticity in26

cerebellar Purkinje cells. We consider the common case where the input patterns are random27

patterns each associated to a randomly chosen binary output. Upon presentation of a pattern,28

the perceptron output is calculated and compared to the desired output. The synaptic weights29

are modified according to the perceptron learning rule, Fig. 1A. This is repeated until all patterns30

are classified correctly [13, see Methods]. Typically, the learning takes multiple iterations over31

the whole dataset (’epochs’).32

As it is not well known how much metabolic energy is required to modify a biological synapse,33
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and how this depends on the amount of change and the sign of the change, we propose a34

parsimonious model. We assume that the metabolic energy for every modification of a synaptic35

weight is proportional to the amount of change, no matter if this is positive or negative, although36

there is evidence that synaptic depression involves different pathways than synaptic potentiation,37

see e.g. [14]. The total metabolic cost M (in arbitrary units) to train a perceptron is38

Mperc =
N∑
i=1

T∑
t=1

|wi(t)− wi(t− 1)|α (1)

where N is the number of synapses, wi denotes the synaptic weight at synapse i, and T is the39

total number of time-steps required to learn the classification. The exponent α is set to one, but40

our results below are similar whenever 0 ≤ α . 2.41

Learning can be understood as a search in the space of synaptic weights for a weight vector42

that leads to correct classification of all patterns, Fig. 1B. The synaptic weights approximately43

follow a random walk (Methods), and the energy is proportional to the length of this walk under44

the L1 norm, Eq. 1. The perceptron learning rule is energy inefficient, because repeatedly, weight45

modifications made to correctly classify one pattern are partly undone when learning another46

pattern, but as both processes require energy this is inefficient.47

The energy required by the perceptron learning rule depends on the number of patterns P48

to be classified. The set of correct weights spans a cone in N -dimensional space (yellow region49

in Fig. 1B). As the number of patterns to be classified increases, the cone containing correct50

weights shrinks and the random walk becomes longer [15]. Near the critical capacity of the51

perceptron (P = 2N), the number of epochs required diverges as (2− P/N)−2, [16]. The energy52

required, which is proportional to the number of updates that the weights undergo, follows a53

similar behavior, Fig. 1C.54

It is useful to consider the theoretical minimal energy required to classify all patterns. The55

most energy efficient algorithm would somehow directly set the synaptic weights to their desired56

final values. Geometrically, the random walk trajectory of the synaptic weights to the target is57

replaced by a path straight to the correct weights. Given the initial weights wi(0) and the final58

weights wi(T ), the energy required in this idealized case to set the synapses correctly is59

Mmin =
∑
i

|wi(T )− wi(0)|. (2)

While the minimal energy also grows with the memory load (Methods), it increases less steeply,60

Fig. 1C.61

We express the metabolic efficiency of a learning algorithm as the ratio between the energy62

the algorithm requires and the minimal energy (the gap between the two curves in Fig. 1C). As63

the number of patterns increases, the inefficiency of the perceptron rule rapidly grows, Fig. 1D,64

as (see Methods)65

Mperc

Mmin
=

√
πP

2− P/N
, (3)

which fits the simulations well.66

There is evidence that both cerebellar and cortical neurons are operating close to their67
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maximal memory capacity [17, 18]. Indeed, it would appear wasteful if this were not the case.68

However, the above result demonstrates that for instance classifying 1900 patterns by a neuron69

with 1000 synapses with the traditional perceptron learning requires about ∼900 times more70

energy than minimally required. As the fruit-fly experiments indicate that even storing a single71

association in long-term memory is already metabolically expensive, storing many memories72

would thus require very large amounts of energy if the biology would naively implement these73

learning rules.74

Synaptic caching75

How can the conflicting demands of energy efficiency and high storage capacity be met? The76

minimal energy argument presented above suggests a way to increase energy efficiency. There77

are forms of plasticity - anaesthesia resistant memory in flies and early-LTP/LTD in mammals -78

that decay and do not require protein synthesis. Such transient synaptic changes can be induced79

using a massed, instead of a spaced, stimulus presentation protocol. Fruit-fly experiments show80

that this form of plasticity is much less energy-demanding than long-term memory [9, 10, 12]. In81

mammals there is evidence that synaptic consolidation, but not transient plasticity, is suppressed82

under low energy conditions [19]. Inspired by these findings we propose that the transient form of83

plasticity constitutes a synaptic variable that accumulates the synaptic changes across multiple84

updates in a less expensive form of memory; only occasionally the changes are consolidated. We85

call this synaptic caching.86

Specifically, we assume that each synapse is comprised of a transient component si and a87

persistent component li. The total synaptic weight is their sum, wi = si + li. We implement88

synaptic caching as follows, Fig. 2A: For every presented pattern, changes in the synaptic strength89

are calculated according to the perceptron rule and are accumulated in the transient component90

that decays exponentially to zero. If, however, the absolute value of the transient component of91

a synapse exceeds a certain consolidation threshold, all synapses of that neuron are consolidated92

