
Position-theta-phase model of hippocampal place cell activity applied to 
quantification of running speed modulation of firing rate


Kathryn McClain1,2, David Tingley1, David Heeger*1,3, György Buzsáki*1,2


1. Center for Neural Science, New York University, 4 Washington Pl, New York, NY 10003, USA 
2. NYU Neuroscience Institute, 450 East 29th Street, New York, NY 10016, USA. 

3. Department of Psychology, New York University, 4 Washington Pl, New York, NY, 10003, 
United States

* Corresponding authors: david.heeger@nyu.edu, gyorgy.buzsaki@nyulangone.org


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714105doi: bioRxiv preprint 

mailto:david.heeger@nyu.edu
https://doi.org/10.1101/714105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Spiking activity of place cells in the hippocampus encodes the animal’s position as it moves 
through an environment. Within a cell’s place field, both the firing rate and the phase of spiking 
in the local theta oscillation contain spatial information. We propose a position-theta-phase 
(PTP) model that captures the simultaneous expression of the firing-rate code and theta-phase 
code in place cell spiking. This model parametrically characterizes place fields to compare 
across cells, time and condition, generates realistic place cell simulation data, and 
conceptualizes a framework for principled hypothesis testing to identify additional features of 
place cell activity. We use the PTP model to assess the effect of running speed in place cell 
data recorded from rats running on linear tracks. For the majority of place fields we do not find 
evidence for speed modulation of the firing rate. For a small subset of place fields, we find 
firing rates significantly increase or decrease with speed. We use the PTP model to compare 
candidate mechanisms of speed modulation in significantly modulated fields, and determine 
that speed acts as a gain control on the magnitude of firing rate. Our model provides a tool that 
connects rigorous analysis with a computational framework for understanding place cell 
activity.


Significance 

The hippocampus is heavily studied in the context of spatial navigation, and the format of 
spatial information in hippocampus is multifaceted and complex. Furthermore, the 
hippocampus is also thought to contain information about other important aspects of behavior 
such as running speed, though there is not agreement on the nature and magnitude of their 
effect. To understand how all of these variables are simultaneously represented and used to 
guide behavior, a theoretical framework is needed that can be directly applied to the data we 
record. We present a model that captures well-established spatial-encoding features of 
hippocampal activity and provides the opportunity to identify and incorporate novel features for 
our collective understanding. 
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Introduction 

Place cells in the rodent hippocampus encode spatial information through their spiking activity. 
As the rodent moves through an environment, the firing rate of place cells increases at 
particular locations, termed “place fields”, suggesting a firing rate code for position (1). 
Meanwhile the local field potential in the hippocampus is dominated by a 7-9 Hz ‘theta’ 
oscillation and place cell spiking is modulated according to the phase of this oscillation (2). The 
phase at which spiking occurs precesses as the animal moves through the place field, a 
phenomena known as “phase precession” (2). Two overlapping codes for position emerge: a 
rate code and a phase code.


It has been suggested that the phase code is used to identify the animal’s location, while the 
firing rate can be used to encode other variables, such as the speed of the animal’s movement 
(3). Indeed, firing rate variability from trial to trial has been a long noted and unexplained feature 
of place cell activity (4-6). In support of this hypothesis, several papers have reported a positive 
correlation between running speed and firing rate of pyramidal neurons in the hippocampus 
(7-9), entorhinal cortex (10-13), and neocortical neurons (14, 15). Replicability of this effect in 
hippocampus has only recently been questioned (16).


Analyzing the influence of additional variables (such as running speed) on place cell firing is 
difficult for several practical reasons. First, the experimenter has only limited control over the 
relevant variables (position, running speed, theta phase), making  the behavioral paradigm 
nearly impossible to design without introducing additional interfering elements. Second, 
rodents will only run a small number of trials on a given day, typically dozens, giving us limited 
statistical power for analyzing effects across multiple dimensions.


Another challenge in understanding this system is the dynamic interaction between the rate 
code and phase code. As these codes combine, different formats of information are conveyed 
simultaneously in place cell spiking. The interaction can produce unintuitive, though entirely 
predicable results in traditional analyses of place cell activity. These practical challenges have 
hindered the effort to explain variability in hippocampal firing rates. A computational tool is 
needed that accounts for the well-established features of this system and provides a path 
forward in asking further questions. 