(vertical dashed line in Fig. 2A), the value of the transient component is added to the persistent93

weight, and the transient weight is reset to zero.94

How much efficiency can be improved with synaptic caching depends on the limitations of95

transient plasticity. If the transient synaptic component could store information indefinitely at no96

metabolic cost, consolidation could be postponed until the end of learning and the energy would97

equal the minimal energy Eq. 2. Hence the efficiency gain would be maximal. However, we assume98

that the efficiency gain of synaptic caching is limited because of two effects: 1) The transient99

component decays exponentially (with a time-constant τ). 2) There might be a maintenance100

cost associated to maintaining the transient component. Biophysically, transient plasticity might101

correspond to an increased/decreased vesicle release rate [20, 21] so that it diverges from its102

optimal value [7].103

To estimate the energy saved by synaptic caching we assume that the maintenance cost is104

proportional to the transient weight itself and incurred every time-step ∆t (shaded area in the105

top traces of Fig. 2A)106

Mtrans = c
∑
i

∑
t

|si(t)|
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Figure 2: Synaptic caching algorithm (a) Changes in the synaptic weights are initially stored
in metabolically cheaper transient decaying weights. Here two example weight traces are shown
(blue and magenta). The total synaptic weight is composed of transient and persistent forms.
Whenever any of the transient weights exceed the consolidation threshold, the weights become
persistent and the transient values are reset (vertical dashed line). The corresponding energy
consumed during the learning process consists of two terms: the energy cost of maintenance is
assumed to be equal to the magnitude of the transient weight (shaded area in top traces); energy
cost for consolidation is incurred at consolidation events. (b) The total energy is composed of
the energy to occasionally consolidate and the energy to support transient plasticity. Here it
is minimal for an intermediate consolidation threshold. (c) The amount of energy required for
learning with synaptic caching, in the absence of decay of the transient weights (black curve).
When there is no decay and no maintenance cost the energy equals the minimal one (green line)
and the efficiency gain is maximal. As the maintenance cost increases, the optimal consolidation
threshold decreases (lower panel) and the total energy required increases, until no efficiency is
gained at all by synaptic caching. (d) The amount of energy required for learning as a function
of the decay of transient plasticity for various values of the maintenance cost (from bottom to
top maintenance cost c = 0, 10−4, 10−3, 10−2, 10−1). Broadly, stronger decay will increase the
energy required and hence reduce efficiency.
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While experiments indicate that transient plasticity is metabolically far less demanding than the107

persistent form, the precise value of the maintenance cost is not known. We encode it in the108

constant c; the theory also includes the case that c is zero.109

Next we need to include the energetic cost of consolidation. Currently it is unknown how110

different components of synaptic consolidation, such as signaling, protein synthesis, transport111

to the synapses and changing the synapse, contribute to this cost. We assume the metabolic112

cost to consolidate the synaptic weights is Mcons =
∑

i

∑
t |li(t) − li(t − 1)|. The form of the113

consolidation energy is identical to Eq. 1, but in contrast to the standard perceptron learning,114

where synapses are consolidated every time a weight is updated, now changes in the persistent115

component li only occur when consolidation occurs. One can add a term similar to a one-off cost116

for changing the transient component, but as that would not vary with consolidation rate it is117

not included.118

The energy gain achieved by synaptic caching depends on the consolidation threshold, Fig. 2B.119

When the threshold is low, consolidation occurs often and the energy approaches the one without120

synaptic caching. When on the other hand the consolidation threshold is high, the expensive121

consolidation process occurs rarely, but the maintenance cost of transient plasticity is high,122

moreover the decay will lead to forgetting of unconsolidated memories, slowing down learning and123

increasing the energy cost. Thus the consolidation energy decreases for larger thresholds, whereas124

the maintenance energy increases, Fig. 2B (see Methods). As a result of this trade-off there125

is an optimal threshold, which depends on the decay and the maintenance cost, that balances126

persistent and transient forms of plasticity. To analyze the efficiency gain we use this optimal127

value.128

Fig. 2C shows the energy required to train the perceptron for the case when the transient129

component does not decay. When the maintenance cost is absent (c = 0), consolidation is best130

postponed until the end of the learning and the energy is as low as the theoretical minimal131

bound. As c increases, it becomes beneficial to consolidate more often, i.e. the optimal threshold132

decreases, Fig. 2C bottom panel. The required energy increases until the maintenance cost133

becomes so high that it is better to consolidate after every update and no energy is saved with134

synaptic caching. The efficiency is well described by analysis, Fig. 2C (Methods).135

Fig. 2D examines the amount of savings as a function of the strength of the decay (expressed136

as 1/τ) of the transient component for various levels of maintenance cost. Efficiency is high137

when there is no decay. However, if the transient component decays it is best to consolidate138

more frequently, even when the maintenance cost is zero, as otherwise, information is lost and139

learning time increases. Interestingly, with intermediate amounts of decay somewhat less energy140

is required than without any decay. The reason is a slight reduction on number of epochs required141

when the synaptic weights decay.142

In the above implementation of synaptic caching, consolidation of all synapses was triggered143

when transient plasticity at a single synapse exceeded a certain threshold. This resembles the144

synaptic tagging and capture phenomenon where plasticity induction leads to transient changes145

and sets a tag; only strong enough stimulation results in proteins being synthesized and being146

delivered to all tagged synapses, consolidating the changes [22, 23]. There are a number of147

alternative ways to model the interaction between synapses: the threshold could be synapse-148
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Figure 3: Comparison of various variants of the synaptic caching algorithm (a)
Schematic representation of variants to decide when consolidation occurs. From top to bottom: 1)
Consolidation (indicated by the star) occurs whenever transient plasticity at a synapse crosses the
consolidation threshold and only that synapse is consolidated. 2) Consolidation of all synapses
occurs once transient plasticity at any synapse crosses the threshold. 3) Consolidation of all
synapses occurs once the total transient plasticity across synapses crosses the threshold. (b)
Energy required to teach the perceptron is comparable across algorithm variants. Consolidation
thresholds were optimized for each algorithm and each maintenance cost of transient plasticity
individually. In this simulation the transient plasticity did not decay.

specific or neuron-wide, and the consolidation could be synapse-specific or neuron-wide, Fig. 3A.149

In practice there are three possibilities: First, consolidation might be set to occur whenever150

transient plasticity at a synapse crosses the threshold and only that synapse is consolidated.151

Second, a hypothetical signal might send to the soma and consolidation of all synapses occurs152

once transient plasticity at any synapse crosses the threshold (used in Figs. 2 and 4). Thirdly, a153

hypothetical signal might be accumulated in or near the soma and consolidation of all synapses154

occurs once this total transient plasticity across synapses crosses the threshold. Only cases 2155

and 3 are consistent with synaptic tagging and capture experiments, where consolidation of156

one synapse also leads to consolidation of another synapse that would otherwise decay back to157

baseline [22, 24]. Notably, all variants lead to comparable efficiency gains, Fig. 3B.158

In summary we see that synaptic caching can in principle achieve large efficiency gains,159

bringing efficiency close to the theoretical minimum.160

Energy of learning in multi-layer network161

Since the perceptron is a rather restrictive framework, we wondered whether the efficiency gain of162

synaptic caching can be transferred to multi-layer networks. Therefore we implement a multi-layer163

network trained with back-propagation. Back-propagation networks learn the associations of164

patterns by approaching the minimum of the error function through stochastic gradient descent.165

We use a network with one hidden layer with by default 100 units to classify hand-written digits166

from the MNIST dataset. As we train the network, we intermittently interrupt the learning to167

measure the energy consumed for plasticity and measure the performance on a held-out test-set.168