We have drawn from classic GLM (13, 17), gain control models (18-20) and phase-precession 
models (21, 22) to develop a position-theta-phase (PTP) model of place cell activity. In this 
model, spatial input is scaled by theta phase modulation to determine the firing rate of a place 
cell. This model has three primary utilities:


1) It provides a quantitative description of the relevant features of place cell activity. The 
model can be reliably fit with fewer than 100 spikes. These descriptive statistics can be 
compared across time, conditions and cells.


2) The model can easily generate simulated place cell data that mimics real place cell activity. 
The simulated data can be used for analysis on its own, or as statistical grounding in 
analyses of real data. 


3) It introduces a framework for principled hypothesis testing. By iteratively adjusting features 
of the model and using a model fit comparison with the proposed baseline model, we can 
assess the influence of additional modulating variables. 


We demonstrate these utilities and use the model to assess speed modulation in place cells. 
We find no evidence for speed modulation in the majority of place fields. For a minority  of 
place fields, spiking is either positively or negatively modulated by speed. The modulation 
appears to act as a gain control on the overall magnitude of firing, as opposed to other 
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candidate computations. Our PTP model offers a disciplined tool to separate physiological 
mechanisms from spurious statistical artifacts that may result from non-intuitive interactions of 
observed variables.


Results 

Parametric model of place cell activity 

We model place cell activity as a function of two independent inputs: position and theta phase 
(Figure 1A). Place cell activity is canonically described as a Gaussian function of position over 
select portions of the environment. These portions (“place fields”) are analogous to sensory 
receptive fields for place cells. Place cell spiking outside of the place field is typically sparse 
and has not been characterized, therefore our model focuses on within-place-field spiking. The 
spatially-activated responses are modulated according to the phase of the theta oscillation, 
and the preferred phase of the modulation changes with position, precessing to earlier phases 
of the theta cycle as the animal moves through the field (2, 22). This endows the phase of each 
spike with spatial information, along with the magnitude of the firing rate. We formalized these 
concepts by modeling firing rate as a Gaussian spatial response function, scaled by a Von 
Mises theta modulation function (Figure 1B). The preferred phase of the theta modulation 
function shifts with position according to the linear precession function. We modeled spiking as 
an inhomogeneous Poisson process of the firing rate. 


The PTP model functions are determined by parameters that correspond to relevant functional 
features of place cell activity (Figure 1B). The amplitude of the firing rate is parameterized by 
� . The width and position of the place field are captured by !  and � , respectively. The theta-
phase selectivity is determined by � . Cells that spike within a narrow range of phases have 
high selectivity while cells that spike across the whole cycle have low selectivity. �  determines 
the rate of phase precession and the preferred phase at the center of the place field is � . 


Fitting and simulating place cell activity 

We fit the model to spiking data recorded from place cells in rats. We examined data recorded 
from dorsal CA1 region of the hippocampus in rats as they ran along linear tracks (23). We 
used the rat’s position, theta phase and spike timing to estimate parameter values for each 
place field (see methods; Figure S1). Parameter values were stable across random subsets of 
data (Figure S2), indicating that our fitting procedure is reliable for this quantity of experimental 
data. With the parameter estimates for individual place fields as well as the distribution of 
parameters across the whole population, we were able to generate empirically grounded 
simulation data.


Using parameters estimated from an example place field, we generated place cell spiking in a 
simulated experiment (Figure 2). For each simulated trial a virtual rat ran through the place field 
at a constant speed while theta oscillated at a constant frequency, resulting in a straight 
trajectory through phase-position space (Figure 2Ai). The PTP model predicted the firing rate at 
each point along this trajectory and simulated spiking as a stochastic Poisson process of the 
instantaneous firing rate (Figure 2Aii). From one trial to the next, the initial theta phase at the 
beginning of the field randomly shifted, as it does in real experiments, which resulted in 
spatially shifted firing rate patterns.


The magnitude of firing rates predicted by the PTP model is larger than typically reported for 
place cells. The range of firing rates for place cells within their place field has been reported as 
1-40 Hz based on the trial-averaged firing rate within the place field (3, 24). However, on 
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individual trials, our model predicts 80-100 Hz peak firing rate for many cells (Figure 2Aii, Figure 
S4). The discrepancy arises from trial averaging, which averages out the effect of the theta 
modulation, resulting in an averaged peak firing rate roughly half the true peak firing rate 
(Figure 2Bi)


Inter-trial randomness in the theta phase at the beginning of the place field could also explain 
part of the variability in place cell firing rates. We simulated two trials with the same parameters 
and running speed, varying only the initial theta phase at the entry to the place field (Figure 3A). 
The theta modulation was shifted with respect to the spatial input, which changed the 
predicted firing rate across the field by a factor of two. Including the Poisson variability of 
spiking, the firing rate within the field could reasonably be 4 Hz on trial one and 16 Hz on trial 
two. This difference is based solely on the initial theta phase and Poisson variability. 


The effect of the initial theta phase on firing rate is amplified at faster running speeds. We used 
the PTP model to predict the firing rate as a function of both running speed and initial theta 
phase (Figure 3B). At slow speeds the initial theta phase is not very influential in the overall 
rate; however, at fast speeds the expected rate can vary dramatically. The intuition behind this 
observation is when the animal runs slowly, many theta cycles occur within the place field, 
making the alignment of any particular cycle less important for the overall predicted firing rate. 
At faster speeds, there are fewer cycles, making the coincidence of the theta modulation and 
spatial input much more important.


The speed-dependent variability could produce spurious correlations between speed and firing 
rate. We simulated a place cell experiment three times with identical conditions (Figure 3C). In 
each experiment we randomly varied running speed and initial theta phase, drawing from a 
uniform distribution of each, and used the model to generate spikes. We computed the 
average firing rate at each position for the fast, medium and slow trials. Across the three 
simulations, an apparently negative relationship between speed and firing rate arose in one, no 
relationship was evident in another, and a positive relationship appeared in the last. Recall the 
model used for simulation has no explicit speed dependence, so each of the apparent 
relationships is artifactual. The confound between running speed and firing-rate variability 
makes the analysis of speed tuning in place cells difficult, because standard statistics are not 
sufficient to assess the significance of these relationships. 


Quantifying the effect of running speed on place cell activity 

In real place field data, we found a heterogeneous distribution of speed dependence using 
standard correlations.  We computed the average speed and firing rate within the place field for 
each trial and calculated the correlation across trials. Contrary to previous findings that have 
reported mostly positive correlations between running speed and firing rate (3, 7), and in line 
with a more recent report (16) we found place fields with ostensible negative speed 
relationships (Figure 4A)  as well as those with apparently positive relationships (Figure 4C). We 
also found a majority of place fields that did not appear to be speed modulated (Figure 4B). 
Across all place fields in the dataset, the distribution of correlations appeared to be 
heterogeneous (Figure 4D). However, because speed related variability can produce spurious 
correlations (Figure 3C) these apparent effects must be scrutinized.


To more rigorously assess speed modulation, we used the PTP model to generate an ensemble 
of simulated experiments, from which we computed a null distribution of speed correlations. 
We use “null distribution” because the PTP model has no speed dependence, so the resulting 
correlations arise solely from the sources of variability accounted for in this model. For each 
place field in our dataset, we used the estimated model parameters to virtually recreate the 
experiment (Figure 5A). We computed the correlation between speed and simulated firing rate, 
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then repeated the simulated experiments 20,000 times to compute a null distribution of 
correlation values (Figure 5B). The null distribution varies across place fields depending on the 
best-fit model parameters for each individual field, and so must be computed independently.


Speed-firing rate correlations for most place fields did not lie significantly outside the 
respective null distributions. The distance between the true correlation value and the null 
distribution was measured as a p-value in the positive and negative directions (Figure 5C). A 
criterion of p<.05 was used and fields with significant positive and negative modulation were 
identified. A subset of place fields with positive modulation (19%) and a subset with negative 
modulation (12%) were identified above chance levels. Nonetheless, the majority of place fields 
(69%) did not meet our criterion for significant speed modulation (Figure 5D). In summary, we 
found that the degree of speed modulation in the majority of place fields lies within the 
predictions of the PTP model, which does not include any speed dependence. Yet, we found a 
minority of place fields with speed modulation beyond the model predictions. Next, we sought 
the potential mechanisms of such effects.