This yields a curve relating energy to accuracy.169

Similar to a perceptron, learning without synaptic caching is metabolically expensive in170

a back-propagation network. Until reaching maximal accuracy, energy rises approximately171
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Figure 4: Energy cost to train a multi-layer back-propagation network to classify
digits from the MNIST data set (a) Energy rises with the accuracy of identifying the digits
from a held-out test data. Except for the larger learning rates, the energy is independent of the
learning rate (from bottom to top learning rate η = 10−3, 10−2, 10−1, 0.5). Inset shows some
MNIST examples. (b) Comparison of energy required to train the network with/without synaptic
caching, and the minimal energy. As for the perceptron and depending on the cost of transient
plasticity, synaptic caching can reduce energy need manifold. (c) The impact of number of
hidden units in the network with back-propagation on the metabolic cost. The network is trained
to classify digits from the MNIST dataset to 85% and 93% accuracy. Both with and without
synaptic caching, energy needs are high when the number of hidden units is barely sufficient.
Parameters for transient plasticy in (b) and (c): τ = 1000, c = 0.001.

exponentially with accuracy, after which additional energy do not lead to further improvement.172

When the learning rate is sufficiently small, the metabolic cost of plasticity is independent of the173

learning rate. At larger learning rates, learning no longer converges and energy goes up steeply174

without an increase in accuracy, Fig. 4A. With the exception of these large rates, these results175

show that changing the learning rate does not save energy.176

Similar to the perceptron, we evaluate how much energy would be required to directly set177

the synaptic weights to their final values. Traditional learning without synaptic caching is once178

again energetically inefficient, expending at least ∼ 20 times more energy compared to this179

theoretical minimum whatever the desired accuracy level is, Fig. 4B. However, by splitting the180

weights into persistent synaptic weights and transient synaptic caching weights, the network181

can save substantial amounts of energy. As for the perceptron, depending on the decay and the182

maintenance cost the energy ranges from as little as the minimum to as much as the energy183

required without caching. Thus the efficiency gain of synaptic caching found for the perceptron184

carries over to multi-layer networks.185

It might seem that smaller networks would be metabolically less costly, because small networks186

simply contain fewer synapses to modify. On the other hand, for the perceptron metabolic187

costs rise rapidly when cramming many patterns into it. We wondered therefore how energy188

cost depends on network size in the multi-layer network. Since the number of input units is189

fixed to the image size and the number of output units equals the ten output categories, we190

adjust the number of hidden units. As expected, higher accuracies require more hidden units191

and energy, Fig. 4C. The network fails to reach the desired accuracy if the number of hidden192

units is too small. When the network size is barely above the minimum requirement, the network193
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has to compensate the lack of hidden units with longer training time and hence a larger energy194

expenditure. However, very large networks also require more energy. These results show that195

from an energy perspective there exists an optimal number of neurons to participate in memory196

formation.197

Discussion198

Experiments on formation of a long-term memory of a single association suggest that synaptic199

plasticity is an energetically expensive process. We have shown that energy requirements200

rise steeply as memory load or designated accuracy level increase. This indicates trade-offs201

between energy consumption, and network capacity and performance. To improve efficiency202

we have proposed an algorithm named synaptic caching: temporarily storing changes in the203

synaptic strength at the transient forms of plasticity, which are, determined by a threshold, only204

occasionally consolidated to the persistent forms. Depending on the characteristics (decay and205

maintenance cost) of transient plasticity, this can lead to large energy savings in the energy206

required for synaptic plasticity. Further savings might be possible by adjusting the consolidation207

threshold as learning progresses and by being pathway-specific [25].208

The implementation of a consolidation threshold is similar to what has been observed in209

physiology, in particular in the synaptic tagging and capture literature [26]. Our results thus210

give a novel interpretation of those findings. Synaptic consolidation is known to be affected211

by reward, novelty and punishment [26], which is compatible with a metabolic perspective as212

energy is expended only when the stimulus is worth remembering. In addition, our results for213

instance explain why consolidation is competitive, but transient plasticity is less so [27], namely214

the formation of long-term memory is precious. Consistent with this, there is evidence that215

encouraging consolidation increases energy consumption [12]. We also predict that the transient216

weight changes act as an accumulative threshold for consolidation. That is, sufficient transient217

plasticity should trigger consolidation, even in the absence of other consolidation triggers. Future218

characterization of the energy budget of synaptic plasticity should allow more precise predictions219

of our theory.220

Combining persistent and transient storage mechanisms is a strategy well known in traditional221

computer systems to provide a faster and often energetically cheaper access to memory. In222

computer systems permanent storage of memories typically requires transmission of all information223

across multiple transient cache systems until reaching a long-term storage device and the transfer224

of information can often be a bottleneck in computer architectures and consumes considerable225

power in modern computers [28]. However, in the nervous system transient and persistent226

synapses appear to exist next to each other. The consolidation of information in a synapse does227