We extended the PTP model to explore the computational effect of speed on firing rates of 
significantly modulated place fields. The model delineates the independent features of place 
fields that could be affected by running speed. Two candidates that could directly impact the 
average firing rate in the place field are the amplitude �  (Figure 6A), and the phase selectivity 
�  (Figure 6B). Modeling amplitude as a function of speed corresponds to a gain control model, 
where running speed multiplicatively scales the magnitude of activity. Modeling phase 
selectivity as a function of speed corresponds to a changing window of spiking within the theta 
cycle. These two mechanisms could also work in consort in a dual speed model (Figure 6C). In 
each of these speed-dependent variants of our original model, we model the speed-dependent 
parameter as a linear function of speed. The slope of this function determines the direction and 
degree of speed dependence. 


Significantly speed-modulated place fields are best explained by a gain control model of 
speed. We performed a model fit comparison for each place field, comparing the speed-
dependent model variants and the original place field model. For each place field we fit each 
model and measured the performance of the model in predicting a held-out subset of the data. 
We selected the model with the highest average log-likelihood as the preferred model for that 
place field (see Methods). Expectedly, the majority of unmodulated place fields preferred the 
original PTP model (Figure 6D). Among the subsets of positively and negatively modulated 
place fields, the majority preferred a gain control model of speed modulation. These results 
suggest the computational effect of speed operates primarily on the magnitude of place cell 
activity, leaving the theta-phase modulation of place cells unaffected. 


Discussion 

Refining previous notions of speed modulation of firing rates 

Our analysis of speed modulation in place cell activity provides some amendments to previous 
notions in the spatial navigation field. We did not find evidence for speed modulation in the 
majority of place cells and suggest increased firing rate variability at high speeds as a potential 
source of spurious correlations. Of the minority of fields that did show modulation, some were 
positively modulated and others were negatively modulated. For each of these subsets, speed 
appears to affect the activity primarily as a gain control, scaling the overall magnitude while 
theta modulation remains mostly unaffected.


The lack of robust speed dependence of place cell firing rates may convey an important 
robustness of the system. If place cells are used to for navigation purposes, altering the ‘code’ 
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for behavioral parameters such as running speed may not be advantageous. Interleaving codes 
through gain control computations can allow one population to simultaneously represent 
multiple variables (3, 19, 25-27), and our results do suggest that speed dependence in a 
minority of place fields is best characterized as gain control. However, the sparsity of place 
cells in our data showing any speed dependence makes this interpretation tenuous.


An additional consideration in studying “speed modulation” is the relationship between speed 
and trial number that exists in almost all experiments. As the animal’s motivation decreases 
throughout the course of an experiment, running speed also decreases, causing an inseparable 
correlation between speed and trial number (Figure S5). This may be a confounding variable as 
neural signals associated with velocity are reciprocally woven into neural circuits that control 
motivated behavior (28-30). What has been identified as “speed modulation” in this report, and 
likely in others, could also be considered a motivation signal modulating activity, or simply 
“drift,” i.e. slow changes in activity patterns over time. In terms of functionally characterizing 
sources of variability in the system, such a distinction may not be important, because speed, 
time and motivation are correlated. However, if the goal is to identify underlying physiological 
mechanisms of the effect, it should become an important consideration. 


A quantitative characterization of drift over time in place field activity is a much-needed 
analysis for hippocampal research that our PTP model would be suited to address. As 
experimenters probe physiological circuits by performing manipulations and recording multiple 
changes, a baseline characterization of the volatility is needed to specify the effects caused by 
the manipulations and separate them from appealing, though ultimately spurious effects.


Our findings do not contradict suggestions that speed is a fundamental parameter of 
hippocampal activity. We found that the firing rates of the majority of putative fast-spiking 
interneurons, but not those of slow-spiking interneurons, were positively modulated by running 
speed (Figure S6). Fast-spiking interneurons, rather than pyramidal cells or slow-spiking 
interneurons, may be responsible for speed control of frequency of theta oscillation of 
hippocampal place cells (2, 21, 31, 32) and entorhinal grid cells (33).