not require moving that information. Using this setup, biology appears to have found a more228

efficient way to store information.229

Memory stability has long fascinated researchers [29], and in some cases forgetting can be230

beneficial [30]. Here we argue that the main benefit of more transient forms of plasticity is to231

permit the network to explore the weight space to find a desirable weight configuration using232

less energy. Besides suggesting forms of plasticity with different persistence, the cost of synaptic233

plasticity could potentially have influenced other aspects of neurobiological design. In principle,234
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homeostasis and long-term stability could impact the cost of learning as well. Moreover, this work235

focuses on just the metabolic cost of synaptic plasticity, but the brain also expends significant236

amounts of energy on spiking, synaptic transmission, and maintaining resting potential. Further237

study is needed to understand how this impacts total energy cost during and after learning.238

Methods239

Energy efficiency of the perceptron240

For perceptron we can calculate the energy efficiency of both the classical perceptron and the241

gain achieved by synaptic caching. We first consider the case that transient plasticity does not242

decay, as this allows important theoretical simplifications. In the perceptron learning to classify243

binary patterns Eq. 7, the weight updates are either +η or −η, where η is the learning rate, so244

that the energy spent Eq. 1 per update per synapse equals η. Hence the total energy spent to245

classify all patterns Mperc = NKη, where K is the total number of updates. We find numerically246

that K = 2P/(2− P/N)2.247

To calculate the efficiency we compare this to the minimal energy necessary to reach the248

final weight vector in the perceptron. We approximate the weight trajectory followed by the249

perceptron algorithm by a random walk. After K updates of step-size η the weights approximate250

a Gaussian distribution with zero mean and variance Kη2. In simulations the variance in the251

weights is about 20% smaller, likely reflecting correlations in the learning process not captured in252

the random walk approximation. By short-cutting the random walk, the minimal energy required253

to reach the weight vector is Mmin = N〈|wi|〉 =
√

2
πηN

√
K. Hence, we find for the inefficiency254

(see Fig. 1D)255

Mperc

Mmin
=

√
πP

2− P/N

Efficiency of synaptic caching256

To calculate the efficiency gained with synaptic caching we need to calculate both the consolidation257

energy and the maintenance energy. The consolidation energy equals the number of consolidation258

events times the size of the updates. The size of the weight updates is equal to the consolidation259

threshold θ, while the number of consolidation events follows from a random walk argument as260

NK(dθ/ηe)2. The ceiling function expresses the fact that when the threshold is smaller than261

learning rate, consolidation will always occur; we temporarily ignore this scenario. In addition,262

at the end of learning all remaining transient plasticity is consolidated, which requires an energy263

N 〈|si(T )|〉. Assuming that the probability distribution P (s) has reached steady state, it has a264

triangular shape (see below) and 〈|si(T )|〉 = 1
3θ so that the total consolidation energy265

Mcons = η2NK

θ
+

1

3
Nθ

The transient energy is (again assuming that P (s) has reached steady state)266

Mtrans = cNTθ/3
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where T is the number of time-steps required for learning. Using that T = P 3/2

(2−P/N)2
, the total267

energy when using synaptic caching is Mcache = Mcons +Mtrans = N
[
η2K/θ + 1

3θ(1 + cT )
]
. The268

optimal threshold θ̂ is given by d
dθ [Mcons +Mtrans] = 0 or269

θ̂2 = η2 3K

1 + cT

at which the energy is Mcache = 2ηN
√
K
√

1 + cT/
√

3. And so the efficiency of synaptic caching270

is Mcache
Mmin

=
√

2π
3

√
1 + cT . However, as consolidation can maximally occur only once per time-step,271

Mcons cannot exceed Mperc so that the inefficiency is272

Mcache

Mmin
= min

(√
2π

3
(1 + cT ),

√
π

2
K

)

This equation reasonably matches the simulations, Fig. 2C (labeled ’theory’).273

Decaying transient plasticity274

When transient plasticity decays, the situation is more complicated as the learning time depends275

on the strength of the decay and to our knowledge no analytical expression exists for it. However,276

it is still possible to estimate the power, i.e. the energy per time unit, for both the transient277

component, denoted mtrans, and the consolidation component, mcons. Under the random walk278

approximation every time the perceptron output does not match the desired output, the transient279

weight si is updated with an amount ∆si drawn from a distribution Q, with zero mean and280

variance σ2. Given the update probability p, i.e. the fraction of patterns not yet classified281

correctly, one has Qs(η) = Qs(−η) = p/2 and Qs(0) = 1− p, so that σ2
s = pη2. We assume that282

the number of updates slowly decreases as learning progresses, hence p is quasi-stationary.283