The PTP model: uses and findings 

The PTP model we describe here provides a functional description of the well-established 
factors that influence place cell activity: position and theta phase. Position is an external 
variable that exists in space, while the theta oscillation is entirely internally generated and 
propagates in time. These variables interact dynamically through running speed, which may 
exert its own place-field-specific influence on activity. The results of this interaction are not 
always obvious or intuitive. Our model can be used in lieu of intuition to inform baseline 
controls. Appropriate controls are necessary to ward against interpreting inherent implications 
of the position-phase interaction as novel features of place cell activity. Our model also 
provides a framework for identifying and incorporating truly novel features into our collective 
understanding of hippocampal operations.


The PTP model has allowed us to uncover a few surprising features of place cell activity. First, 
the dynamic range of place cell firing rate is roughly double what is typically measured from 
trial-averaged firing rates. Second, running speed affects firing rate variability due to Poisson 
randomness and alignment between theta phase and position, which can produce spurious 
correlations between speed and firing rate. Finally, despite the potential for spurious 
correlations, there appear to be small subsets of place fields that show genuine speed 
modulation. 
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In general, the PTP model can be used in several ways. First, key features of place fields can 
be described quantitatively by fitting the model with relatively small amounts of place cell data.  
Second, realistic place cell data can be generated in simulated experiments, with conditions 
and parameters fully controlled by the experimenter. Simulated place cell data can help explore 
theoretical aspects of the hippocampal spatial navigation system, inform the design of future 
experiments and serve as a control in analyzing real place cell data. Lastly, hypothetical 
variations of the model can be systematically tested to uncover additional features of the data 
as demonstrated in Figure 6. 


Model limitations and extensions  

In formulating our model, choices were made for the sake of simplicity that may have 
neglected some particular specifics of hippocampal physiology. For example, formulating 
phase precession as a linear function of position (2, 3) ignores previous work that has 
characterized a curved “banana” shaped phase precession (24, 34). However, the PTP model 
can be amended to accommodate details of such properties, and be a useful tool for further 
probing their significance. 


Physical stationarity of the place field is a more fundamental assumption of the PTP model. We 
define the spatial input function as an environmental input drive at a particular location (1). An 
alternate interpretation is that a place field begins at the occurrence of the first spike, and the 
place field peak varies from trial to trial (5, 6), tying the place field more strongly to theta phase 
than to position. This interpretation may be useful in some contexts, but ours reflects common 
assumptions in the field that are arguably more relevant in the context of spatial navigation.


One-dimensional space is another assumption. In its current instantiation, the PTP model is not 
directly applicable for two-dimensional navigation. However, with additional assumptions it 
could be expanded to two dimensions.


We also only model single place fields, while real place cells can have multiple fields within an 
environment (35, 36). As is, PTP models for multiple fields could easily be combined along an 
expanded position axis. A potentially interesting extension could involve using optimization to 
automatically identify place fields and model them jointly.


The PTP model describes the interaction between position and theta phase as the primary 
factors that affect place cell activity. The interaction of these variables is specific to place cells, 
yet multiple variables might have similarly specific interactions that affect firing rates in other 
functions and regions of the spatial navigation system (31, 37-39). We hope our general 
statistical approach can be used to promote rigor in the study of spatial navigation and 
connect analyses to broader computational frameworks.


Methods 

Parametric model of place cell activity 

The model is defined by three equations, where �  is the position within the field and �  is the 
phase of the theta oscillation: 


Spatial input equation:


	  � 


Phase modulation equation:


x θ

f (x) = ex p (Ax) ⋅ ex p ( −(x − x0)2

2σ2x )

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714105doi: bioRxiv preprint 

https://doi.org/10.1101/714105
http://creativecommons.org/licenses/by-nc-nd/4.0/


	  � 


Phase precession equation:

	  � 

The rate is modeled as a product of the spatial input and phase modulation equations: 

	 � 


The number of spikes �  occurring at position �  and theta phase �  over interval �  is modeled 
as a Poisson probability distribution with mean � : 


	 � 


The likelihood that a model produced the data was computed as the product of probability 
over time: 

	 � 


Our model explained the spiking activity of the majority of place fields better than simpler 
iterations of the model (Figure S3). Code, demonstrations and example data for the PTP model 
can be found at https://github.com/kmcclain001/ptpModel.


Data 

Spiking and local field potential were recorded from dorsal CA1 region of the hippocampus of 
rats as they traversed linear tracks (as described in Tingley and Buzsáki 2018). Datasets were 
curated for each place field by selecting time points while the animal was in each place field. 
The model was fit for each field using the data recorded at those time points. The inputs to the 
model consist of 4 time-series variables that are interpolated to the sampling rate of the local 
field potential (1250 Hz): 1) the position of the subject within the place field, 2) phase of the 
theta oscillation, 3) speed of the subject within the place field (only used in explicit speed 
models), 4) binary spike or no spike for each time point. 


1) Position:

Raw position was measured as described in Tingley & Buzsaki 2018. The position on the track 
was linearized based on the occupancy in 2D (code included). Trials were partitioned by the 
starting point and running direction of the subject. Place fields were defined only within trials 
from a single partition. Linearized position was smoothed using a Gaussian convolution kernel 
and interpolated cubically to 1250Hz. Position within each place field was normalized on a 0-1 
scale. 


2) Running speed:

Speed of the rat was computed from the raw position measurements as the Euclidean distance 
in 2D position between frames. Speed was smoothed with a Gaussian convolution kernel and 
cubically interpolated to 1250Hz.


3) Theta phase:

To extract the theta oscillation, the local field potential was filtered using a 4th order 4-15Hz 
bandpass Butterworth filter. Due to speed-dependent asymmetry in the theta oscillation 
waveform, the phase within each cycle was defined by the latency between peaks in the signal 
and linearly interpolated from 0 to 2pi between consecutive peaks.


Model fitting 

g(θ, x) = ex p (kθ ⋅ (cos (θ − θ0(x)) − 1))
θ0(x) = bθ + mθ (x − x0)

r (x , θ ) = f (x) ⋅ g(θ, x)

kt xt θt dt
λt = dt ⋅ r (xt, θt)

p(kt |λt) =
λ kt

t e−λt

kt!

ℓ = ∏
t

p (kt |λt)
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Models were fit to data from each place field independently. Each time point corresponded to a 
datapoint with a position, theta phase, running speed and spike/no spike value. For each fit, 
parameters were estimated using a training dataset. A multi-start fitting procedure was used 
with five randomly chosen initial points to mitigate the effects of local minima in the 
optimization. The fmincon function in matlab was used to perform the optimization, 
constrained by reasonable parameter ranges (exact values can be found in code). If the 
parameter estimates did not converge 5 times, a field was discarded, which was the case for 
80 fields.


Parameter estimation 

To assess the stability of the parameter estimates for each field, the model was fit 10 times. For 
each fit 90% of the data points for that field were randomly chosen to make the training 
dataset (Figure S1). The repeated fitting provided a distribution of parameter estimates for each 
field (Figure S2). The median value for each parameter was chosen as the estimate for each 
field.


Model comparison 

To compare the performance of competing models, Monte-Carlo cross-validation with 
averaging was used (40). Data were split 10 times and each model was cross-validated by 
fitting on 75% of the data, then testing on the remaining 25%. The mean log-likelihood for each 
model was computed and the model with the highest log-likelihood was chosen. Cross-
validation allowed us to make a valid comparison across models with different numbers of 
parameters


Neuron classification 

Waveforms were clustered as described in Tingley and Buzsaki 2018. Putative cells types for 
each cluster were identified by four factors: firing rate, integral of the second half of the mean 
waveform, and the rising slope and falling slope of the autocorrelogram fit with a double 
exponential function. These four features were grouped using k-means clustering with 15 
clusters. These clusters were merged manually into putative interneurons and putative 
pyramidal cells.