Every time-step ∆t = 1 the transient weights decay with a time-constant τ . The synapse is284

consolidated and si is reset to zero whenever the absolute value of the caching weight |si| exceeds285

θ. Given p and τ , we would like to know: 1) how often consolidation events occur which gives286

consolidation power and 2) the maintenance power mtrans = cN〈|si|〉. This problem is similar to287

the random walk to threshold model used for integrate-and-fire neurons, but here there are two288

thresholds: θ and −θ.289

Under the assumptions of small updates and a smooth resulting distribution, the evolution290

of the probability distribution P (si) is described by the Fokker-Planck equation, which in the291

steady state gives292

0 = −1

τ

∂

∂si
[siP (si)] +

1

2
σ2
s

∂2

∂s2
i

P (si) + rδ(si)

The last term is a source term that describes the re-insertion of weights by the reset process. The293

boundary conditions are P (si = ±θ) = 0. While P (si) is continuous in si, the source introduces294

a cusp in P (si) at the reset value. Conservation of probability ensures that r equals the outgoing295

flux at the boundaries. One finds296

P (si) =
1

Z
exp

[
− s

2
i

σ2

] [
erfi

(
|si|
σ

)
− erfi

(
θ

σ

)]
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where erfi(x) = −ierf(ix), σ2 = τ
∆tσ

2
s and with normalization factor

Z =
2θ2

√
πσ

2F2

(
1, 1;

3

2
, 2;−(

θ

σ
)2

)
−
√
πσerf

(
θ

σ

)
erfi

(
θ

σ

)
where 2F2 is the generalized hypergeometric function. In the limit of no decay this becomes a297

triangular distribution P (si) = [θ − |si|]/θ2.298

We obtain maintenance power

mtrans =cN〈|si|〉 (4)

=
cN

Z

[
2θσ√
π
− σ2erfi

(
θ

σ

)]
(5)

For small θ/σ, i.e. small decay, this is linear in θ, mtrans ≈ cNθ
3 . It saturates for large θ because299

then the decay dominates and the threshold is hardly ever reached.300

The consolidation rate follows from Fick’s law

r =
1

2
σ2P ′(−θ)− 1

2
σ2P ′(θ)

=
−2σ

Z
√
π

The consolidation power is301

mcons = Nθr (6)

In the limit of no decay one has r = σ2/θ2, so that mcons = pNη2/θ. Strictly speaking this302

approximates learning with a random walk process and assumes local consolidation, Fig. 3A.303

However, Eqs. 5 and 6 give a good prediction of the simulation when provided with the time-304

varying update probability from the simulation, Fig. 5.305

Simulations306

Perceptron307

Unless stated otherwise, we use a perceptron with N = 1000 input units to classify P = N308

random binary (±1 with equal probability) input patterns x(p), each to be associated to a309

randomly assigned desired binary output d(p). Each input unit is connected with a weight wi310

signifying the strength of the connection. An ’always-on’ bias unit with corresponding weight311

is included to adjust the threshold of the perceptron. The perceptron output y of a pattern is312

determined by the Heaviside step function Θ, y = Θ(w.x). If for a given pattern p, the output313

does not match the desired pattern output, w is adjusted according to314

∆wi = η
(
d(p) − y(p)

)
x

(p)
i (7)

where the learning rate η can be set to one without loss of generality. The perceptron algorithm315

cycles through all patterns until classified correctly. In principle the magnitude of the weight316

vector, and hence the minimal energy, can be arbitrarily small for a noise-free binary perceptron.317

However, this paradox is resolved as soon as robustness to any post-synaptic noise is required.318
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Figure 5: Maintenance and consolidation power. Power (energy per epoch) of the perceptron
vs epoch. Solid curves are from simulation, dashed curves are the theoretical predictions, Eqs. 5
and 6, with their σ calculated by using the perceptron update rate p extracted from the simulation.
Both powers are well described by the theory. Parameters: τ = 500, c = 0.01, θ = 5.
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Multi-layer networks319

For the multi-layer networks trained on MNIST, we use networks with one hidden layer, logistic320

units, and one-hot encoding at the output. Weights are updated according to the mean squared321

error back-propagation rule without regularization.322
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