Place field identification 

Place fields were identified based on the firing rate of pyramidal cells (3). The mean firing rate 
as a function of position was computed for each cell in each trial condition. Regions on the 
track where the firing rate was above 20% of the peak were isolated (36). The length of these 
regions had to be longer than ~1/15th the length of the track and smaller than 5/8ths the length 
of the track. The place cell also had to spike at least once while the subject was in the field on 
at least 4/5ths of trials.
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Main Figures

Figure 1: Parametric model of place cell activity 
A) Schematic of model: firing rate modeled as a multiplication of tuning curves with respect to 

space and theta phase. Preferred theta phase changes with position to incorporate phase 
precession. Parameters for this schematic derived from fitting model to real place field data. 

B) Model equations: Spatial input function is a Gaussian function of position with 3 parameters: 
amplitude ! , width !  and center ! . Theta modulation function is a Von Mises function 
(approximately circular Gaussian) of theta phase normalized to height 1 with one parameter: 
! . Theta modulation is centered on a preferred phase in the precession function which 
changes linearly with position according to slope !  and intercept ! . 

Ax σx x0

kθ
mθ bθ
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Figure 2: Simulating place cell data

A) Single trial simulation


i. Simulated theta-phase-position trajectory imposed on place field schematic (as in 
Figure 1A) for trial 1 (blue), and trial 2 (purple) at the same speed with a different initial 
theta phase at the start of the place field. 


ii. Simulated firing rates for model fit to place field in C) computed for trajectories in trial 1 
and 2 in i. Spiking for each trial (below) simulated via Poisson process.


B) Summary visualization of simulated data: Spiking was simulated for 42 trials with varying 
speeds and initial theta phases, using the PTP model fit got real place cell data in C).

i. Mean firing rate vs. position, averaged over trials. 

ii. Theta phase vs. position for each spike.


C) Summary visualization of real place cell data in example place field. i.  and ii. same as in B).
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Figure 3: Speed-dependent variability can cause spurious correlations with running speed

A) Two simulated trials with identical model parameters and running speed, differing only in 

initial theta phase.

i. Alignment between spatial input function (black) and phase modulation function for 

trials 1 and 2 (blue and green). 

ii. Predicted firing rate vs. position for trials 1 and 2 computed by multiplying the spatial 

input and phase modulation functions in i. 

iii. Mean firing rates for trials 1 and 2, averaged over position. Error bars correspond to 

standard error (SEM) predicted from Poisson variance of spiking. 

B) Mean firing rate across place field simulated as a function of initial theta phase and running 

speed. Variability caused by initial theta phase increases at higher speeds.

C) Firing rate vs. position in the fast (red), medium (yellow), and slow (blue) sets of trials in 

three simulated experiments. In each experiment 30 trials were simulated with randomized 
speeds and initial theta phases. Mean firing rate was computed as a function of position for 
each set of trials. Conditions were identical for each simulated experiment with no explicit 
speed dependence in the model, however apparent speed modulation appeared by 
chance, both negatively (experiment 1) and positively (experiment 3). 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Figure 4: Real pyramidal cells show heterogeneous distribution of speed correlations

A) Speed dependence of example place field with negative speed modulation: 


i. Trial vs. position of each spike, trials ordered by mean running speed in the place field. 

ii. Firing rate vs. position for fastest (red), middle (yellow) and slowest (blue) thirds of trials. 

iii. Mean firing rate across place field vs. speed, each point representing one trial. r values 

throughout indicate Kendall rank correlation coefficient.

B) Same as A) for unmodulated example place field.

C) Same as A) for positively speed-modulated place field.

D) Distribution of speed-firing rate correlations across all place fields in dataset. 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Figure 5: Speed modulation is statistically significant in a small number of place fields

A) Mean firing rate vs. speed for real example place field (same as Figure 4C), for real 

experiment (black) and simulated experiment (green). Simulation performed using model fit 
to this place field and conditions identical to real experiment.


B) Null distribution of speed-firing rate correlations (green) computed from 20k simulations of 
the experiment in A). Empirical correlation in black. For this example field, we find evidence 
for speed modulation beyond what can be explained by the PTP model.


C) One-tailed p-values computed from null distribution for all place fields in the dataset. 
Significant speed modulation is defined as p<0.05. Red, distribution for positive speed-
firing rate relationships. Blue, distribution for negative speed-firing rate relationships.


D) Proportion of place fields for which there was statistical significance for negative or positive 
speed modulation, and the proportion for which there was no evidence for speed 
modulation.
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Figure 6: Speed model comparison: variants of basic model that include speed dependence

A) Gain control model: 


i. Hypothetical relationship between amplitude parameter and speed.

ii. Spatial input function as it varies with speed.

iii. Phase modulation function (stationary with respect to speed).

iv. Hypothetical relationship between firing rate and speed for gain control model.


B) Phase modulation model: same as A) except phase selectivity varies with speed instead of 
amplitude.


C) Dual modulation model: same as A) except both amplitude and phase selectivity vary with 
speed.


D) Proportion of place fields in each speed modulation category best fit by each model 
variant. Positively and negatively modulated fields are by majority best fit with a gain 
control model, while unmodulated fields are mostly best fit with the original PTP model. 
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Supplementary Information  

Figure S1: Fitting PTP model to place cell data

E) Model fit to example place field


i. Theta phase vs. position of each spike in field for real place field. 

ii. Spatial input function vs. position and parameters estimated from fitting model to place 

field in i.

iii. Precession function vs. position.

iv. Phase modulation vs. theta phase.


F) Distributions of parameter values estimated from fitting model to all place fields in data set. 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Figure S2: Stability of parameter estimates

A) Distribution of parameter estimates for example place field shown in Figure S1Ai. 

Parameters were estimated for shuffled subsets of data (see Methods). Mostly 
indiscernible, boxplots show median, and first and third quartiles. Whiskers represent 
approximately +/- 2.7 standard deviations from median. 


B) Distribution of Fano factors for each parameter estimate across all place fields in dataset. 
Fano factors shown on log scale.  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Figure S3: Basic model fit comparison

Performance of two simpler variants of PTP model were compared with that of the PTP model: 

- Left, the simplest model was a Gaussian function of position with no theta-phase 

dependence. 

- Middle, the next level of complexity was a stationary theta-phase modulation scaling the 

Gaussian, but with no phase precession. 

- Right, the full PTP model as described in Figure 1. 

The variants are depicted under the corresponding section of the bar graph. The bar graph 
indicates the proportion of place fields in the data set preferring each model variant. The PTP 
model explains the place field data better than either of the simpler variants for the majority of 
place fields in the dataset. 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Figure S4: Estimating peak firing rate of place cells

A) Distribution of within-place-field inverse inter-spike intervals (ISI) across all place cells in 

dataset. The inverse ISI is used as an estimate of the instantaneous firing rate (41). Labeled 
values (4, 9, 124 Hz) correspond to lower edges of peak histogram bins. 


B) Peak firing rate predicted by PTP model vs. peak firing rate measured from trial-averaged 
firing rate for each place field.  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Figure S5: Negative correlation between running speed and trial number

A) Running speed behavior across example session. Trial lengths are normalized to a 0-1 trial 

phase for facility of inter-trial comparison.

B) Average speed vs. trial phase for early, middle and late thirds of trials in session from A).

C) Average speed within trial vs. trial number for session in A). Linear regression shown in 

gray. Pearson correlation coefficient between speed and trial number shown (r = -0.70). 

D) Distribution of Pearson correlation coefficients for speed and trial number across all 

behavioral sessions in dataset.  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Figure S6: Speed dependence of firing rate in interneurons

A) Firing rate vs. speed for example interneurons:  Color indicates empirical firing rate 

probability conditioned on running speed

i. Putative fast-spiking, 

ii. Putative slow-spiking


B) Speed modulation interneuron subtype specific

i. Pearson correlation coefficient between speed and firing rate vs. mean firing rate for all 

putative interneurons in dataset. Gray line indicates firing rate threshold (5 Hz) between 
putative fast-spiking and slow-spiking interneurons. 


ii. Distributions of correlation coefficients for each putative interneuron subtype. Note 
strong positive correlation between speed and firing rate for fast firing interneurons but 
not for slow firing interneurons. There have been similar findings for parvalbumin- and 
somatostatin-expressing interneurons in entorhinal cortex (42) 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